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SYNOPSIS

All the Fibonacci groups in the family F(2, n) have been either fully identified or determined to be
infinite, bar one, namely F(2, 9). Using computer-aided techniques it is shown that F(2, 9) has a
quotient of order 152.5741, and an explicit matrix representation for a quotient of order 152.518 is
given. This strongly suggests that F(2, 9) is infinite, but no proof of such a claim is available.

1. INTRODUCTION

Conway [5] aroused interest in the Fibonacci groups in 1965. These groups have
been studied in general by Johnson, Wamsley and Wright [10] and by Chalk and
Johnson [4]. The Fibonacci group F(2, n) may be presented

F(2, n) =<*!, x2,...,xn; XjX2 = x 3 , . . . , xn_2xn_1 = x,,, xn_xxn = xu xnx1 = x2).

Determination of one of these groups was made as early as 1907 [11], and by
1974 [1] all bar one, namely F(2, 9), had been either fully identified or deter-
mined to be infinite. Computer-aided techniques have been used in this investiga-
tion of F(2, 9). Computer implementations of group-theoretic algorithms utilized
are a coset enumeration program [3], a Reidemeister-Schreier program [7], a
nilpotent quotient algorithm program [12], an abelian decomposition program
[9], and a Tietze transformation program.

All the groups F(2, n) which are known to be finite have been determined and
in fact can be identified by coset enumeration [see 8 for details of the most
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difficult successful coset enumeration]. The group F(2, 9), which is known to have
a maximal nilpotent quotient of order 152, resisted all attempts by coset enumera-
tion. The reason for this is now clear. In this paper we show that F(2, 9) has a
quotient of order 152.5741. We present the method for the discovery of this
quotient, and also give an explicit matrix representation for a quotient of order
152.518.

The size of the largest quotient that we have been able to discover is governed
by the availability of computer resources, and there is every reason to expect that
much larger quotients exist. All indications suggest that F(2, 9) is infinite, but
proof of such a claim eludes us.

We thank L. G. Kovacs and M. F. Newman for many helpful discussions. We
acknowledge the faithful performance of two Australian National University
computers, a Univac 1100/42 and a DEC KA10, on which all machine calcula-
tions were done.

2. QUOTIENTS OF F(2, 9) AND ITS SUBGROUPS

The abelian quotient of F(2,9) is isomorphic to C2xC2x C19, where Cn

denotes a cyclic group of order n. The nilpotent quotient algorithm shows that
F(2, 9) has a maximal nilpotent quotient isomorphic to QxC ] 9 , of order 152
(here Q is the quaternion group). Using this information, it is easy to find
presentations for subgroups of indices 2, 4, 8,19, 38, 76 and 152 in F(2, 9).

We hoped that the nature of the subgroups would cast light on F(2, 9). The
simplest hope was that the abelian quotients of the subgroups would provide new
information. Using a judicious combination of all the computer programs men-
tioned in §1 we were able to find the maximal abelian quotients of the subgroups
of F(2, 9) corresponding to subgroups of Q x C19.

In each case except the last, namely index 152, the maximal abelian quotient is
the same as that of the corresponding subgroup of Q x C19. However the index
152 subgroup of F(2, 9) has a maximal abelian quotient which is elementary
abelian of order 518. The nilpotent quotient algorithm reveals that this subgroup
has a maximal 5-quotient of class 3 with order 5741. This shows that F(2, 9) has a
quotient of order 152.5741. Some of these computations are further described in
[9].

The details of the computations outlined above are not particularly perspicuous.
(They are available from the authors, as are programs for doing all the calcula-
tions.) However, it is possible to distil from the computer calculations a succinct
demonstration of the existence of a quotient of F(2, 9) with order 152.518.

3. A MATRIX REPRESENTATION

In this section we show that F(2,9) = {x1,x2) has a quotient of order 152.518,
which we exhibit as a linear group of dimension 19 over the field F5 of five
elements.
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We begin by defining a number of matrices over F5. Let

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 1 3 1 3 3 3 2 0 J

(B is the companion matrix of one of the irreducible factors of the polynomial
A 1 9 - l over F5); let

B = e GL9(5)

x-\ ° B l x-
X l " L - B 2 oJ' X2"

so that X1; X2e GL18(5); and for i = 1, 2 let

2B10

0 ° 13B10J'

where

ut = (3, 0, 3, 3, 0, 0, 3, 2,1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

v2 = (1, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

(-T denoting the transposed matrix).

THEOREM. There is a homomorphism

with image of order 152.518, and such that

Proof. We note firstly that since B2 has order 19, the matrix group (B2)
furnishes a 9-dimensional faithful irreducible representation over F5 of the cyclic
group C19. If

([/jeGL2(5)), then (Uu U2) furnishes a 2-dimensional faithful irreducible
F5-representation of the quaternion group Q. Since Xx and X2 are, respectively,
Kronecker products of B2 with Uu and B10 with U2, it follows that G = (Xl, X2>
furnishes an 18-dimensional representation of Q x C19, which is faithful because
Q and C19 have coprime order, and irreducible since its tensor factors have
coprime dimension [or, for example, by 6, Corollary 2.6, where we require the
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fact that F5 is a splitting field for Q]. Furthermore, the epimorphisms

and

F(2,9hOS{[/,, U2), x^U,,

give rise to a map

F(2,9)^QxC19sG, xt - * Xt,

which, it is easy to see, is again an epimorphism.
Let V be an 18-dimensional vector space over F5, on which GL18(5) is

considered to act from the left. In the light of the above, G acts irreducibly on V.
The matrix group

is isomorphic to the split extension of V by G, and has order

|H| = |G|x|V| = 152.518.

We shall identify V with the (multiplicative) subgroup

of H.
We note that Yu Y2eH. For i = 3, 4, 5 , . . , define

It may then be verified by direct calculation that

In consequence there is a homomorphism

F(2,9)-*H, x^Yt (i = l, 2).

To complete the proof it remains to be shown that

(Y1,Y2) = H.

The action of G = (Xu X2) on V is realized in H via conjugation by the
matrices Y71 and Y2\ It follows that VDiYx, Y2) is a submodule of the
irreducible F5G-module V (it should be remembered that "addition" in the
module V is in fact matrix multiplication). A calculation shows that

where

y = (3, 0 ,4,1, 3, 2,4, 2, 3, 3, 0, 2, 2, 2, 4, 2, 0, 2)T=h 0.
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Thus [Y\, Y|] is a non-trivial element of Vfl{Y1, Y2)so Vn(Y,, Y2> = V, that
is, V<<Yj, Y2). Since <Y1; Y2) has G as a quotient, we see that its order is
divisible by 152.518. Therefore <Y,, Y2) = H as required.

4. FURTHER CALCULATIONS

The group theory language Cayley [2] was used to investigate the matrix group
H described above. Given the two generating matrices Y1 and Y2 for H, Cayley
confirmed that H has order 152.518. During the computation permutation rep-
resentations for H were calculated, including a lowest degree faithful representa-
tion which has degree 190.

As a last try we looked at a corresponding index 190 subgroup of F(2, 9). This
subgroup has a maximal abelian quotient isomorphic to C4, which is the same as
for the corresponding subgroup of H.
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