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Abstract 

Practical methods for computing equivalent forms of integer matrices are 

presented. Both heuristic and modular techniques are used to overcome 

integer overflow problems, and have successfully handled matrices with 

hundreds of rows and columns. Applications to finding the structure 

of finitely presented abe!Jan groups are described. 

I .  Introduction 

The theory of finitely generated abelian groups (see, for example~ Hartley and 

Hawkes [i0]) provides a method for completely classifying such groups. Finitely 

generated abelian groups arise most often as finitely presented groups. In this case 

there are well known methods for decomposing such a group into a canonical form~ 

namely algorithms for converting an integer matmix to Smith normal form (H.J.S. Smith 

[2o]). 

In practice the usual methods for Smith normal form computation are severely 

limited in their applicability. This paper outlines problems encountered by those 

methods and presents new methods which greatly extend the range of matrices which can 

be readily converted to normal form, with at worst only a little use of multiple 

precision arithmetic. 

The motivation for this work was a desire to investigate certain groups via their 
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largest abelian quotient group. Some applications are described, with particular 

reference to groups for which presentations have been found by machines using a 

Reidemeister-Schreier program (see Havas [ii]). 

Let 

2. The relationship between integer matrices and abelian groups 

G be an (additively written) abelian group defined on n generators 

n 

If ri = ~=I a. .x. (where 
j= ~,J J 

G the m x n integer 

Xl, ..., x n by m relations r I = r 2 = o,. = r m = 0 ° 

the ai, j are integers), then there is associated with 

matrix A = (ai,j] known as a relation matrix of G 

Two m x n integer matrices, A and B , are equivalent if there exists a 

unimodular m x m integer matrix P and a unimodular n × n integer matrix Q such 

that B = PAQ . If the elementary row (column) operations on an integer matrix are: 

(i) multiply a row (column) by -i , 

(2) interchange two rows (columns)~ 

(3) add an integer multiple of one row (column) to another, 

then multiplication on the left by a unimodular integer matrix corresponds to a 

sequence of elementary row operations, while multiplication on the right corresponds 

to a sequence of elementary column operations. 

An m x n integer matrix B = (bi~j] is in Smith normal fo~rl if B is diagonal 

and bi_i,i_ 1 divides bi~ i for i < i ~ min(m, n) . In 1861 H.J.S. Smith showed 

that an arbitrary integer matrix is equivalent to a unique matrix of this form. If a 

matrix J is equivalent to a matrix B in Smith normal form~ then the numbers b. . 

are the clemently factors of A and the greatest number r such that br, r ~ 0 is 

the rank of A . Smith's work included the explicit determination of the elementary 

factors of a matrix. 

Applications of elementary row and column operations to the relation matrix A 

correspond to Tietze transformations of the group presentation, and leave the 

associated group unchanged. Smith's result, interpreted in group theoretic terms, 

leads to a method for decomposing a finitely presented abelian group into a direct 

product of cyclic subgroups. The non-trivial elementary factors of A are the 

torsion invariants of the group G , and n - r is the torsion-free rank. 

We call a direct decomposition of the abe!ian group which corresponds to the 

Smith form a canonical decomposition. Any diagonal matrix equivalent to a relation 

matrix of an abelian group corresponds to a decomposition of it into a direct product 

of cyclic factors. Any "triangular" matrix equivalent to a relation matrix provides 
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the order of the torsion subgroup (as the product of the non-zero diagonal entries) 

and the torsion-free rank (again n - r ). 

3. Implementations 

H.J.S. Smith explicitly described the elementary factors of an integer matrix in 

terms of greatest common divisors of subdeterminants of the matrix. This description 

is not suitable for the computation of the Smith normal form of large matrices because 

of the enormous amount of calculation involved. Standard techniques for matrix 

diagonalization involving division-free Gauss-Jordan elimination are the basis of 

previous methods for Smith normal form computation. Algorithms implementing this 

kind of computation have already been described by D.A. Smith [19], Bradley [4] and 

Sims [18]. 

D.A. Smith tested his program on some small random matrices with single digit 

entries. His test examples gave some surprisingly large elementary factors. During 

the process of converting a matrix to Smith normal form via these elimination methods 

inordinately large entries frequently arise, even when the initial and final entries 

are of reasonable size. We call this phenomenon ent~j explosion. 

In the context of current computer methods there are restrictions on the size of 

integers which can be conveniently handled. D.A. Smith says that a 12 x 15 matrix 

produced numbers too large for his program to handle. Sims cautions of integer over- 

flow on any but small examples. 

In the following sections we give an annotated description of the algorithms 

which underlke a new program for computations related to the Smith normal form. This 

new program (available from the authors) is written in FORTRAN, with only minor 

extensions beyond the 1966 ANSI standard, and is easily portable. It has a greater 

range of applicability than previous methods, as is illustrated in section 9. 

Three algorithms are described: first (for completeness), a basic algorithm; 

second, heuristic modifications for combatting entry explosion; finally, a method for 

computing the Smith normal form using determinant calculations and modular 

decomposition. The program itself provides detailed documentation of the methods 

used. 

4, A basic algorithm 

This algorithm diagonalizes an m x n integer matrix A = (ai~j) , using 

elementary row and column operations. It is similar to the algorithms of D.A. Smith 

and Sims, and is along the lines of constructive proofs in the more careful textbooks~ 

(I) If the matrix is diagonal, stop. 

(2) Find a non-zero matrix element, ai, k say~ with smallest magnitude. 
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(3) If ai, k divides all the entries in its column, go to (5). 

(4) Choose aj, k not divisible by ai, k . Let f = aj,k/ai, k rounded to 

a nearest integer. Replace row j by row j minus f times row i . 

Go to (2). 

(5) If ai, k divides all the entries in its row, go to (7). 

(6) Choose ai, h not divisible by ai, k . Let f = ~i~.h/ai,k 

a nearest integer. Replace column h by column h minus 

column k . Go to (2). 

(7) 

rounded to 

f times 

Shift ai, k to the top lefthand corner of the matrix by using the 

appropriate row and column interchanges. 

(8) Set all entries in the leftmost column below the top to zero by 

subtracting the appropriate multiple of the top row from each other 

row. After this all entries in the top row~ except the leftmost entry, 

may be set to zero at will without affecting any other entries, by 

adding suitable multiples of the first column to the other columns. 

(9) Now consider the smaller matrix obtained by deleting the top row and 

the leftmost column from the current m~trix, and go to (i). 

Notes on the basic algorithm. 

(a) The algorithm stops. 

(b) The algorithm described above converts the matrix to a diagonal form, 

rather than Smith normal form. It is a straightforward matter to 

construct the Smith normal form from any diagonal form~ by using 

appropriate calculations of greatest common divisors and lowest common 

multiples. 

(c) Some details of the above algorithm have been chosen for practical 

reasons. Row additions are done in preference to column additions so 

that (in the context of abelian group decomposition) as much as 

possible of the original group generating set is retained. 

(d) Unfortunately many modern computers (and/or programming languages) do 

not have built-in checks for integer overflow. This means that 

program checks are required to test for this possJbility. A naive 

implementation of the above procedure could produce erroneous results 

and/or possibly loop indefinitely on the occurrence of undetected over- 

flow. Even though in some instances correct answers may be obtained in 

spite of overflow (also see Blankinship [2]), integer overflow does 

provide the major impediment to successful application of the basic 
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algorithm. 

(e) The cost of checking each individual arithmetic operation for overflow 

is too high. With the basic algorithm described above overflow cannot 

occur before matrix entries exceed in magnitude the square root of the 

largest integer that can be handled. In practice we have found that to 

impose such a bound on entry size is over-restrictive. Consequently 

our program prints warning messages when large entries arise, but the 

program does not terminate till a diagonal form is attained or till the 

size of an entry exceeds a prescribed limit, set by default to a large 

fraction ofthe largest integer. This check is made in conjunction with 

a bound check for the reduction heuristic described in the next 

section. Thus our check is a compromise which leaves open the chance 

of undetected overflow occurring on systems without a built-in integer 

overflow check. However the warning messages give adequate notice of 

such a possibility. 

(f) The time taken in the greatest common divisor calculations which are 

implicit in the basic algorithm does not seem to be at all significant, 

so we have not implemented the more sophisticated methods for multiple 

greatest common divisor computation advocated by Bradley in [4]. 

5. Heurist ic modifications 

The basic algorithm is fast but severely limited in the size of matrix that it 

can handle because of entry explosion. One approach to solving the intermediate 

entry explosion problem would be to use the basic algorithm combined with multiple 

precision calculation. However, in the context of our applications and also more 

generally, this does not seem appropriate~ because it is expensive in terms of both 

space and time. Instead we initially tried heuristic modifications. 

The aim of the modifications is to delay entry explosion. The details used have 

practical justification. They work well in mitigating entry explosion, and do not 

cost too much time. Their effectiveness is illustrated in section 9. 

The modifications are based on a study of those steps in the basic algorithm 

where new entries are generated. Particular attention is paid to step (8) because 

substantial numbers of new entries are created in that step. 

The presentations produced by the Reidemeister-Sehreier program (which lead to 

most of our input matrices) frequently include large numbers of redundant generators. 

In fact the resultant relation matrices usually include many entries of ±i , which of 

course have minimal non-zero magnitude, and which obviate the need for divisibility 

checks in steps (3) and (5). In step (2) where the pivot a£, k is selected, our 

initial approach was to select the first non-zero element of minimal magnitude found. 
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In particular as soon as a ±i was found, it was ahosen~ leading rapidly to step (8). 

Clearly the size of the elements in the row including the chosen pivot with unit 

magnitude has a fundamental effect on the size of the new entries created in step (8). 

Our first modification takes this into account. If there is more than one entry with 

magnitude i we select as pivot an entry in a row for which the sum of the absolute 

values of the entries (which we call row sum) is "small". (In practice our program 

has a parameter, under user control, which specifies what rates as a small row sum. 

The first unit entry found with small row sum is selected as pivot~ and, if there is 

none with small row sum, then a unit entry with minimal row sum is used. Alternative 

measures merit consideration, for example~ the product of row and column sums.) 

One effect of the preference given to row additions in the basic algorithm is 

that, after a while, the rows in the matrix remaining under consideration begin to 

resemble one another and large entries tend to gather in columns. This means that 

rows can be improved by straightforward addition or subtraction, and it turns out that 

this is worthwhile. 

Our second heuristic modification lowers row sums once large entries occur. As 

soon as the largest entry exceeds a certain bound, a naive reduction routine ~hich 

performs row subtractions to improve the quality of rows is invoked. Its steps are as 

follows. 

(i) Find a column, the oth say, which includes an entry of maximum 

magnitude. Ensure that all entries in this column are non-negative 

(multiplying rows by -i if necessary). 

(2) Sort the rows of the submatrix into a descending lexicographic order, 

with the eth column providing the key. 

(3) S e t  i : i . 

(4) Set j = { + 1 . 

(5) Set f = a. /a. rounded to a nearest integer. 

(6) If ~h lai'h - f x aj,hl < ~ lai,hl ~ go t o  (8). 

(7) If Z lai,h-aj,h I <~ h lai'hl ~ set f = 1 , else go to (9). 
h 

(8) Replace row i by ±(row i minus f times row j) , with the sign chosen 

to ensure that the cth entry is non-negative. Reposition the new 

ith row in correct order. Go to (4). 

(9) Set j : j + i . If j ~ number of rows ~ go to (5). 

(i0) Set i : i + i . If i < number of rows ~ go to (4). 
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(ii) Return. 

Notes on the reduction routine. 

(a) The basic algorithm combined with the heuristic modifications stops. 

(b) The rows are sorted into order so that similar rows are close together. 

(In practice this is done by sorting a vector of pointers.) This 

lessens the amount of work to be done in finding suitable rows for 

subtraction. Leaving rows unsorted gives a significantly worse 

performance. 

(c) The choice of the bound to be exceeded prior to invocation of the 

reduction routine is subject to user control. By default our program, 

in the context of machines with 36 bit word size, uses an initial 

bound of 210 and doubles the bound after each call to the reduction 

procedure. Generally, lower initial bounds and smaller increments 

(also under user control) lead to better matrices at the expense of 

higher execution time. 

(d) This kind of reduction routine may be found in earlier work involving 

exact computation, both by hand and by machine. Rosser [17] and 

Gillies [9] use similar methods in handling related calculations with 

integer matrices. Also of relevance is the work of N~tzold [16], 

which is aimed at finding a reduced basis for a subspace of a vector 

space. Observe that our reduction routine tests two likely 

candidates for a good multiple of one row to subtract from the 

other (in the selection of f ). NStzold (in Kapitel 4) gives more 

sophisticated tests for determining when two rows can be improved, and 

he gives a method for finding a multiple of the second row to subtract 

from the first. Such tests could be implemented, but would entail 

significantly more computation than ours, and do not appear to be 

worthwhile for our purposes. 

(e) This reduction routine is "quick and dirty". IT substantially 

extends the basic algorithm and is good enough for moderate sized 

applications. The problem of determining an optimal sequence of 

reductions seems difficult, and there appears to be an inevitable 

compromise between speed and entry size. 

(f) There are three general deficiencies in our reduction routine. First, 

it is still usually possible to improve the matrix by row reductions 

after our routine returns. For example, in the described routine, the 

discovery that two rows can be improved is dependent on the fact that 

the cth entry in the new row will be improved. At the time of 
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(g) 

invocation of the routine this restriction does not cause much 

difficulty because, by design, the largest entries tend to occur in the 

cth column, so that row improvements tend to correspond with oth 

entry improvements. However, by the time that the routine returns~ it 

usually happens that other columns contain significantly larger 

entries, so that row improvements are overlooked because they involve a 

worsening of the cth entry. A second problem arises from the fact 

that column reductions are ignored. Even when there are no row 

reductions available there may well be significant improvements 

possible using column reductions (which might lead to more row 

reductions, and so on). Third, and very disturbing, is the fact that 

the reduction procedure can exactly undo an immediately previous step 

or sequence of steps in the basic algorithm. For examples of 

performance see section 9. 

New reduction routines are under investigation. Particular 

consideration is being given to a row reduction routine which, in lieu 

of the current step (ii), checks whether the largest entry is still in 

the cth column. If so the routine returns as before, if not control 

goes back to step (i). Also, analogous column reduction routines are 

being implemented. 

6. A different approach 

Borosh and Fraenkel [3] and Cabay and Lam [7] demonstrate that congruence methods 

are valuable for avoiding integer overflow problems in the related problem of the 

exact solution of integer systems of linear equations. Related techniques can be 

used to avoid overflow problems in Smith normal form computation, providing what 

seems to be the right approach for big problems. 

In the following description we always associate an integer matrix with the 

abelian group of which it is a relation matrix. We proceed by considering quotients 

of the associated abelian group. An alternative description can be based on the work 

of Fuller [8] and McDonald [14, Chapter XVI], where canonical forms of matrices over 

quotients of principal ideal domains are considered. 

In the exact solution of integer systems of linear equations, congruence 

techniques involve replacing the equations by systems of congruences modulo a number 

of primes. Each system of congruences is then solved, leading to a modular 

representation for the exact solution. 

It does not seem possible to compute the Smith normal form by doing calculations 

modulo a number of primes and then putting the results together, in a direct analogue 

of the congruence methods. However, by "computing the Smith normal form modulo a 

prime power" (which we describe more fully in section 8), we can obtain results far a 
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number of prime powers, results which can be assembled to give the complete Smith 

norm~l form. 

From the expression of the elementary factors of a matrix in terms of the 

greatest common divisors of determinants of various submatrices, it follows that if 

the matrix has rank r then the product of the r non-zero entries of the Smith 

normal form equals the greatest common divisor of the determinants of all the 

submatrices of rank r . (In the group-theoretic context, the product of the non-zero 

diagonal entries is the order of the torsion subgroup of the group.) 

The key to the method described in this section is the use of determinant 

calculations to find a multiple of the order of the torsion subgroup. Then 

faetorization of this number effectively provides a list of possible prime power 

divisors of the order of the subgroup. These prime powers can be used to calculate 

the primary invariants of the group, from ~nich the torsion invariants, which 

correspond to the Smith normal form, can be readily computed. 

Our procedure for computing the Smith normal form via determinants and quotient 

calculations is outlined as follows, with more detail provided in the next two 

sections. 

(I) Determine the rank r of the matrix, and hence also the rank of the 

torsion-free subgroup (n-r) . 

(2) Calculate a multiple M of the order of the torsion subgroup, by 

computing determinants of r × r submatriees. 

(3) Factorize M = p~Mp e(p) 

(4) For each prime p in the factorization of M , find the p-primary 

invariants of the torsion subgroup of the abelian group by computing 

the Smith normal form modulo pe(p)+l . 

(5) Assemble the primary invariants thus obtained to yield the torsion 

invariants and the Smith normal form. 

7. Determinant and greatest common divisor calculations 

The observation that multiples of the order of the torsion subgroup may be found 

by determinant calculations does not in itself seem useful. This is because 

determinant computation superficially seemsharder than Smith normal form computation. 

However here the congruence methods really come into ~beir own. 

In their method for the exact solution of linear equations Cabay and Lam 

indicate how determinants may be calculated. ~e determinant is obtained in a 

modular representation (see Knuth [13]), without the use of any multiple precision 

arithmetic (as long as the initial matrix entries are single precision). So when 
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integer overflow threatens elimination methods we resort to determinant calculation~ 

using the techniques of Cabay and Lam, combined with quotient calaulations~ 

Some comments on implementation are appropriate. The first problem is the 

determination of the rank r of the matrix over the integers. By default our 

program "guesses" r by computing the rank modulo a large prime. The guess is 

correct unless the prime divides the order of the torsion subgroup~ and the 

likelihood of this happening is very low. 

The rank may be determined exactly, at the expense of extra time. The Hadamard 

hound for determinants is used by Cabay and Lam to provide a stopping criterion 

for their algorithm. An analogue may be used for rank determination. If we have an 

m × n matrix A = Iai,jl , then certainly any subdeterminant of A is bounded above 

in magnitude by I I ~ ai,jl We can choose a number of primes whose product 
i:l Sl 

exceeds this hound and ensure correct rank determination by computing the rank modulo 

each of these primes. Since the product of the primes necessarily exceeds each 

subdeter~inant~ at least one of the primes does not divide any particular 

subdeterminant~ and thus at least one of the primes does not divide the order of the 

torsion subgroup. The maximum rank obtained this way is the correct rank of A over 

the integers. 

In the process of computing the rank r , we simultaneously find an r x r 

submatrix which is nonsingular, whose determinant we calculate. Once we have one 

non-zero determinant of an r x r suhmatrix we have a multiple of the order of the 

torsion subgroup. There are two difficulties: first~ in cases where integer 

overflow troubles elimination methods, the determinant is usually a very large number 

in modular representation; second, the determinant of just one r x r submatrix 

often provides a multiple which is orders of magnitude larger than the order of the 

torsion subgroup (see section 9 for examples). 

Because of the size of the determinants that arise we may be forced to resort to 

multiple precision calculation at this stage of the process. If necessary, we use 

the t£n package of Brent [5] to calculate fixed radix representations of the 

determinants. (We need to convert to fixed radix representation for our determinants 

so that we can readily perform our subsequent calculations. Good methods for 

division with numbers in modular representation are not known~ and division is the 

basis of greatest common divisor calculations and faatorization, which we do next.) 

While one determinant may provide a large multiple of the order of the torsion 

subgroup, the greatest common divisor of a small number of determinants of distinct 

r x r submatrices generally provides a reasonable multiple (again, see section 9). 

So we often compute a few determinants and their greatest common divisor (very easily 

done with MP , if necessary) to obtain our multiple of the order of the torsion 
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subgroup. 

Our routine method of selection of a number of nonsingular r x r submatrices is 

such that the calculation of a number of determinants takes very little extra time 

over that taken to compute one determinant. Having found one nonsingular ~ x 

submatrix we simply replace the last row (column in the case of matrices with m < n ) 

of the initial r × ~ submatrix by a new row (column) which is independent of the 

previous r - i rows (columns), so that most of the computation for each of the 

number of determinants is done simultaneously. 

Cabay and Lam have two different stopping criteria for their algorithm for the 

exact solution of linear equations. The first criterion, based on the Hadamard bound 

for matrix determinants, ensures correct determinant calculation and is incorporated 

in our program. Their other criterion, even though it does not guarantee that the 

determinant has been fully calculated, is also of value. This criterion, called the 

recursive test, is more fully described in Cabay [6] and Bareiss [i]. 

The kinds of matrices that we encounter are such that each row sum is less than 

the smallest prime which is used as a modulus in the determinant calculation. Tt 

follows from the recursive test that, when the first zero mixed radix coefficient for 

the determinant is found, the mixed radix coefficients must already represent a 

divisor of the determinant. We use this as an early stopping criterion in our 

determinant calculation routine, in spite of the fact that there is no guarantee that 

the nu,,~er thus represented is not a proper divisor of the determinant. The criterion 

substantially reduces determinant calculation time with only little risk of producing 

incorrect results. Except in the case of specially constructed examples the early 

stopping criterion has never led to incorrect results in practice, and we normally use 

it for preliminary calculations in order to speed things up. When we require absolute 

assurance of our determinant calculations we use the original criterion based on the 

Hadamard bound. 

8. ~4odular calculations 

Having found a multiple M of the order of the torsion subgroup, we first find 

its prime factorization, M : Epe(P) It would be wrong to pass blithely over this 

step, because it is well known that prime factorization of large numbers is difficult 

(see Knuth [13]). However, for abelian groups whose presentations have arisen 

"naturally" we have found that this is not a problem. Their torsion subgroups 

generally seem to have orders involving only a small number of low primes, and, in 

practice, the multiple produced by our calculations has always been good enough for 

factorization to pose no substantial difficulties. 

For each prime p in the factorization of M , we compute the p-power primary 

invariants of g by considering the maximal quotient H of g which has exponent 
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d 
p The choice of d is made so that the largest p-primary invariant of ~ is a 

d 
proper divisor of p 

Consider the p-primary invariants of G ~ {pe(p,l) e(p,2) pe(p,k)} 

Then H has primary (and torsion) invariants 

{pe(p,l), pC(p,2) ..... pe(p,k) pd ..... pd} , 

d 
where each p corresponds to a torsion-free factor in a decomposition of G , and 

each other invariant corresponds to a cycle in a primary decomposition of G with 

that order. 

Consider the abelian group H of exponent pd defined on n generators Yi by 

the m relations ~ ai~jY i = 0 , and its associated relation matrix A . It is easy 

to see that the following transformations of the relations leave the group unchanged: 

• _ pd 
(i) replacement of a ,j by ai, j + ; 

(2) multiplication of any relation by any unit of the ring of integers 

modulo pd . 

d We now define Smith normal form calculation modulo a prime power p 

corresponding to the above transformations~ so that the process converts the relation 

matrix A to a canonical form which provides the torsion invariants for H . An 

d algorithm for Smith normal form computation modulo a prime power p is the same as 

the basic algorithm of section 2, with the following exceptions. First, at all stages 

in the process, matrix entries are replaced by their residues modulo pd . Second, 

step (2) is replaced by: 

(2 4 ) Find a non-zero matrix element, ai, k say, whose greatest common 

d 
divisor with p is minimal. Multiply row i by a unit, u say, 

which is such that u x ai, k is a power of p . 

~nivd, it follows that steps (3) to (6) are not necessary because, after multiplication 

by u ~ ai, k divides all entries in its row and column. The other steps are 

d 
unchanged. Provided p is not too large, this algorithm does not suffer from 

integer overflow problems. 

The algorithm and canonical form are essentially the same as those of Fuller. 

The diagonal entries of the form provide the torsion invariants of H ~ and thus the 

p-primary invariants of G . 

Since from the factorization of M , we have a list of all possible primes 
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involved in the torsion invarian~s of G , we can reconstruct the torsion invariants 

of G fully. Notice that for d we routinely choose e(p) ÷ I , which must be large 

d 
enough for every p-primary invariant of G to be a proper divisor of p However 

smaller values may suffice, and it is easily possible to check if a smaller value does 

suffice, because the ranks of the torsion and torsion-free subgroup are known. A 

d 
Smith normal form calculation modulo p yields the p-primary invariants of G 

if there are precisely r non-zero diagonal entries. Otherwise G has p-primary 

d 
invariants which are multiples of p 

9. Applications and program performance 

The initial stimulus which sparked the development of these methods was a desire 

to investigate the Fibonacci group E(2, 9) by a study of abelian quotients of its 

subgroups. Results of this inquiry are reported by Havas, Richardson and Sterling 

[12], where background material may be found. We start off this section by looking at 

the abelian decomposition phase of the investigation of F(2, 9). 

F(2, 9) may be presented with two generators and two relations, and has 

subgroups of index 2, 4, 8, 192 3S, 76 and 152 , which are readily found. We denote 

by H. a relation matrix for the maximal abelian quotient of one of these subgroups 

of index i ~ obtained in the following way. 

Presentations for the subgroups themselves were found by finding subgroups of 

these indices in the maximal nilpotent quotient of F(2, 9) . Then the corresponding 

subgroups of F(2, 9) itself, with the same index, were presented by the 

Reidemeister-Schreier program, denoted RS . The naive abelianization methods of RS 

were adequate to identify the maximal abelian quotients of subgroups of F(2, 9) with 

index 2, 4 and 8 , but did net provide recognizable presentations for the maximal 

abelian quotients of subgroups of higher index. 

In this section we first tabulate the performance of our algorithms on relation 

matrices associated with subgroups of F(2~ 9) with index exceeding 8 . For each 

index i subgroup of F(9, 9) , the presentation produced directly by the 

Reidemeister-Schreier method has i + i generators and 2i relations, so that the 

associated relation matrices have 2i rows and i + i columns. Because of initial 

problems handling HI52 , caused by the size of the matrix, we went to the trouble of 

finding a better presentation for the (unique normal) index 152 subgroup by working 

down a chain of subgroups, in order to obtain a smaller matrix. 

RS produced a 3 generator~ 4 relation presentation for a subgroup of index 

2 in F(2, 9) . Then a subgroup of index 4 in this subgroup was presented by RS 

on 9 generators and 16 relations, and this presentation was replaced by one on 4 

generators and 9 relations, produced by a Tietze transformation program. From this 
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presentation RS produced a 58 generator~ 171, relation presentation for a 

subgroup of index 19 . We denote by H2,4,19 a relation matrix for the maximal 

abelian quotient of this index 152 subgroup of F(2, 9) obtained from this 

presentation. Finally we denote by HI90 a relation matrix for the maximal abelian 

quotient of a subgroup of F(2, 9) with index 190 ~ which was found as a consequence 

of calculations described in [123, 

All results in this section are based on computer runs. We used a DEC KAI0, with 

memory cycle time of 950 nanoseconds. Times quoted are in CPU seconds. Despite 

some variability due to the nature of DEC-10 timing methods, they provide a reasonable 

guide to relative performance. This machine was ideal for our purposes because it has 

a hardware integer overflow check which is utilized by the FORTRAN operating system. 

Integers in FORTRAN on the DEC-10 are restricted to the range -(235-i] to 285 - i . 

Performance on Matrices Derived from F(2, 9) 

HIg 

Bows 38 

Ool~rr~S 20 

Torsion invariants 2,2 

Eliminations ~sic) 13 

Time (basic) 1.3 

Eliminations 
2O 

(mod{ ~ed) 

Reductions i 

Time (modified) I. 4 

H38 I H76 

76 152 

39 77 

4 2 

27 51 

q,9 22.1 

39 75 

4 ii 

12.5 251 

Firs# determinant 19752 613568 6789296 

G.c,d. 8 32 65536 = 215 

Primes (rec./Had.) 2/2 3/4 3/7 

Time (Had., i ~t.) 2.4 13.3 80 

Time (rec., i ~t.) 2.4 ll.l 45 

Time (Had., d.) 5.2 17,5 88 

Time (rec., g.  .d.) 5.2 12.6 51 

Time (modular) 1.4 6.2 34.5 

H152 

304 

153 

eighteen 

104 

108 

124 

14 

1457 

22.72.52o 

22.72.520 

5/13 

724 

346 

937 

538 

192 

5TS 

H2,4,19 

171 

58 

eighteen 5's 

21 

20 .i 

48 

19 

492 

23.32.519 

3.519 

4/8 

81 

46 

90 

53 

45 

HI90 

380 

191 

4 

149 

133 

146 

15 

2674 

~ I x  i017 

256 

5/15 

1519 

627 

1568 

643 

336 

NOTES. (a) The top section of the table describes the nature of the matrices 

involved. In only one case, H2,4,19 , does an initial matrix include entries which 

exceed i in magnitude, H2,4,19 has entries with magnitude up to 3 . The torsion 
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invariants reveal that no diagonal form has entries exceeding 5 ° 

(b) The second section describes the nerformance of the basic algorithm. 

Eliminations (basic) indicates the n~m~er of eliminations successfully performed (that 

is, the number of diagonal entries found) using the basic algorithm, prior to integer 

overflow occurring. Observe that the basic algorithm did not terminate successfully 

in any of these cases. Time (basic) gives the time till integer overflow. 

(c) The third section describes the performance of the basic algorithm combined 

with the heuristic modifications, using default settings for the parameters. 

Eliminations (modified) indicates the number of eliminations successfully performed 

before integer overflow. Observe that both HI9 and H38 were handled properly. 

Further, in the case of H76 , after 75 eliminations i0 overflows occurred and 

then, in just 3 more seconds, a correct diagonal form was attained~ in spite of the 

overflows. Reductions indicates the number of times that the reduction procedure was 

invoked. Time (modified) gives the time till successful diagonalization or overflow. 

(d) The fourth section describes the performance of the determinant and greatest 

common divisor calculation routines. G.c.d. gives the greatest common divisor of the 

first ~ determinants, where available. In fact in all cases bar H2~4~19 this 

greatest common divisor is attained from two determinants. For H2,4,19 

3 determinants were used~ with the first 2 providing a greatest com~mon divisor a 

factor of 3 higher. Primes (rec./H~d.) gives the number of primes required for 

determinant calculation, first using the recursive test, second using the Hadamard 

bound. Time (Had., i dot.) indicates the time taken to compute I determinant using 

the Hadamard bound, and Time CHad., g.c.d.) indicates the time taken to compute 4 

determinants and their greatest common divisor, using the Hadamard bound. The other 

times in this section are for calculations using the recursive test. For H38 

3 primes were used to compute the first determinant using the recursive test, but when 

4 determinants were calculated the fourth required only 2 primes, so the greatest 

common divisor time involved only two primes. For HI52 only two non-singular 

submatrices involving the first 152 linearly independent rows were found, so only 2 

determinants were involved in the greatest common divisor calculations. Finding 

maximal rank submatrices generally takes up a substantial part of the determinant 

calculation time. 

(e) The final section provides the performance of Smith normal form computation 

modulo a prime power. In each case this is for complete normal form calculation. The 

time taken does not depend significantly on either the prime or its exponent. 

Generally speaking, ~his table indicates how the heuristic modifications extend 

the range of the basic algorithm to handle moderate sized matrices. However, for 

large matrices, determinant and greatest common divisor calculation combined with 
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modular computation is the winning approach. 

The time cost of the heuristic modifications is reasonable for moderate sized 

matrices, but grows inordinately for large matrices. Worse still, as is evidenced by 

]190 ' even with an enormous amount of time, the heuristic modifications occasionally 

hindered rather than helped the computation. 

Note specifically that, in modular computation for index 152 subgroups of 

F(2, 9) , ou_~ default exponent for 5 ~ namely 20 or 21 , was not suitable for use 

because 520 is too large. However computation modulo 52 was adequate to compute 

the normal form. 

Further examples of the qualitative performance of the algorithms are provided by 

four 26 x 27 matrices which arose from investigations of the fundamental groups of 

two ii crossing knots. In these cases no initial matrix entry exceeded 7 in 

magnitude, the rank was always 25 , and the torsion invariants were {3}, {14}, {2} , 

and {3, 3} respectively. 

Modular techniques readily identified the associated ahelian groups; the 

greatest common divisors of 3 determinants were 15, 56, 6 and 18 respectively. 

However the basic algorithm was hopelessly inadequate and even with heuristic 

modifications some difficulties were encountered, though in each case tuning of the 

parameters enabled successful termination. It also turned out that in some cases the 

transposed matrix (which corresponds to the same torsion invariants) was much easier 

to handle. Some specific details follow. 

One initial 

Ii 0 -i 0 

2 0 0 0 
I -i 0 
0 -I 2 

-1 1 0 
00 2 

0 0 0 0 
0 0 0  ! 
2 2 1 - 2  
1 1 0 0  
i -2 -i 1 
1 0 i 1 
0 0 0 1 R : 

1 1 0 0 0 
3 2 0 0 
i 0 -i 0 
1 1 -I 0 
2 -i 0 -i 
12 i -i 
2 i 0 -I 
0 0 0 0 
00 -i 0 
1 1 0 1 
2 -i 0 0 
1 0 0 0 
2 0 0 1 

matrix was 

- 1 2 1 - 1 9 - 1 - 1 0 - 1 1 0 0 0 0 0 0 0 0 0 0 0 0  1 
0 0 0 0 - i 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ~  
0 1 0 0 0 0 1 0 1  -i -i -I 0 -I 01 - 1 0 0 0 0 0  - 

- 1 0 - 1 1 0 0 0 0 - 2 2 0 0 0 0 ] - 2 1 1 - 1 1 - 1 0  
0 0 - i  0 - 1  l 0 0 0 1 1 - 1  0 0 0 0 2 - 1  0 ~ 2 0 - 

-211 -2 -i I i 0 0 0  -i 01 -i i 0 0 0 2 0 0  -1 
1 0 1  -I i -i -i -i -I -i 0 1 1 0 0 0 0  -i 0 -l -I 1 

-202 - 2 0 1 2 0 1 0 2 0  -21 ! -i -i -i 11 -i 0 ~ 
1 1 0 0 0 0 1 0 1  -200 -1 -I 01 -200 -101 -2 

-12 -i 02 -i -i -I -i -11 - 1 0 0 1 0 1 0  - 1 1 0 0  -I 
1 0 1  -100 -2 -i 0 1 0 0 1 1 1  -21 -i 0 1 0 1 1  

-i 0 - 3 1 0 0 0 0  -2 -i 2 - 2 0 0 1 1 2  -i -i 1 1 0  -i 
-20 - 1 1 1 0 1 0 0 0 2 0  -211 -201 -I 1 -I 10 
0 0 0 0 - i  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

- 2 2 0 0 1 0 1 0 - 1 - 2 0 0 0 0 1 0 1 0 0 0 0 - 1 - 2  
-i 1 0 1 1 0 0 0  -2 -i 1 0 0 0 1  -i 1 -i -i 2 -100 
0 1 0 0 0 0 1 0 1  -i -i - 1 0 0 0 1  - 1 0 0 0 0 0  -i 
1 0 0 0 0  -i -i 0 -i -I 0 -i 0 -i 0 1 2  -i -i 01 -i 0 
0 i -i 1 1 0 1 0  -2 -I 1 2 0  -i ! 0 2 0 0  -110 -2 
0 1 0 - 1 - 1 0 0 0 - 2 0 - 1 - 1 1 - 1 0 2 2 0 0 - 1 1 - 2 - 1  
0 0 0 0 1 0  - 1 0 0 0 0  - 2 0 1 0  -2 -i 0 -i 2 -20 li 

-112 -200 -i 0 -i -i 2 0 0 2  i -22 - 2 0 2 0 0 0 1  
-222 -22 -i 00 -2 -i 0 1 1  - 1 0 0 1 0 2  -i -I -i -1 
0 0 0 0 1  -i 10 -i -i -i 00 - 3 0 1 1 0 0  -i 0 0 0  
0 -1 -2 -i - 3 2 1 1 0 2  I -200 -i 2 1 0  -I -220 -I 

- 2  0 0 - 1  - 1  0 1 1 - 2  2 1 - 1  - i  0 - 1  1 2 0 0 - 1  t - 1  - ~  



4 4 7  

R 
2 

/{3 = 

After ].4 eliminations using the basia algorithm, this 

~3462 3732 2082 5214 992 -4765 6968 -1276 -2845 

-3453 3714 2066 5218 

0 0 0 0 

2381 -2560 -1421 -3605 

-1396 1506 840 2106 

-2306 2485 1387 3474 

-3218 3464 1935 4845 

1729 -1861 -1036 -2614 

168 -181 -i01 -253 

1565 -1684 -938 -2358 

-1967 2107 1168 2988 

3786 -4076 -2270 -5716 

Then after one invocation 

2 9 8 3 

-i -7 i 3 

0 0 0 0 

-8 -2 -3 20 

-37 9 -25 143 

13 31 -4 !i 

29 -i0 26 -i16 

0 - 2  3 0 

i 5 0 I 

-3  - 10  -8  -4 

-3 -4 i i 

0 6 2 -i 

led to 

-!563 -4393 4494 -453~ 

971 -4737 6934 -1264 -2826 -1554 -4364 4472 -4820 

0 0 0 0 0 0 0 0 0 

-661 3261 -4774 866 1943 1070 3003 -3081 3117 

400 -1919 2811 -519 -1148 -636 -1769 1814 -1830 

660 -3172 4641 -852 -1896 -1048 -2928 2994 -3021 

919 -4426 6475 -1188 -2643 -1454 -4082 4175 -4214 

-484 2369 -3471 633 1414 782 2186 -2239 2267 

-48 231 -338 62 138 76 213 -218 220 

-446 2152 -3147 574 1284 703 1982 -2028 2047 

536 -2680 3935 -716 -1597 -887 -2469 2537 -2573 

-1070 5198 -7608 1390 3102 1708 4791 -4907 4959-- 

of the reduction routine, 

0 9 i -13 2 -26 -i 7 -16 

-3 2 I -5 -5 2 -i 0 6 

0 0 0 0 0 0 0 0 0 

-!5 i i 7 6 4 I -2 -5 

-76 28 0 23 31 -9 37 I -39 

27 5 0 -14 -!4 -24 22 23 -8 

54 -19 0 -21 -24 2 -36 -3 29 

0 8 i -9 0 -12 0 -I -4 

2 -6 i 2 -2 3 0 5 i 

2 -4  1 0 8 6 6 -4  6 

0 0 5 -7 0 -5 -i 1 0 

2 -7 2 9 -6 i0 -7 i 0 

Further applications of the reduction 

(g), section 5 led to 

-0 -7 

2 -2 

0 0 

-6 -2 

-2 0 

2 -i 
B 4 = 

-4 -i 

i 2 

i 4 

3 5 

-3 -4 

LI -2 

routine (along the lines suggested in note 

-6 2 0 i 0 -4 2 2 i0 -3 12 

i 3 -2 4 -2 -3 -6 i 2 0 7 

0 0 0 0 0 0 0 0 0 0 0 

-i 15 -8 0 2 -3 -i 0 2 6 -i 

2 1 - 2  0 2 -3  4 -1  0 -5  2 
i 

-2 0 -i 8 -4 5 -i -i 0 0 -5 i 

-6 5 8 i 4 -i -i 3 4 -2 -3 

2 0 1 0 0 -2  -1  -3  - 2  3 -4  

0 2 -i -i -i 4 i I 0 0 -2 

0 0 1 2 -3 2 -i -i 3 0 i 

i i 0 0 5 -7 0 -5 -i i 0 

-3 i -I -i -3 -2 5 -i 5 3 0 
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Notice that this matrix may still be improved by row reductions (for example, 

replace row 7 by row 7 plus row 8 ). Of course column reductions san also lead 

to improvement. However the first reduction did the most good and, even though R 4 

looks better than R 3 , it turned out in practice that R 3 was better for further 

calculations than R 4 . 

Starting with another of these matrices, the modified algorithm reached the 

following 3 row submatrix: 

770 
~20 -257 217 198~ . 

The performance of the modified algorithm on the non-trivial rows of this matrix 

merits comment. With the reduction bound set to 211 , and an increment factor of 

2 , this is what happened: 

610 23 -77 170 

120 -257 217 198 

+ using the basic algorithm 

610 23 -77 170 

6830 -4 -630 2068 

% reduction (after which the bound was increased to 212 ] 

610 23 -77 170 

120 -257 217 198 

I using the basic algorithm 

(and going further because of the higher bound) 

34760 3 -3227 10510 

6830 -4 -630 2068 

+ reduction again 

610 23 -77 170 

120 -257 217 198 

+ 

and so on. 

This illustrates an undesirable feat<~e of the modifications pointed out in note 

(f), section 5. It is hard to see how to avoid this problem in general. Notice that 

termination of the modified algorithm claimed in note (a) depends on the fact that the 

bound is increased after each call to the reduction routine, so that all such loops 

eventually end. Notice also that column reductions on this matrix readily yield a 

form which is very easily converted to canonical form. 

Applications of these methods have been made in identifying groups defined by 

fourth powers (see Newman [15]), and in identifying the kernel of a homomorphism from 
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<X, Y; X 7 =Y 7 = (Xy)7 : [XYX-Iy]2 = i> to PSL(2, 7) . In the first case the 

matrices involved were small, but in the second case the initial matrix had size 

156 × 169 . In both cases the modified algorithm had no difficulty. On the other 

hand, following D.A. Smith, we looked at some random matrices with single digit 

entries. A 13 × 13 matrix of this kind corresponded to a group with torsion 

invariants {2, 50315164282968} , whose product factorizes to 24.3.13.7993.20175973 . 

Of course we did this using modular calculations, with the modified algorithm failing 

hopelessly. 

From these examples it is clear that it is hard to quantify the range of the 

modified algorithm in terms of initial matrix size. It seems that to assess whether 

the basic or modified algorithm will succeed the best approach is to try it. 

I0. In retrospect 

The methods described here dramatically extend the range of matrices for which 

Smith normal form computation is readily possible. Techniques incorporating 

determinant calculations and modular decomposition have the greatest power. 

This paper has concentrated on the practical side of Smith normal form 

computation. Some interesting theoretical questions which suggest themselves are 

left entirely open. If a matrix A has Smith normal form B , is there a sequence of 

elementary operations to obtain B from A in which the size of the maximum 

intermediate entry is sensibly bounded in terms of the entries of A and B ? If 

such a sequence of elementary operations exists is there any sensible algorithmic way 

of finding it? 
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