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A REIDEMEISTER-SCHREIER PROGRAM 

George Havas 

I .  Introduction 

The Reidemeister-Schreier method yields a presentation for a subgroup H of a 

group G when H is of finite index in G and G is finitely presented. This 

paper describes the implementation and application of a FORTRAN program which follows 

this method. The program has been used satisfactorily for subgroups of index up to 

several hundred. 

Following the theory of Reidemeister and Schreier (see for example Magnus, 

Karrass, Solitar [4], 2.3, p. 86), we see that we require the coset table of H in 

G . The program described is implemented as a set of subroutines called by the Todd- 

Coxeter program described in Cannon, Dimino, Havas and Watson [I] and we shall 

consider it in that context. 

2. The procedure in detail 

The Reidemeister-Schreier program commences by finding the coset table of H in 

G . Directly following the theory of Reidemeister and Schreier, the program finds 

Schreier generators for H and next finds a set of Reidemeister relators in terms of 

the Schreier generators. 

At this stage the presentation is usually not in a useful form. The number of 

Schreier generators is of the order of ng[G : H] where ng is the number of 

generators of G ; the number of Reidemeister relators is of the order nr[G : H] 

where n is the number of relators in the presentation of G . In view of this, the 
r 

program goes on further to improve the presentation using obvious but ad hoc 

techniques. In particular, this is done by using a canonical form for the relators, 

by eliminating redundant generators and by attempting relator simplification. 

A somewhat more detailed description is given in the following paragraphs. 
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2.1 Set up the coset table 

Given G = <g I . . . . .  gn I R1 = R2 = "'" Rn = i> and H = <h I . . . .  , hnh > the 
g r 

coset table of H in G is computed. (The actual subgroup generators, the h m , 

are required only by the Todd-Coxeter part of the program and are not required 

subsequently.) The subscript i will be used to run through the cosets of H in 

G . 

2.2 Compute coset representatives 

Minimal Schreier coset representatives are computed by constructing a minimal 

spanning tree for the coset table. For each coset i , C. will represent the 

corresponding minimal Schreier eoset representative. Further K will designate a 

coset representative function. This means that K maps words in the gj onto a 

coset representative system for G mod H . In this case K(w) will be the minimal 

Schreier representative of the coset of w . 

2.3 Compute Schreier generators 

The Schreier generators S. , are computed using the formula 
4,3 

s i , j  = c~gj (K(c igS))  -1  

The Schreier generators are freely reduced by the program. Some may be trivial and 

any such are noted. 

2.4 Compute Reidemeister relators 

The Reidemeister relators ri, k are computed using a Reidemeister rewriting 

process t . 

g I s 2 e 
If w = gJf~'2 -J "'" gJnn then 

~I g2 en 
t(w) = S. . S ..... s. 

~l,Jl z2,J2 Zn,Jn 

~k 
where i k is the coset of the initial segment of w preceding gJk if ek = I 

sk i k is the coset of the initial segment of w up to and including gJk if 

Using this rewriting we have 

ri,k = tICiRkCil I 

and 

gk = -I . 
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The program eliminates all occurrences of trivial Schreier generators 

(previously noted for this purpose). Then the relators are freely and cyclically 

reduced. 

for the 

If 

by 

All relators are converted to a canonical form as they are computed~ and the 

relators are maintained in this form throughout. The canonical form is based on an 

ordering < of the generators S. . . (The program uses the lexicographic ordering 

si , j  ") 

Xk' Yk are Schreier generators we define our ordering < on the relators 

Xl < Yl if Xl < Yl or Xl = Yl ' E1 = I , 61 = -i ; 

gl 82 8 61 62 m n 
Xl x2 "'' ~ < Yl Y2 "'" Yn if m < n ; 

and inductively 

E 1 82 8 m 61 62 6 m 
Xl x2 " '"  Xm < Yl Y2 " '"  Ym 

i f  

gl 82 gm-i 61 62 6m-i 
Xl x2 " ' "  Xm-I < Yl Y2 " ' "  Ym-I 

or 

6 E1 82 8m-I 61 62 6m-I xgm < YC " 
Xl x2 " ' "  Xm-i = Yl Y2 " ' "  Ym-i and m 

We choose as our canonical relator the least (with respect to this ordering) of 

the set of relators made up of all cyclic rotations of the given relator and its 

formal inverse. 

As each relator is computed its canonical representative is inserted into a 

relator list, provided it is not a repeat of a relator already there. The canonical 

form notion substantially reduces the number of relators in the presentation. 

2.5 Eliminate redundant generators 

When we have completed the above steps we have a presentation for H , namely 

= <s~,j I ~,k = i> , 

with duplicate relators removed. 

This presentation is still highly redundant. In particular there are usually 

many redundant generators in the sense that there are many relators containing exactly 
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one occurrence of a particular generator. Such generators can be removed by 

substitution. 

The most obvious approach is to remove one redundant generator at a time from 

each relator. However this turns out to be very time-consuming in computer 

implementation. Three possible techniques are discussed below. 

2.5.1 ELIMINATION TECHNIQUE i 

This is the technique actually implemented for regular use in the Reidemeister- 

Schreier program. The eliminations are batched together to save computing time. 

Each relator in the relator list is examined for any generator occurring exactly 

once (provided the relator is independent of previously discovered but not yet 

eliminated redundant generators). The shorter relators are examined first so that 

the generators selected for elimination will tend to have short generator strings as 

their equivalents. 

Whenever a redundant generator is found the associated relator is removed from 

the relator list, the generator is marked redundant, and the value of the generator 

and its inverse computed. On the completion of such a pass through the relator list 

all remaining relators are examined for occurrences of redundant generators. Each 

such occurrence is eliminated by substituting for the redundant symbol its computed 

value. The new relators are again freely and cyclically reduced and a new relator 

list is formed. 

On completing the redundant generator elimination we repeat this step (for new 

redundancies may now have appeared in the relators). We continue repeating this step 

till no further redundancies are found, when we go to the last step, 2.6. 

2.S.2 ELIMINATION TECHNIQUE 2 

Eliminate one generator at a time. Heuristically this seems superior in that we 

may select for elimination the generator with shortest equivalent string at each 

stage. Unfortunately the Reidemeister-Schreier method frequently gives us 

presentations with hundreds of generators and relators, and hundreds of redundancies, 

and this approach takes too long. 

2.5.3 ELIMINATION TECHNIQUE 3 

A compromise between techniques i and 2 is to eliminate redundant generators with 

values of the same length at the one time, doing this elimination for increasing 

length. This has the advantage of ensuring that all length zero and one eliminations 

are done as soon as possible. Length zero and one eliminations are most desirable 

for they do not increase relator lengths, whereas higher length eliminations may well 

increase relator lengths, and usually do. 

In §3 comparisons of the above three techniques in terms of execution times and 

"niceness" of ensuing presentation are given. 
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2.6 Simpl i fy the presentation 

When no obviously redundant generators remain we resort to other attempts to 

simplify the presentation. There are an unlimited number of possibilities for this. 

The most obvious is looking for relator substrings which have shorter equivalent 

strings. At this stage only the following technique is included in the program. 

2.6.1 SIMPLIFICATION TECHNIQUE 

All relators are checked to see if they are of the form ~. . . If any such 

relators are found then all other relators are processed for strings in the S~,j 

known order. All long strings (that is of length exceeding n/2 ) are replaced by 

their shortest equivalent counterparts. Further, for even n strings STz< 2 , are 

sn/2 replaced by i , j  " 

After this simplification the program returns to step 2.5, and if no further 

redundancies appear, the program terminates. Otherwise steps 2.5 and 2.6 are 

repeated till no further improvement is obtained. 

of 

3. Examples 

In this section some applications in determining previously unknown Macdonald 

groups (see [3]) are presented. Also some other test examples are presented to give 

an indication of the performance of the different possible techniques and the program 

as a whole. 

Macdonald group coset enumerations are notoriously difficult (see [i]), and this 

forced us to resort to the techniques described here to determine them by coset 

enumeration based methods. 

Wamsley [5] describes a technique for constructing the largest finite nilpotent 

p-factors of groups. Such an approach is in fact much more suitable for determining 

Macdonald groups and enables their determination more easily. 

3.1 Determination of  a Macdonald group 

First let us consider in detail a reasonably easy application of the 

Reidemeister-Schreier program. The Macdonald group G(-2, -2) is defined 

G(-2, -2) = (a ,  b I b-la- lbab- laba2 : a- lb- la~a-lbab 2 = i> . 

In practice it is impossible to do the coset enumeration G] <i> using Todd- 

Coxeter programs. This is not surprising for [G : ( a>] = 729 (by Todd-Coxeter), and 

it is easy to prove that the order of a is either 27 or 81 , making the order of 

G either 19683 or 59049 . 

The subgroup H = ( [a, b], [a -1, b], [b, a], [b -1, a] ) is of index 9 in G 
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(hence H is the commutator subgroup), and the enumeration of cosets is easy. Using 

the Reidemeister-Schreier program the following presentation for H was found 

H <x, y, Z I x2y-lxy -2 = y2 2 2 -I 2 -i -2x-I yz-2 2 = z yz = x z y x z  x~y = x u ~  ( ) 

2 -i 3 -i 4 -I 
= xz y xz y XZ y = I> . 

Further, the enumeration HI<l) was done, revealing that H has order 6561 , 

whence G has order 59049 and a has order 81 . 

3.2 Test examples 

A set of test examples was run using each of the three techniques described in 

2.5, and also with the final program. The following groups and subgroups (taken from 

Coxeter and Moser [2]) were used. 

(a) G I = <a, b I a3 = b6 = ( ab)4 = (ab2} 4 = (ab3] 3 

= a-lb-2a-2b-2a-lb-2ab2a2b2ab2 = I> . 

(G I is a presentation for PSL(3, 3) , of order 5616 .) 

H I = <a, b2> is the Hessian group of order 216 , [G I : HI] = 26 . 

(b) G 2 = <a, b I a4 = b4 = ( a]p)4 = (a-lb] 4 = (a2b] 4 = (c~P2~ 4 = 

(a262] 4 : [a, b] 4 = (a-lbab] 4 : I> . 

(G 2 is a presentation for B2, 4 , of order 4096 .] 

b 2 H 2 = <a, > , IHml = 64 , [G 2 : H2] = 64 . 

(c) G 3 = <a, b, o I all = b5 = 04 = ~o2] 2 

(d) 

(G 3 is a presentation for MII , of order 

H 3 = <a, b, 02> is PSL(2, Ii) of order 

= (abe) 3 = 

(a4c 2]3 = b2c-lb-lc = a4b-la-lb = I> . 

7920 .] 

660 , [G 3 : H3] = 12 . 

G 4 = <a, b, c I all = b5 = c4 = (ac) 3 = b2c-lb-lc = a4b-la-lb = i> . 

(G 4 is a "better" presentation for MII .] 

H 4 = <a, b, 02> is again PSL(2, Ii) of order 660 , [G 4 : H4] = 12 . 
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(e) G 5 = <a, b, c [ a 3 = b 7 = c13 = ( )ab 2 = (bo) 2 = (ca) 2 = (~c)2 = i) . 

(G 5 is G 3'7'13 , a presentation for PSL(2, 13) , of order 1092 ° ~ 

= <a b, c) is dihedral of order 26 , [G 5 : H5] = 42 H 5 

(f) G 6 = <a, b, c I a3 b7 14 . . . .  = = c = (ab) 2 (bo) 2 (ca) 2 (abe) 2 1 > . 

(G 6 is G 3"7'14 , of order 2184 .I 

= (c~5, c) is dihedral of order 28 , [G 6 : H6] = 78 H 6 

In fact it is easy to read presentations for H 5 and H 6 off from the present- 

ations for G 5 and G 6 , but it is still interesting to observe the behaviour of the 

algorithm in these cases. 

Each of the three elimination techniques was used on each of the test groups. 

These runs were actually made at an early stage of program development, before the 

introduction of the canonical form or the simplification technique. The following 

table indicates the nature of the presentations obtained at that time. 

Column a indicates the number of generators in the presentation, 

Colurm~ b indicates the number of relators, and 

Colun~ c indicates the length of the longest relator. 

Technique I Technique 2 Technique 3 

Subgroup a b c a b c a b c 

H I 3 35 80 3 37 114 3 37 114 

H 2 2 85 264 2 76 160 2 81 132 

H 3 4 27 157 3 19 42 4 25 115 

H 4 3 13 84 3 Ii 24 3 ii 24 

H 5 3 12 182 3 13 134 3 13 142 

H 6 3 16 56 3 16 80 3 16 80 

We might say one presentation is better than another if it has fewer generators, 

fewer relators and/or shorter relators. The table indicates that sometimes the 

heuristically better technique produces a "worse" presentation. 

The fact that the better technique sometimes leads to a worse presentation is 

troubling. The reason for this is that redundant generators may be eliminated in 

different orders when different techniques are used, leading to different 

presentations. 
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presentation deduced. 

presentation for H 3 . 

presentation for G 3 . 

Other factors may also affect the final presentation. Obviously the nature of 

the initial group presentation is very relevant to the nature of the subgroup 

The presentation for H 4 is much "nicer" than the 

This is because the presentation for G 4 is better than the 

It is interesting to note that if we take different generators for the subgroup 

we may get significantly better or worse presentations. 

The reason for this is that the coset table may be generated in a different 

order, leading to a different ordering on the Schreier generators. When given a 

choice of a number of redundant subgroup generators to eliminate in one relator, the 

elimination procedure uses the rule of selecting the largest with respect to the 

canonical ordering. Thus different Schreier generators are eliminated under 

different conditions. 

Sample timings for each of the three techniques are as follows. For 

technique 3 took 1.5 times as long as technique I while technique 2 took 2.4 times as 

long. For H 5 technique 3 took 1.6 times as long as technique i while technique 2 

took 8.5 times as long. These timing considerations justify the selection of 

technique i for the final program implementation. 

It is also interesting to consider the nature of the presentation yielded by the 

original Reidemeister-Schreier method and the nature of the presentation obtained by 

the final program implementation. Columns a, b and c have the same significance as 

Subgroup 

H I 

H 2 

H 3 

H6 

before. 

Original Final output 
Reidemeister-Schreier Presentation 

Presentation 

a b e a b c 

27 156 14 2 29 168 

65 576 16 2 67 204 

25 96 15 4 22 iii 

25 72 ii 3 I0 21 

157 546 14 3 13 65 

85 294 13 2 12 66 

At first sight, it may seem that neither of these presentations is of much use. 

The former has too many generators and too many relators while the latter has 

relators which are too long, and perhaps too many relators. But looking at the final 

output presentation shows us otherwise. Of the examples given, the presentation for 
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H 2 looks the worst. However the first four relations in the presentation produced 

for H 2 are b2 = a 4 = (~)4 = (a2b)4 = 1 and these alone suffice for a presentation 

of H 2 . In a similar fashion three of the first four relations of the presentation 

produced for H 6 are a 2 = (aTe) 2 = b 14 = I , indeed a presentation for H 6 . 

If we can successfully select a likely presentation for H from the relators, 

it is an easy matter, using coset enumeration, to show whether the remaining 

relators are consequences of the selected set. So even when we get an apparently 

ungainly presentation, we may well be able to extract a useful presentation from it. 

The final programmed algorithm, including the coset enumeration, took 6.5 seconds 

CPU time on a CDC 6600 to find the presentation for H I . 

3.3 The Reidemeister-Schreier abelianized 

In certain cases (the Macdonald groups are again a case in point) there are 

abelian subgroups of a group of which we do not know the structure. In such cases it 

is useful to perform an abelianized Reidemeister-Schreier. What we do is abelianize 

each relator at each stage of the computation, and this greatly simplifies the 

ensuing presentation. 

Let us consider the use of the abelianized Reidemeister-Schreier in the context 

of two other previously unknown Macdonald groups• Consider G = G(3, 5) • Again the 

enumeration GI< I> is too difficult. However, the enumeration GIH where H = <b> 

can be done easily enough, to get [G : H] = 8 . 

Unfortunately we do not know the order of b . 

If we try to use the straight Reidemeister-Schreier program to find a present- 

ation for H we get a nasty presentation (3 generators, I0 relators, longest relator 

length 66). However, H is abelian of course. Using the abelianized Reidemeister- 

Schreier we obtain the one relator presentation H = <b I b16 , whence [G I = 128 . 

The second example is G(-3, -5) . [G : H = <b)] = 32 , and a presentation for 

H given by the ahelianized Reidemeister-Schreier is H = (b b12> , whence 

IGI = 384 . However, using the straight Reidemeister-Schreier program we get a 

presentation with 3 generators, 34 relators and longest relator length 684 0 

4. Data structures and computation techniques 

For those interested in the actual computer implementation, brief details of 

some of the methods used are given in this section. 

After computing the coset table we need to compute coset representatives, 

Schreier generators and Reidemeister relators for the subgroup. All of these are of 
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unpredictable length so a list structure is mo&t appropriate. In order to compute 

Schreier coset representatives we need two locations per coset of the table. In 

addition we need n locations per coset for pointers to each of the n Schreier 
g g 

generators associated with each coset. 

Thus, in addition to the data structures used in [I], we must augment the coset 

table by n columns and we require a reasonably large amount of list space. The 
g 

list processing is done in-line in the FORTRAN code. 

In order to perform the conversion of relators to canonical form, the relators 

are made into circular lists after free and cyclic reduction. This facilitates the 

examination of all rotations of a relator without the use of additional storage. 

Finally, the relator list, in which all the canonical form relators for the 

subgroup are stored, is kept sorted according to the previously defined order. This 

makes the search for duplication easier and enables the program to simply process the 

relators in relator list order when applying generator elimination and relator 

simplification techniques. 
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