
Algorithms for
Groups
John Cannon and George Havas*
School of Mathematics and Statistics
University of Sydney, NSW 2006
* Key Centre for Software Technology
Department of Computer Science
University of Queensland, Queensland 4072

Group theory is a particularly fertile field for the design of
practical algorithms. Algorithms have been developed
across the various branches of the subject and they find
wide application. Because of its relative maturity, compu­
tational group theory may be used to gain insight into the
general structure of algebraic algorithms. This paper exam­
ines the basic ideas behind some of the more important
algorithms for finitely presented groups and permutation
groups, and surveys recent developments in these fields.

Keywords and Phrases: Algorithms, group theory, pres­
entations, permutations, data structures, complexity.

CR Categories: 1.1, G.2, G.4, F.2.

Copyright® 1992, Australian Computer Society Inc. General permission
to republish, but not for profit, all or part of this material is granted,
provided that the ACJ’s copyright notice is given and that reference is
made to the publication, to its date of issue, and to the fact that reprint­
ing privileges were granted by permission of the Australian Computer
Society Inc.

Manuscript received 15 November 1991.

1 INTRODUCTION
Perhaps one of the more unexpected discoveries made by
mathematicians over the past two decades has been the
existence of powerful algorithmic methods in many
branches of algebra. Traditionally, the goal of research in
algebra has been the discovery of classification theorems
which attempt to characterize all algebraic structures
satisfying a particular set of axioms. However, with the
growth of interest in algebraic computation (driven, in
large part, by a desire to construct symbolic solutions for
various types of differential equations), mathematicians in
the early 1970s were led to discover new approaches to
such fundamental problems as computing the greatest
common divisor of two integral polynomials and finding
the irreducible factors of an integral polynomial. Since
then several hundred new algorithms have been developed
in various areas of algebra. It is becoming increasingly
clear that most, if not all, branches of algebra have a rich
algorithmic content.

Compared with most branches of algebra, the algo­
rithmic content of group theory, computational group the­
ory, has reached an advanced state of development, both in
terms of the range and sophistication of the algorithms and
in terms of their effectiveness in solving worthwhile prob­
lems. Thus, practical algorithms have been designed for
computing detailed information concerning the structure,
representations and extensions of various types of finite
group. Techniques have also been developed for studying
finitely-presented (fp) infinite groups. Programs imple­
menting group theoretic algorithms find application not
only in the study of groups directly but also in many of the
other branches of mathematics which use group theoretic
methods. These include coding theory, design theory, dif­
ferential equations, discrete Fourier transform theory,
finite geometry, graph theory, harmonic analysis,
mathematical crystallography, number theory and
topology.

A group may be specified in a number of different ways:
in terms of a finite presentation, as a group of permutations
or matrices, or as the group of automorphisms of a combi­
natorial structure such as a block design, geometry or
graph. Experience has shown that, as a general rule, the
most powerful algorithms are those designed with a par­
ticular form of group specification in mind, eg. permuta­
tion groups.

The major areas of activity in computational group
theory are finitely presented groups, permutation groups,
matrix groups, finite p-groups, finite soluble groups and
representation theory. It is our aim to introduce the reader
to some of the basic ideas that underpin the design of
algorithms for group theory. A good introduction to group
theory is provided by Rotman (1973). For reasons of brev­
ity we restrict ourselves to fp-groups and permutation
groups, two areas where the problems and approaches are
quite different. Even within these areas, we make no

THE AUSTRALIAN COMPUTER JOURNAL, VOL. 24, No. 2, MAY 1992 51

ALGORITHMS FOR GROUPS

attempt at completeness. A forthcoming book of Sims (to
appear) provides a thorough introduction to the theory of
algorithms for fp-groups, while a recent book of Butler
(1991) gives an elementary introduction to computational
methods for permutation groups. Both of these books
include some historical information. An early account of
algorithms for p-groups and soluble groups is given by
Laue, Neubiiser and Schoenwaelder (1984), while recent
accounts of work in computational representation theory
may be found in Lux and Pahlings (1991), Michler (1990)
and Schneider (1990). Important collections of papers on
computational group theory appear in Leech (1970),
Atkinson (1984), Cannon (1990) and Cannon (1991b).

Computational group theory has been applied to an
enormous variety of problems. Noteworthy achievements
include the classification of the 4-dimensional crystallo­
graphic groups (Brown, Billow, Neubiiser, Wondratschek
and Zassenhaus, 1978) and the construction of sporadic
simple groups (Higman and Sims, 1968;Sims, 1973;Leon
and Sims, 1977; Soicher, 1990). Many published applica­
tions prior to 1984 may be found in a bibliography by
Felsch, an early version of which has been published
(Felsch, 1978). A sample of more recent applications may
be found in the bibliography by Cannon (1991a), which
contains a partial listing of papers citing the computer
algebra system Cayley.

2 FINITELY PRESENTED GROUPS
2,1 Introduction
A well-known theorem asserts that, in general, the word
problem for fp-groups is undecidable (see Rotman, 1973,
chapter 12). Consequently, algorithms for fp-groups are
fundamentally different in nature to algorithms for groups
given in some concrete form (eg. permutation groups or
groups of matrices over finite fields).

Let G and A" be two fp-groups. Typical of the elemen­
tary questions mathematicians wish to answer about fp-
groups are the following:
— Is G the trivial group? #
— Is G finite? •t' |J
— If G is infinite, is it free? "
— If G is finite, what is its order and structure?
— What are the abelian (nilpotent, soluble, perfect) quo­

tients of G?
— Is G abelian (nilpotent, soluble, perfect)?
— Can we construct a small degree permutation represen­

tation for G?
— Can w|e construct a small degree matrix representation

for G f ver some given field?
— Are the groups G and K isomorphic?

The algorithms used to compute with fp-groups may be
conveniently described under three headings: Todd-
Coxeter or coset enumeration based methods; Knuth-
Bendix or term-rewriting methods; and quotient group
methods.

2.2 Coset Enumeration and Related Algorithms
Given an fp-group G,G = CtI,...rcr| R[,...,R) (where Ri,...,Rs
are words in the generators Xi ,...rcr), and given a subgroup H
of G, H = (h\,...,ht> (where hu...,htare also words in the
generators), classical coset enumeration procedures
attempt to construct a permutation representation for G,
corresponding to the action of Gby (right) multiplication
on the (right) cosets of H, by means of a trial-and-error
process. The cosets are traditionally identified with the
integers 1where coset 1 always corresponds to the
given subgroup H. A new coset k is defined as the image of
some existing coset i under (right) multiplication by some
generator xj of G or by an inverse xy\ The cosets must
satisfy the following conditions:
(a) coset 1 must be mapped to itself by each of
(b) each coset j must be mapped to itself by each of the

defining relators /?i,...,Rs and by each product xyxi'-
The action of the G-generators on the cosets is stored in

a two-dimensional array known as a coset table. Enforce­
ment of rules (a) and (b) yields values for some hitherto
unknown coset table entries (deductions) and, also, the
identification of cosets which have been multiply defined
(coincidences). The procedure terminates when
(i) for each coset i, the action of each generator xj and

inverse xy' on i is known; and
(ii) rules (a) and (b) are satisfied.

This procedure was used extensively in hand computa­
tion prior to the development of computers. Beginning in
1952, different versions of the procedure have been
adapted for machine computation and it is perhaps the
most widely applied technique in computational group
theory. However, despite its antiquity, our understanding
of the relationship between a given presentation for G and
the performance of a particular version of coset enumera­
tion when applied to that presen tationis poor. Introductory
descriptions of the procedure are giveh by Cannon, Dim-
ino, Havas and Watson (1973), Johnson (1980), Leech
(1970b, 1984) and Neubiiser (1982). Sims (to appear)
gives a formal account pf coset enumeration in terms of
automata and rational languages.

Performance of the procedure is very sensitive to
changes in the'rules used to introduce new cosets. Because
of the many possible variations in the manner in which
new cosets are introduced, coset enumeration must be
regarded as a family of procedures rather than as a single
procedure. For a given coset enumeration procedure, there
is no computable bound, in terms of length of input and a
hypothetical index, to the number of cosets \yhich need to
be defined in the coset enumeration process to complete
the enumeration. (The existence of such a bound would
violate the unsolvability of the word problem for finitely
presented groups.) Further, Sims (to appear) has proved
that there does not exist a polynomial bound, in terms of
the maximum number of cosets defined, for the number of
coset tables which may be constructed using simple coset

52 THE AUSTRALIAN COMPUTER JOURNAL, VOL 24, No, 2, MAY 1992

ALGORITHMS FOR GROUPS

table operations similar to those employed in a coset enu­
meration procedure. This result indicates that the running
time of a coset enumeration procedure, as a function of
available space, may be unpleasant.

Cannon et al (1973) identify a number of factors that
affect the efficiency of an enumeration. The next signifi­
cant study of coset enumeration procedures was carried
out by Sims (to appear). Recently, after extensive experi­
mentation, Havas introduced new coset enumeration
strategies, which exhibit dramatically better performance
than previous versions when applied to many “difficult”
enumerations. The performance of a coset enumeration
program, in doing a particular enumeration, is measured in
large part by the maximum number of cosets that are
simultaneously defined and by the total number of cosets
defined during the course of the enumeration. The maxi­
mum gives a direct measure of the storage requirements.
For example, consider the presentation <x,y,z \ xyx~\ yzy~2,
zxz~4> for a group of order 210, essentially due to Mennicke
(1959). The subgroup <x) has index 105. Methods des­
cribed in Cannon et al (1973) define as many as a maxi­
mum of 1230970 cosets and a total of 1250191 to com­
plete this enumeration, and the most space-economical of
those methods requires a maximum of 127846 cosets and
a total of 128218. The new procedure, with its default
strategy, requires a maximum of 2854 cosets and total
2859, while individual tuning can lead to completion with
a maximum of 1648 and total of 1652. A preliminary
account of this work is given by Havas (1991) and a full
description is in preparation.

In favourable circumstances, the current generation of
programs may successfully complete enumerations where
the index of H in G is up to about 107. Unfortunately, it is
easy to construct presentations for the trivial group which
will easily defeat these programs. Coset enumeration is the
basis of the standard computational technique employed
when attempting to prove that an fp-group G is finite. If the
procedure terminates, given a subgroup Hof G known to
be finite, we immediately deduce that G is finite and,
moreover, we obtain a bound on the order of G. If G is not
only finite but also sufficiently small so that the cosets of
the trivial subgroup may be enumerated, the resulting
coset table provides us with a solution to the word problem
for G.

The range of applicability of current coset enumeration
programs is limited mainly by the memory required to
store the coset table. Since, in the case of non-pathological
enumerations, the space required is roughly proportional
to the index of H in G, workers in the field have long
dreamt of generalizing coset enumeration to a procedure
capable of enumerating the double cosets HxL of sub­
groups H and L of G. A significant step towards this goal
was taken recently by Linton (1991a) who successfully
implemented a double coset enumeration procedure, first
suggested by Conway (1984), for the case where H is a

“large” subgroup of G and L is a small subgroup in which
detailed structural computation is possible. Since the
number of double cosets HxL is often a small fraction of
the number of single cosets Hx, this techinque, when appli­
cable, offers potentially great space savings.

As noted at the outset, the classical coset enumeration
procedure constructs a permutation representation for G
on the cosets of H. Linton (1991b) describes a version of
coset enumeration which constructs a matrix representa­
tion for G over a designated field k (usually a finite field).
In the simplest interpretation, Linton’s algorithm con­
structs the permutation module corresponding to the
action of G on the cosets of a subgroup H. However, since
the algorithm works by constructing representations of the
group algebra kG, given a suitable choice of ideal genera­
tors in kG, it is possible, for example, to directly construct
constituents of a permutation module for G.

Our discussion so far assumes that we are given some
subgroup Hof G. How do we proceed when we are unable
to identify useful subgroups by direct inspection of the
presentation: If G is an fp-group then, for each positive
integer n, there exist only finitely many subgroups Hof G of
index n. More precisely, given a homomorphism <(>: G —
Sym(ri), of G into the symmetric group of degree n, such
that 4>(G) is transitive, then H<t>= {g e G | = 1} is a
subgroup of index n in G. Such homomoiphisms may be
constructed by enumerating coset tables. Given a generat­
ing set for G and a positive integer n, there is a one-to-one
correspondence between the subgroups having index n in
G and the set of standard coset tables having n rows (where
the entries in standard tables satisfy certain ordering con­
ditions). The low index subgroup algorithm, discovered
independently in the sixties by Sims and Schaps, enumer­
ates all n-row standard coset tables using a combination of
coset enumeration and backtrack search methods (see
Dietze and Schaps, 1974; Neubiiser, 1982; Sims, to
appear). The low index subgroup algorithm outputs either
a generating set for each subgroup of index n, or a list of all
transitive permutation representations of G having degree
n.

Versions of the low index subgroup algorithm (differing
in the relative emphasis on coset enumeration or back­
track search) have been designed and implemented by
Sims, Lepique (1972), Dietze and Schaps, Cannon and
Gallagher (1976, unpublished), and Cannon (see Cannon
and Bosma, 1991). In favourable circumstances, the low
index algorithm may be used to find all subgroups having
index up to 100 or even more. For example, the Cannon-
Sims implementation is able to compute all conjugacy
classes of subgroups in the Coxeter group (a,b,c,d |
a\b2,c2,d?-, (ab)5, (be)3, (cd)3, [a,c),[b,d],[a,dp with index
not exceeding 240 in less than two hours CPU time! Since
this technique is applicable to infinite groups, it provides us
with a tool for proving that an fp-group is infinite. The
structure of each quotient H/H', where H is a subgroup

THE AUSTRALIAN COMPUTER JOURNAL, VOL. 24, No. 2, MAY 1992 53

ALGORITHMS FOR GROUPS

produced by the low index algorithm, is examined for the
presence of infinite factors.

Having the coset table for a subgroup Hof the fp-group
G enables us to construct a presentation for H. A lemma of
Schreier describes a generating set for H in terms of the
generators of G and a system of coset representatives for H
in G. (Such coset representatives may be read off the coset
table for H in G.) The Reidemeister rewriting process
permits us to rewrite the relators of G and their conjugates
as words in these Schreier generators. The ensuing relators
constitute a presentation for H. Again, the coset table
contains all the information needed to perform Reidemeis­
ter rewriting. Details are given by Johnson (1980) and
Neiibuser (1982). A variation of the Reidemeister rewrit­
ing process, which rewrites //-elements given as words in
the generators of G as words in an arbitrary generating set
for H, was described by Benson and Mendelson (1966)
(see also Neubiiser, 1982). Using this theoretical basis,
programs for constructing presentations of subgroups of
finite index in fp-groups have been implemented by a
number of workers, including Havas (1974) and Arrell and
Robertson (1984).

Subgroup presentations produced by a Reidemeister-
Schreier process generally involve large numbers of
generators and relators and are poorly suited for human or
computer use. A theorem of Teitze asserts that, given
presentations for two isomorphic groups, repeated appli­
cation of three simple rules (Tietze transformations) will
suffice to transform one presentation into the other. How­
ever, there is no general algorithm for identifying the order
in which the Tietze transformation rules should be applied.
Presentation simplification programs which take “bad”
presentations and produce “good” presentations for
groups have been developed by Havas, Kenne, Richardson
and Robertson (1984) and Robertson (1988).

As noted at the outset, coset enumeration over a sub­
group H constructs a permutation representation for G.
We can no w study the quotient of G defined by this repres­
entation using permutation group methods. Conversely,
given a finite group G in some concrete repfesentation, we
may use the group multiplication to construct cosci tables.
For such a group G with moderate order, Cannon (1973)
shows how to construct a compact presentation for G from
a coset table so that we can then apply fp-group methods to
G.

2.3 Term-rewriting Methods
A specialization of the Knuth-Bendix term-rewriting
procedure (Knuth and Bendix, 1970) has been applied to
fp-groupsfStarting with a finite presentation for a monoid
M, the Knuth-Bendix procedure for strings (KB-procedure)
attempts to construct a confluent presentation for M A
confluentpresentation for M consists of a system of rewrit­
ing rules which convert any element of M into a unique
normal form. The KB-procedure has been studied exten­
sively. Some applications to groups are given by Gilman

(1979) and Le Chenadec (1986), while Sims (to appear)
investigates the procedure in detail.

A major success of the KB-procedure in group theory
was its application by Sims (1987) to verify nilpotency of
an fp-group. The nilpotent quotient algorithm (see below)
is used initially to construct a polycyclic presentation for
the nilpotent quotient Q of G. Using the relations of this
presentation as an initial set of rewrite rules, and a special
term-ordering, Sims was able to develop an effective algo­
rithm for verifying the triviality of the kernel of the quo­
tient Q. (If the kernel is nontrivial, the algorithm fails to
terminate.)

A major advantage of the KB-procedure over coset
enumeration is that it may sometimes be used to construct
a confluent presentation for an infinite group. In the case of
a finite fp-group, coset enumeration is usually the most
efficient method for constructing a confluent presentation.
Epstein, Holt and Rees (1991) describe a practical algo­
rithm based on the KB-procedure for constructing a solu­
tion to the word problem for groups known as automatic
groups. This class of groups has solvable word problem
and includes many important families of groups which
arise naturally in geometry and topology (e.g. hyperbolic
and Euclidean groups).

Recently, Holt and Rees (to appear a) developed a
program which endeavours to determine whether or not
two fp-groups G and K are isomorphic. The program
alternates between attempting to construct an isomor­
phism between G and K, and attempting to prove non­
isomorphism by discovering a structural difference. The
Knuth-Bendix procedure is used to construct a reduction
machine for each of G and K These two reduction
machines are used to systematically construct homomor-
phisms 6: G—ATand then to test each such homomorphism
6 for the properties of being surjective and injective. The
nonisomorphism testing relies on findipg some structural
difference by comparing various kinds of quotients of G
and K When applied to special classes of groups, such as
automatic groups, it can be quite successful. For example,
Holt and Rees report thaf it was able to quickly settle the
isomorphism question for all but two pairs in a collection
of about 30 pairs of link groups. It resolved the question for
the last two pairs with more difficulty, taking some hours
oh a Sun 3/60.

Sims (1991) employed the KB-procedure to deduce
non-obvious relations in two groups. In each case, the
relations could not have been discovered using the current
generation of coset enumeration procedures. This is one of
the first reported instances where the KB-procedure out­
performs coset enumeration when both are potentially
applicable.

2.4 Quotient Group Methods
An important technique for studying an fp-group G
involves constructing homomorphic images of G, which
may be either members of some class of fp-groups having

54 THE AUSTRALIAN COMPUTER JOURNAL, VOL. 24, No. 2, MAY 1992

ALGORITHMS FOR GROUPS

solvable word problem, permutation groups or matrix
groups. As noted above, a successful coset enumeration
of the cosets of some subgroup yields a homomorphism
onto a permutation group, while the low index algorithm
systematically searches for homomorphisms into the
symmetric group Sym(ri), for small n. In this section we
examine techniques for directly constructing abelian, nil-
potent and soluble quotients of an fp-group. In each case, a
confluent presentation for the quotient group is con­
structed. Note that, if the particular quotient is equal to G,
this effectively solves the word problem for G.

The structure of a finitely generated abelian group A
may be obtained by computing the Smith normal form of
its relation matrix (an integer matrix). Efficient algorithms
for computing this form for large matrices have been
described by Havas and Sterling (1979). If the isomor­
phism between A and its canonical form is required, the
reduced basis algorithm of Lenstra, Lenstra and Lovasz
(1982) may be utilized, as described by Sims (to appear,
Chapter 8). Thus, given an arbitrary fp-group G, the struc­
ture of its maximal abelian quotient, GIG', is readily
obtained.

Hand computations in the sixties led to the develop­
ment by Macdonald (1974) and Wamsley (1974) of algo­
rithms for computing finite nilpotent p-quotients of G,
wherep is a prime dividing the order of GIG'. Starting with
an exponent-p-quotient of GIG', the algorithms succes­
sively extend a current p-quotient H by an elementary
abelian group that is centralized by H. Since the extension
theory is particularly simple in this situation, it is possible
to design extremely effective algorithms. Nice descriptions
of a basic algorithm are given by Newman (1976) and
Havas and Newman (1980). The algorithm outputs the
p-quotient in terms of a power-commutator presentation, a
special confluent presentation. The p-quotient algorithm
relies critically on a particular string rewriting procedure
known as commutator collection, where the rewrite rules
are the relations of a power-commutator presentation (see
Felsch, 1976; Havas and Nicholson, 1976; Leedham-
Green and Soicher, 1990; and Vaughan-Lee, 1990b).
Since the development of the original p-quotient algo­
rithms, Havas and Newman (1980) and Vaughan-Lee
(1984) have introduced many improvements. A new
implementation has been recently developed in Canberra
by Newman and O’Brien with additional enhancements.

The algorithm has been extensively applied to the
investigation of Burnside groups (see Vaughan-Lee,
1990a). As an illustration of the power of current imple­
mentations, the p-quotient algorithm has computed a
power-commuter presentation for the three-generator res­
tricted Burnside group of exponent 5, a group with class 17
and order 52282. Building on the p-quotient algorithm,
Leedham-Green and Newman designed and implemented
an algorithm for generating descriptions of p-groups. In
his PhD thesis at the Australian National University,
O’Brien significantly refined these methods and success­

fully applied them to determine all groups with order
dividing 256: there are 56092 groups of order 256
(O’Brien, 1990,1991).

A number of variations on the original p-quotient algo­
rithm have been made. Thus, a general nilpotent quotient
program (with no dependency on a prime p and allowing
infinite quotients) was prototyped by Sims in Mathematica
and a new implementation has just been developed by
Nickel at ANU. Havas, Newman and Vaughan-Lee
(1990) have produced an analogue of the group nilpotent
quotient algorithm for graded Lie algebras. This has appli­
cations to p-groups where the quotients are too large to be
handled by the group program and has been used to inves­
tigate questions related to the Burnside problem. Finally,
during a recent visit to Australia, Vaughan-Lee developed
a variation for finitely presented associative algebras.

A more difficult area is the computation of soluble
quotients. Wamsley (1977), Leedham-Green (1984) and
Plesken (1987) have proposed generalizations of the nil-
potent quotient algorithm to a soluble quotient algorithm.
The Plesken algorithm has been implemented by Wegner
at St Andrews as part of his PhD thesis, and has had some
success. Baumslag, Cannonito and Miller (1981) outlined
a method for constructing polycyclic quotients. While
their interest was purely theoretical, Sims (1990b) has
further developed their ideas and implemented them in the
special case of metabelian quotients. An implementation
of the general algorithm (see Sims, to appear, chapters 9
and 10) involves a sophisticated combination of many
algorithms, including Grobner basis techniques (Buch-
berger, 1985). Success has been reported in specific cases
by Neubiiser and Sidki (1988), Newman and O’Brien (to
appear) and Havas and Robertson (to appear), all using
combinations of previously described programs.

At the DIMACS Workshop on Groups and Computa­
tion in 1991, Holt and Rees (to appear b) demonstrated a
program for finding certain quotients of finitely presented
groups. A backtrack search attempts to construct a
homomorphism between the given fp-group G and nomi­
nated permutation representations of selected finite
groups. In particular, this program may be used to identify
small perfect groups that occur as quotients of G. This
work builds on the classification by Holt and Plesken
(1989) of all perfect groups of order up to a million.
Having found a representation of G, the program converts
it to a regular representation, and then attempts to con­
struct larger quotients of G by performing elementary
abelian extensions using either a Reidemeister-Schreier or
p-quotient algorithm. The portion of the subgroup lattice
obtained is represented graphically and may be manipu­
lated interactively.

3 PERMUTATION GROUPS '
3.1 Introduction
Computational methods for permutation groups differ
fundamentally from those designed for fp-groups since the

THE AUSTRALIAN COMPUTER JOURNAL, VOL. 24, No. 2, MAY 1992 SS

ALGORITHMS FOR GROUPS

undecidability of the word problem means that many fp-
group procedures cannot be guaranteed even to terminate.
Thus, if we are lucky, the fp-procedures may provide us
with some information about the overall properties of the
group under consideration. However, in the case of a per­
mutation group, it is possible to design fast algorithms
which can provide us with highly detailed information
about the structure of the group.

Over the past two decades, a large number of useful
permutation group algorithms have been discovered.
Because the field is so extensive, this survey is restricted to
a few fundamental classes of algorithms and no attempt is
made at completeness, even in the case of the areas we do
consider. A more complete account of basic permutation
group algorithms is given by Cannon (1984) and Bosma
and Cannon (to appear). Butler (1991) provides an intro­
ductory account of many basic algorithms. We do not
attempt to survey the extensive literature on the complex­
ity of permutation group algorithms but rather refer the
reader to Babai (1991).

Let G be a permutation group acting on the finite set Cl
and suppose G is given in terms of a small set X of generat­
ing permutations. The following are representative of the
type of information sought by permutation group theorists:
— What are the G-invariant subsets (partitions) of the set

n?
— What is the order of the group G?
— Is a given element of Sym(Cl) a member of the group G?
— Find generators for the stabilizer of a sequence (set) of

elements of Cl.
— Determine the various series of characteristic sub­

groups of G: derived series; lower central series; upper
central series.

— Find generators for the Sylowp-subgroup of G, where p
is a prime dividing the order of G.

— Compute the centralizer (normalizer, normal closure)
of a subgroup H of G.

— Determine representatives for the conjugacy classes of
elements of G.

— Compute a composition series for G and determine the
isomorphism type of each composition factor.
The construction df a G-invariant partition of Cl pro­

ceeds by computing the finest G-invariant partition that
contains a given pair of points a and fi. Consideration of all
such pairs of points in turn will yield the complete list of
minimal G-invariant partitions of Cl. Various reductions
which greatly improve efficiency are possible. Thus, if Gis
transitive, it suffices to consider the pairs a, (3, where a is
fixed andjs runs through the elements of the set fl — {a}. A
particularly efficient version of such an algorithm is des­
cribed by Atkinson (1975). Used to .test primitivity of G,
the algorithm has running time 0(mn2), where m = \X\ and
n = | n|.

3.2 Base and Strong Generating Sets
All but the first of the above questions involve quantifying

over the set of elements of G. The design of effective
algorithms depends critically on the method chosen to
represent this set. The representation should have the fol­
lowing features:
(a) it should display key aspects of the group structure;
(b) it should have the property of inheritance, thus a sub­

group of G should directly inherit its representation
from that of G;

(c) it should be effectively computable.
Sims (1970,1971a, 1971b) introduced the notion of a

base and strong generating set (BSGS) as the appropriate
set representation for a permutation group. A base for G is
a sequence B = (pu...,/3k> of distinct elements of Cl such that
the identity is the only element of G that fixes B pointwise.
Let G« .„>at denote the pointwise stabilizer of {au...,ak}c Cl.
Then B defines a sequence of subgroups, G = G° > G2) >
... > Gk*l) = <1>, where G® = Gpt..p._r A strong generating set
S for G, relative to the base B, is a generating set for G
which contains generators for each subgroup in the chain.
Given B and S, it is a straightforward matter to compute
the orbit A, =ft0® anda transversal (A0for G'+1) in G®, for
i = 1 ,...,k

Knowledge of A; and G® for i = 1 ,...,k immediately gives
us the order of G, a membership test for G, and the possibil­
ity of listing the elements of G without repetition. The
central philosophy in permutation group computation is to
assume that the group Gis represented in terms of a BSGS
(whose construction is discussed below). Sims showed that
the availability of a BSGS enables us to design effective
algorithms for constructing important classes of sub­
groups and quotient groups of G. Wherever possible, algo­
rithms for constructing such subgroups and quotient
groups of G are organized in such a way that the new group
inherits a BSGS from the known BSGS for G. For example,
the backtrack algorithms for constructing subgroups, des­
cribed below, automatically produce a BSGS for the
subgroup. *

The design of fast methods for constructing a BSGS for
G is one of the first problems which must be solved. In
1967, Sims developed a BSGS algorithm based on the
following lemma of Schreier: Let G be a group with gener­
ating set X, arid let H be a subgroup of G. If U is a right
transversal for H in G such that U contains the identity
element then H is generated by the set {ux<p(ux)—1 \ ue U,
x e X}, where 4>(ux) is the unique element of U such that
Hux = H4>(ux).

In theoretical terms, the algorithm proceeds as follows:
For B\ choose any point not fixed by every element of X.
Compute the orbit of B\ together with the corresponding
transversal Now apply Schreier’s lemma to construct
a set of generators for Gp = G®. Iterating this process, we
successively construct base points {S2,-,Pb and generating
sets for the stabilizers G(3),...,G®+ ri The process terminates
when we reach the trivial subgroup. This algorithm is
impractical as it stands because of the large number of

56 THE AUSTRALIAN COMPUTER JOURNAL, VOL. 24, No. 2, MAY 1992

ALGORITHMS FOR GROUPS

generators produced by the lemma. In fact, the number of
elements needed to generate the stabilizer is usually a tiny
fraction of the number produced by the lemma. (It is easy
to see that at most n elements are needed to generate the
stabilizer of a point in G.) With careful organization, the
above idea yields a BSGS algorithm that produces small
generating sets for the terms of the stabilizer chain. In
practice, the algorithm works well for degrees less than
100 but becomes impractical as the degree increases
beyond a few hundred. For the case of a soluble permuta­
tion group, Sims (1990a) describes a BSGS algorithm
which takes account of the particular structure of these
groups.

For larger degrees a different approach is adopted. First
a “probable” BSGS for G is constructed, and then an
algorithm is applied which either verifies that the BSGS is
correct, or establishes that it is incomplete. A “probable”
BSGS may be constructed very quickly by using a fixed
number of randomly chosen elements of G in place of the
products ux in Schreier’s lemma (probabilistic Schreier
algorithm). The main inductive step in BSGS verification is
the following: Suppose H is a subgroup of G-2) with a
certified BSGS. If we can show that H = G®, then we will
have verified the correctness of the BSGS for G. In prac­
tice, //will be the approximation to G® constructed by the
probabilistic Schreier algorithm. The first verification
algorithm was developed by Sims and published by Leon
(1980) and involves using the Todd-Coxeter algorithm to
construct a presentation for G in terms of strong genera­
tors. A presentation is assumed to be known for H on its
strong generating set by induction. The verification
involves comparing the index of //in G with the length of
the orbit fif. This method made it practical to construct
BSGSs for groups having degree in the low thousands. In
1986, Brownie and Cannon implemented a new verifica­
tion algorithm suggested by Sims. Instead of testing each
of the Schreier generators given in the above lemma for
membership of H, we test a much smaller subset defined in
terms of representatives for the orbits of certain one-point
and two-point stabilizers. This algorithm, as implemented
in Cayley, has constructed BSGSs for groups of degree up
to 500000 and, given sufficient memory, is capable of
computing BSGSs for groups having degrees up to a
million.

, The theoretical complexity of BSGS algorithms
depends heavily upon the choice of data structures, partic­
ularly on the data structure used to store the transversals
U©. Sims stored each transversal G® in the form of a
linearized tree structure known as a Schreier vector and the
running time of his original algorithm was bounded by
0(n6), where n is the degree of G. Using the so-called
labelled branching data structure for the G®, Jerrum
(1986) described a variant of the original Sims algorithm
with running time 0(n5). Cooperman and Finkelstein
(1991) describe an algorithm which verifies strong genera­
tion in 0(n4) time. More experimental work needs to be

done in order to establish whether or not the Cooperman-
Finkelstein algorithm is a practical competitor to the
Brownie-Cannon-Sims algorithm.

Given a particular base B for G and strong generators
relative to B, there exist fast algorithms for computing
strong generators for G relative to a different base B' for G.
Sims (1971a, 1971b) shows how to modify the strong
generators when two adjacent base points are inter­
changed. By concatenating the new base B'onto the end of
B, the desired base change may be achieved by performing
a succession of adjacent interchanges. Some modifications
to speed up this procedure are described in Butler (1991).
Cooperman, Finkelstein and Luks (1989) describe a base
change algorithm with running time 0(kn2). A different
approach to changing base is to use a probabilistic proce­
dure similar to the random Schreier algorithm mentioned
above (see Leon, 1980). Such a procedure is employed in
the Brownie-Cannon-Sims verification algorithm. The
complexity of such algorithms has been analyzed by
Cooperman, Finkelstein and Sarawagi (1990).

3.3 Subgroup Constructions
The base change algorithm enables us to rapidly construct
a BSGS for the pointwise stabilizer of a sequence of points
from Cl. The availability of a BSGS for G enables us to test
membership of G in polynomial time, where the degree of
the polynomial (dependent on the data structure and space
used) may be as low as 2. The combination of a BSGS
algorithm and membership testing immediately allows us
to construct the normal closure of a subgroup of G. The
availability of a normal closure algorithm in turn enables
us to construct the derived series and lower central series
for G, and also allows us to test subgroups for the proper­
ties of being perfect, soluble, nilpotent, subnormal, etc. (see
Butler and Cannon, 1982).

The availability of the BSGS representation of a permu­
tation group provides the appropriate foundation for the
design of efficient backtrack searches for subgroups of G
whose elements satisfy some elementary property. By
carefully choosing a base adapted to a particular back­
track search, we can often greatly reduce the size of the
search tree. The BSGS backtrack search of a permutation
group was introduced by Sims in 1970, when he described
backtrack algorithms for computing centralizers and
intersections of subgroups. Over the next decade, Butler,
Cannon and Sims developed backtrack searches for con­
structing set stabilizers, normalizers, Sylow p-subgroups
and for testing conjugacy of elements and subgroups (see
Sims, 1971a, 1971b; Butler, 1982, 1983, 1991). Holt
(1991) presents a backtrack algorithm for computing sub­
group normalizers which employs many additional tests to
prune the backtrack search tree. The performance of his
algorithm is superior in many cases to the Butler algorithm
as implemented in the Cayley library of intrinsic functions.

Very recent work of Leon (1991) represents a major
step in the evolution of backtrack algorithms for permuta­

THE AUSTRALIAN COMPUTER JOURNAL, VOL. 24, No. 2, MAY 1992 57

ALGORITHMS FOR GROUPS

tion groups. The efficiency of a backtrack search is heavily
dependent upon the information available to prune the
search tree. Using the idea of successive refinement of
ordered partitions, first introduced by McKay (1978,
1981) as part of his highly successful graph isomorphism
algorithm, Leon is able to devise new and powerful tests.
An early implementation of a set stabilizer algorithm
based on these ideas demonstrates performance that is
dramatically superior to the “first generation” set stabil­
izer algorithm. As a result of this work we can expect a
new generation of backtrack algorithms, exhibiting super­
ior performance, to emerge in the near future.

Let p be a prime dividing | G|, and let P denote the Sylow
p-subgroup of G. Traditional approaches to computing P
have involved performing a series of cyclic extensions
commencing with the subgroup generated by an element
of p-power order. Butler and Cannon (1989) describe an
algorithm which employs a backtrack search for possible
extending elements. This algorithm is restricted to groups
having degrees in the low hundreds and primes whose
exponent in | G| does not exceed 16. Holt (1991) suggests
using his fast normalizer algorithm to locate possible
extending elements. Butler and Cannon (1991) present a
recursive method based on reduction of the degree. The
reduction is based on the observation that if zis ap-central
element having order p, then the kernel of the action of the
centralizer of z on the cycles of z is a p-group. This algo­
rithm, which may involve a probabilistic search for a
p-central element of G, generally runs a great deal faster
than the backtrack method. Yet another method based on
the use of homomorphisms has been suggested by Atkin­
son and Neumann (1990). Kantor (1985) and Kantor and
Taylor (1988) give polynomial time algorithms for com­
puting Sylow p-subgroups which appear to be of theoreti­
cal interest only.

3.4 Abstract Structure
Given the availability of constructions for centralizer,
normal closure and Sylow subgroup, one can contemplate
computing a description of the abstract jtructure of G.
Such a goal became particularly attractive with|the com­
pletion of the classific|tion of the finite simple groups.

A very important requirement is to be able to determine
quickly whether or not a permutation group G of degree n
contains the alternating group Alt(n) in its natural repres­
entation. Indeed, it is desirable to recognize this situation
before incurring the expense of constructing a BSGS for G.
The starting point is a theorem of Jordan which states that
if a primitive group contains ap-cycle, wherep < n — 3 is
a prime, then G contains Alt(n). This theorem has been
subsequently extended by other workers to identify many
other permutation cycle types that are Jordan witnesses ior
Alt(n). Cameron and Cannon, in work extending over a
decade, have constructed a subtle probabilistic recognition
procedure for groups containing Alt(n). The basic idea is to
sample a very small number of elements of G and, if G does

indeed contain Alt(n), deduce from these elements the
primitivity of G and the presence of Jordan witnesses. This
algorithm is applicable to groups having degree up to a
million and, if G does contain Alt(n), it usually only needs
to sample two or three elements in order to recognize the
fact.

As a next step, Cameron and Cannon (1991) developed
an algorithm for identifying any doubly transitive group.
By carefully analyzing the lengths of the orbits of a two-
point stabilizer (three-point stabilizer in a triply transitive
group), the algorithm avoids having to compute the
derived subgroup of G, except in the case of some rela­
tively small groups (eg. one-dimensional affine groups).

At the 1985 Groups — St Andrews meeting, Neumann
(1986) described a practical algorithm, based on the
O’Nan-Scott Theorem, for determining a BSGS for each
composition factor of a general permutation group G. The
general strategy involves reducing to a primitive group T,
locating the socle of T, and then splitting the socle into its
simple direct factors. Luks (1987) published a polynomial
time algorithm for this problem which appears to be of
theoretical interest only. Neumann’s algorithm made some
use of the fact that practical computation with such an
algorithm will be restricted to groups having degree at
most a few million. Kantor (1991) pushes this approach
somewhat further and shows that, except in the case of a
few small groups, it is possible to name the composition
factors of any permutation group having degree not
exceeding 106 at the cost of computing a BSGS for G and
the derived subgroup of G. Thus, Kantor improves on the
Neumann method by avoiding the step of constructing and
splitting the socle of T. It appears that the Kantor algo­
rithm may be generalized to groups of degree up to 108 so
that his approach covers all permutation groups that are
presently amenable to practical computation.

Going in the other direction, Holt has developed an
algorithm for constructing the first and second cohomol-
ogjf groups of a permutation group. This very'complex
aif orithm builds on several of the permutation group algo­
rithms described above^ employs the nilpotent quotient
algorithm and involves intricate module-theoretic calcula­
tions (see Holt, 1984,1985a, 1985b).

•r
4 ACKNOWLEDGEMENTS
Both authors were' partially supported by Australian
Research Council grants. The second author was partially
supported by DIMACS/Rutgers-NSFSTC88-09648.

REFERENCES
ARRELL, D.G. and ROBERTSON, E.F. (1984): A modified Todd-

Coxeter algorithm. In M.D. Atkinson (ed), pp. 27-32.
ATKINSON, M.D. (1975): An algorithm for finding the blocks of a

permutation group, Math. Comp. 29, pp. 911-913.
ATKINSON, M.D. (ed) (1984): Computational Group Theory, Academic

Press, London.
ATKINSON, M.D. and NEUMANN, P.M. (1990): Computing Sylow

subgroups of permutation groups, Congressus Numerantium 79, pp.
55-60.

58 THE AUSTRALIAN COMPUTER JOURNAL, VOL. 24, No. 2, MAY 1992

ALGORITHMS FOR GROUPS

BABAI, L. (1991): Computational complexity in finite groups, Proc.
Inteniat. Congress Mathematicians 1990, Springer-Verlag,, pp.
1479-1490.

BAUMSLAG, G., CANNONITO, F.B. and MILLER, in, C.F. (1981):
Computable algebra and group embeddings, J. Algebra 69, pp.
186-212.

BENSON, C.T. and MENDELSOHN, N.S. (1966): A calculus for a
certain class of word problems in groups, / Combinatorial Theory 1,
pp. 202-208.

BOSMA, W. and CANNON, J. (to appear): An introduction to permuta­
tion group algorithms CWI Quarterly.

BROWN, H„ BULOW, R„ NEUBUSER, J:, WONDRATSCHEK, H. and
ZASSENHAUS, H. (1978): Crystallographic groups of four­
dimensional space, Wiley-lnterscience, New York.

BUCHBERGER, B. (1985): Grobner bases: an algorithmic method in
polynomial ideal theory, Multidmensional Systems Theory, Reidel,
Dordrecht, pp. 184-232.

BUTLER, G. (1982): Computing in permutation and matrix groups II;
backtrack algorithm Math Comp. 39, pp. 671-680.

BUTLER, G. (1983): Computing normalizers in permutation groups,/.
Algorithms 4, pp. 163-175.

BUTLER, G. (1991): Fundamental algorithms for permutation groups
[Lecture Notes in Computer Science 559], Springer-Verlag, Berlin,
Heidelberg, New York.

BUTLER, G. and CANNON, J.J. (1982): Computing in permutation and
matrix groups I; normal closure, commutator subgroups, series, Math.
Comp. 39, pp. 663-670.

BUTLER, G. and CANNON, JJ. (1989): Computing in permutation and
matrix groups III; Sylow subgroups, /. Symbolic Comput. 8, pp.
241-252.

BUTLER, G. and CANNON, J. (1991): Computing Sylow subgroups
using homomorphic images of centralizers, /. Symbolic Comput. 12,
pp. 443-457.

CAMERON, PJ. and CANNON, J. (1991): Fast recognition of doubly
transitive groups, /. Symbolic Comput. 12, pp. 459-474.

CANNON, J. J. (1973): Construction of defining relators for finite groups,
Discrete Math. 5, pp. 105-129.

CANNON, J.J. (1984): A computational toolkit for finite permutation
groups, Proc. Rutgers Group Theory Year 1983-1984, Cambridge
University Press, New York,pp. 1-18.

CANNON, J. (ed) (1990): Computational group theory I, /. Symbolic
Comput. 9, numbers 5-6.

CANNON, J.J. (1991a): A bibliography of Cayley citations, SIGSAM
Bull 25, pp. 75-81.

CANNON, J. (ed) (1991b): Computational group theory II,/. Symbolic
Comput. 12, numbers 4-5.

CANNON, J. and BOSMA, W. (1991): A Handbook of Cayley functions,
Computer Algebra Group, University of Sydney.

CANNON, J.J., DIMINO, LA., HAVAS, G. and WATSON, J.M. (1973):
Implementation and analysis of the Todd-Coxeter algorithm, Math.
Comp. 27, pp. 463-490.

CONWAY, J.H. (1984): An algorithm for double coset enumeration? In
M.D. Atkinson (ed), pp. 33-37.

COOPERMAN, G. and FINKELSTEIN, L. (1991): A strong generating
test and short presentations for permutation groups,/. Symbolic Corn-
put 12, pp. 475-497.

COOPERMAN, G., FINKELSTEIN, L. and LUKS, E. (1989): Reduction
of group constructions to point stabilizers, ISSAC 89, ACM Press,

' New York, pp. 351-356.
COOPERMAN, G„ FINKELSTEIN, L. and SARAWAGI, N. (1990): A

random base change algorithm for permutation groups, ISSAC 90,
ACM Press, New York, pp. 161-168.

DIETZE, A. and SCHAPS, M. (1974): Determining subgroups of a given
finite index in a finitely presented group, Canadian J. Math 26, pp.
769-782.

EPSTEIN, D„ HOLT, D.F. and REES, S. (1991): The use of Knuth-
Bendix methods to solve the word problem in automatic groups, /.
Symbolic Comput. 12, pp. 397-414.

FELSCH, V. (1976): A machine independent implementation of a collec­
tion algorithm for the multiplication of group elements, SYMSA C’76,
ACM Press, New York, pp. 159-166.

FELSCH, V. (1978): A KWIC indexed bibliography on the use of compu­
ters in group theory and related topics, SIGSAM Bull 12, pp. 23-86.

GILMAN, R.H. (1979): Presentations of groups and monoids,/. Algebra
57, pp. 544-554.

HAVAS, G. (1974): A Reidemeister-Schreier Program, Proc. Second
Intemat. Conf. Theory of Groups [Lecture Notes in Mathematics 372],
Springer-Verlag, Berlin, Heidelberg, New York, pp. 347-356.

HAVAS, G. (1991): Coset enumeration strategies, ISSAC '91, ACM
Press, New York, pp. 191-199.

HAVAS, G., KENNE, P.E., RICHARDSON, J.S. and ROBERTSON, E.F.
(1984): A Tietze transformation program. In M.D. Atkinson (ed), pp.
67-71.

HAVAS, G. and NEWMAN, M.F. (1980): Application of computers to
questions like those of Burnside, Burnside Groups [Lecture Notes in
Mathematics 806], Springer-Verlag, Berlin, Heidelberg, New York,
pp. 211-230.

HAVAS, G„ NEWMAN, M.F. and VAUGHAN-LEE, M.R. (1990): A
nilpotent quotient algorithm for graded Lie rings, /. Symbolic Comput.
9, pp. 653-664.

HAVAS, G. and NICHOLSON, T. (1976): Collection, SYMSAC'76,
ACM Press, New York, pp. 9-14.

HAVAS, G. and ROBERTSON, E.F. (to appear): Application of compu­
tational tools for finitely presented groups, Proc. DIMACS Workshop
Computational Support for Discrete Mathematics, 1992, AMS-ACM.

HAVAS, G. and STERLING, L.S. (1979): Integer matrices and abelian
groups, Symbolic and Algebraic Computation [Lecture Notes in Com­
puter Science 72], pp. 431-451.

HIGMAN, D.G. and SIMS, C.C. (1968): A simple group of order
44,352,000, Math Z. 105, pp. 110-113.

HOLT, D.F. (1984): A computer programme for the calculation of the
Schur multiplier of a finite permutation group. In M.D. Atkinson (ed),
pp. 307-319.

HOLT, D.F. (1985a): A computer program for the calculation of a
covering group of a finite group, /. Pure AppL Algebra 35, pp.
287-295.

HOLT, D.F. (1985b): The mechanical computation of first and second
cohomology groups,/. Symbolic Comput. 1, pp. 351-361.

HOLT, D.F. (1991): The computation of normalizers in permutation
groups,/. Symbolic Comput. 12, pp. 499-516.

HOLT, D.F. and PLESKEN, W. (1989): Perfect groups, Oxford Univer­
sity Press, Oxford.

HOLT, D.F. and REES, S. (to appear a): Testing for isomorphism
between finitely presented groups, Proc. Conf. Groups and Combina­
torics, Durham, 1989, Cambridge University Press, Cambridge.

HOLT, D.F. and REES, S. (to appear b): A graphics system for displaying
finite quotients of finitely presented groups, Proc. DIMA CS Workshop
Groups and Computation, 1991, AMS-ACM.

JERRUM, M.R. (1986): A compact representation for permutation
groups, /. Algorithms 7, pp. 60-78.

JOHNSON, D.L. (1980): Topics in the theory of group presentations,
Cambridge University Press, Cambridge.

KANTOR, W.M. (1985): Sylow’s theorem in polynomial time, /. Comput.
System ScL 30, pp. 359-394.

KANTOR, W.M. (1991): Finding composition factors of permutation
groups of degree n < 106, /. Symbolic Comput. 12, pp. 517-526.

KANTOR, W.M. and TAYLOR, D.E. (1988): Polynomial-time versions
of Sylow’s theorem, /. Algorithms 9, pp. 1-17.

KNUTH, D.E. and BENDIX, P.B. (1970): Simple word problems in
universal algebra. In J. Leech (ed), pp. 263-297.

LAUE, R. NEUBUSER, J. and SCHOENWAELDER, U. (1984): Algo­
rithms for finite soluble groups and the SOGOS system. In M.D.
Atkinson (ed), pp. 105-135.

LE CHENADEC, P. (1986): Canonical forms for finitely presented alge­
bras, Pitman, London.

LEECH, J. (ed) (1970a): Computational problems in abstract algebra,
Pergamon Press, Oxford.

LEECH, J. (1970b): Coset enumeration. In J. Leech (ed), pp. 21-35.
LEECH, J. (1984): Coset enumeration. In M.D. Atkinson (ed), pp. 3-18.
LEEDHAM-GREEN, C.R. (1984): A soluble group algorithm. In M.D.

Atkinson (ed), pp. 85-101.
LEEDHAM-GREEN, C.R. and SOICHER, L. (1990): Collection from

the left and other strategies, /. Symbolic Comput. 9, pp. 665-676.
LENSTRA, A.K., LENSTRA, H.W. Jr and LOVASZ, L. (1982): Factor­

ing polynomials with rational coefficients, Math. Ann. 261, pp.
515-534.

THE AUSTRALIAN COMPUTER JOURNAL, VOL. 24, No. 2, MAY 1992 59

ALGORITHMS FOR GROUPS

LEON, J.S. (1980): On an algorithm for finding a base and strong
generating set for a group given by generating permutations, Math.
Comp. 35, pp. 941-974.

LEON, J.S. (1991): Permutation group algorithms based on partitions I:
Theory and algorithms, J. Symbolic Comput. 12, pp. 533-583.

LEON, J.S. and SIMS, C.C. (1977): The existence and uniqueness of a
simple group generated by (3,4)-transpositions, BulL Amer. Math
Soc. 83, pp. 1039-1040.

LEPIQUE, E. (1972): Ein Programm zur Berechnung von Untergruppen
von gegebenen Index in endlich prasentierten Gruppen, Diplomarbeit,
RWTH Aachen.

LINTON, S.A. (1991a): Double coset enumeration,/. Symbolic Comput.
12, pp. 415-426.

LINTON, S.A. (1991b): Constructing matrix representations of finitely
presented groups, J. Symbolic Comput. 12, pp. 427-438.

LUKS, E.M. (1987): Computing the composition factors of a permuta­
tion group in polynomial time, Combinatorica 7, pp. 87-99.

LUX, K. and PAHLINGS, H. (1991): Computational aspects of represen­
tation theory of finite groups, Representation theory of finite groups
and finite-dimensional algebras [Progress in Mathematics, Volume
95], Birkhauser, Basel, pp. 37-64.

MACDONALD, I.D. (1974): A computer application to finite p-groups,
J. Austral Math Soc. 17, pp. 102-112.

McKAY, B.D. (1978): Computing automorphisms and canonical label­
lings of graphs, Combinatorial mathematics [Lecture Notes in
Mathematics 686], Springer-Verlag, Berlin, Heidelberg, New York,
pp. 223-232.

McKAY, B.D. (1981): Practical graph isomorphism, Congressus Nume-
rantium 30, pp. 45-87.

MENNICKE, J. (1959): Einige endliche Gruppe mit drei Erzeugenden
und drei Relationen, Arch Math X, pp. 409-418.

MICHLER, G. (1990): Some problems in computational representation
theory, J. Symbolic Comput. 9, pp. 571-590.

NEUBUSER, J. (1982): An elementary introduction to coset-table
methods in computational group theory, Groups — St Andrews 1981
[London Math. Soc. Lecture Note Ser. 71], Cambridge University
Press, Cambridge, pp. 1-45.

NEUBUSER, J. and SIDKI, S. (1988): Some computational approaches
to groups given by finite presentations. Mathematica Universitaria 7,
pp. 77-120. Rio de Janeiro.

NEUMANN, P.M. (1986): Some algorithms for computing with finite
permutation groups, Proc. Groups — St Andrews 1985 [London Math
Soc. Lecture Note Ser. 121], Cambridge University Press, Cam­
bridge, pp. 59-92.

NEWMAN, M.F. (1976): Calculating presentations for certain kinds of
quotient groups, SYMSAC76, ACM Press, New York, pp. 2-8.

NEWMAN, M.F. and O’BRIEN, E.A. (to appear): A computer aided
analysis of some finitely presented groups, J. Austral Math Soc.

O’BRIEN, E.A. (1990): The p-group generation algorithm, J. Symbolic
Comput. 9, pp. 677-698.

O’BRIEN, E.A. (1991): The groups of order 256, J. Algebra 143, pp.
219-235. I,U

PLESKEN, W. (1987): Towards a soluble quotient algorithm,/. Symbolic
Comput. 4, pp. 123-127, 'if

ROBERTSON, E.F. (1988): Tietze transformations with weighted sub­
string search. /. Symbolic Comput. 6, pp. 59-64.

ROTMAN, J.J. (1973): The theory of groups; an introduction, Allyn and
Bacon, Boston.

SCHNEIDER, G.J. (1990): Computing with endomorphism rings of
modular representations, /. Symbolic Comput. 9, pp. 607-636.

SIMS, C.C. (1970): Computational methods in the study of permutation
groups. In J. Leech (ed), pp. 169-183.

SIMS, C.C. (1971 a): Determining the conjugacy classes of a permutation
group, Computers in algebraand number theory [SIAM-AMS Proc. 4],
pp. 191-195.

SIMS, C.C. (1971b): Computation with permutation groups, Proc.
Second Symp. Symbolic and Algebraic Manipulation, ACM, New
York, pp. 23-28.

SIMS, C.C. (1973): The existence and uniqueness of Lyons’ group, Finite
Groups 72, North-Holland, Amsterdam, pp. 138-141.

SIMS, C.C. (1987): Verifying nilpotence,7. Symbolic Comput. 3, pp.
231-247.

SIMS, C.C. (1990a): Computing the order of a solvable permutation
group, /. Symbolic Comput 9, pp. 699-705.

SIMS, C.C. (1990b): Implementing the Baumslag-Cannonito-Miller poly­
cyclic quotient algorithm, J. Symbolic Comput 9, pp. 707-723.

SIMS, C.C. (1991): The Knuth-Bendix procedure for strings as a substi­
tute for coset enumeration, J Symbolic Comput. 12, pp. 439-442.

SIMS, C.C. (to appear): Computation with finitely presented groups, Cam­
bridge University Press, Cambridge.

SOICHER, L.H. (1990): A new existence and uniqueness proof for the
O’Nan group, Bull LondonMath Soc. 22, pp. 148-152.

VAUGHAN-LEE, M.R. (1984): An aspect of the nilpotent quotient
algorithm. In M.D. Atkinson (ed), pp. 75-83.

VAUGHAN-LEE, M.R. (1990a): The restricted Burnside problem, Cla­
rendon, Oxford.

VAUGHAN-LEE, M.R. (1990b): Collection from the left, J. Symbolic
Comput. 9, pp. 725-733.

WAMSLEY, J.W. (1974): Computation in nilpotent groups (theory),
Proc. Second Intemat. Conf. Theory of Groups [Lecture Notes in
Mathematics 372], Springer-Verlag, Berlin, Heidelberg, New York,
pp. 667-690.

WAMSLEY, J.W. (1977): Computing soluble groups, Group Theory
[Lecture Notes in Mathematics 573], Springer-Verlag, Berlin, Hei­
delberg, New York, pp. 126-129.

BIOGRAPHICAL NOTE
John Cannon is a Reader in Pure Mathematics at the Univer­
sity of Sydney. He is leader of the Computer Algebra Group
there and the principal architect of the computer algebra
system Cayley.

Qeorge Havas is a Senior Lecturer in Computer.Science at
rife University of Queensland. His previous appointments
include: Lecturer in Computing at Canberra College of
Advanced Education fnow University of Canberra);
Research Fellow in Mathematics at the Institute of Advanced
Studies, Australian National University; Principal Research
Scientist, Division of Computing Research, CSIRO; and
director of Research and Development, Csironet.

60 THE AUSTRALIAN COMPUTER JOURNAL, VOL. 24, No. 2, MAY 1992

