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1 INTRODUCTION
Perhaps one of the more unexpected discoveries made by 
mathematicians over the past two decades has been the 
existence of powerful algorithmic methods in many 
branches of algebra. Traditionally, the goal of research in 
algebra has been the discovery of classification theorems 
which attempt to characterize all algebraic structures 
satisfying a particular set of axioms. However, with the 
growth of interest in algebraic computation (driven, in 
large part, by a desire to construct symbolic solutions for 
various types of differential equations), mathematicians in 
the early 1970s were led to discover new approaches to 
such fundamental problems as computing the greatest 
common divisor of two integral polynomials and finding 
the irreducible factors of an integral polynomial. Since 
then several hundred new algorithms have been developed 
in various areas of algebra. It is becoming increasingly 
clear that most, if not all, branches of algebra have a rich 
algorithmic content.

Compared with most branches of algebra, the algo­
rithmic content of group theory, computational group the­
ory, has reached an advanced state of development, both in 
terms of the range and sophistication of the algorithms and 
in terms of their effectiveness in solving worthwhile prob­
lems. Thus, practical algorithms have been designed for 
computing detailed information concerning the structure, 
representations and extensions of various types of finite 
group. Techniques have also been developed for studying 
finitely-presented (fp) infinite groups. Programs imple­
menting group theoretic algorithms find application not 
only in the study of groups directly but also in many of the 
other branches of mathematics which use group theoretic 
methods. These include coding theory, design theory, dif­
ferential equations, discrete Fourier transform theory, 
finite geometry, graph theory, harmonic analysis, 
mathematical crystallography, number theory and 
topology.

A group may be specified in a number of different ways: 
in terms of a finite presentation, as a group of permutations 
or matrices, or as the group of automorphisms of a combi­
natorial structure such as a block design, geometry or 
graph. Experience has shown that, as a general rule, the 
most powerful algorithms are those designed with a par­
ticular form of group specification in mind, eg. permuta­
tion groups.

The major areas of activity in computational group 
theory are finitely presented groups, permutation groups, 
matrix groups, finite p-groups, finite soluble groups and 
representation theory. It is our aim to introduce the reader 
to some of the basic ideas that underpin the design of 
algorithms for group theory. A good introduction to group 
theory is provided by Rotman (1973). For reasons of brev­
ity we restrict ourselves to fp-groups and permutation 
groups, two areas where the problems and approaches are 
quite different. Even within these areas, we make no
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attempt at completeness. A forthcoming book of Sims (to 
appear) provides a thorough introduction to the theory of 
algorithms for fp-groups, while a recent book of Butler 
(1991) gives an elementary introduction to computational 
methods for permutation groups. Both of these books 
include some historical information. An early account of 
algorithms for p-groups and soluble groups is given by 
Laue, Neubiiser and Schoenwaelder (1984), while recent 
accounts of work in computational representation theory 
may be found in Lux and Pahlings (1991), Michler (1990) 
and Schneider (1990). Important collections of papers on 
computational group theory appear in Leech (1970), 
Atkinson (1984), Cannon (1990) and Cannon (1991b).

Computational group theory has been applied to an 
enormous variety of problems. Noteworthy achievements 
include the classification of the 4-dimensional crystallo­
graphic groups (Brown, Billow, Neubiiser, Wondratschek 
and Zassenhaus, 1978) and the construction of sporadic 
simple groups (Higman and Sims, 1968;Sims, 1973;Leon 
and Sims, 1977; Soicher, 1990). Many published applica­
tions prior to 1984 may be found in a bibliography by 
Felsch, an early version of which has been published 
(Felsch, 1978). A sample of more recent applications may 
be found in the bibliography by Cannon (1991a), which 
contains a partial listing of papers citing the computer 
algebra system Cayley.

2 FINITELY PRESENTED GROUPS
2,1 Introduction
A well-known theorem asserts that, in general, the word 
problem for fp-groups is undecidable (see Rotman, 1973, 
chapter 12). Consequently, algorithms for fp-groups are 
fundamentally different in nature to algorithms for groups 
given in some concrete form (eg. permutation groups or 
groups of matrices over finite fields).

Let G and A" be two fp-groups. Typical of the elemen­
tary questions mathematicians wish to answer about fp- 
groups are the following:
— Is G the trivial group? #
— Is G finite? •t' |J
— If G is infinite, is it free? "
— If G is finite, what is its order and structure?
— What are the abelian (nilpotent, soluble, perfect) quo­

tients of G?
— Is G abelian (nilpotent, soluble, perfect)?
— Can we construct a small degree permutation represen­

tation for G?
— Can w|e construct a small degree matrix representation 

for G f ver some given field?
— Are the groups G and K isomorphic?

The algorithms used to compute with fp-groups may be 
conveniently described under three headings: Todd- 
Coxeter or coset enumeration based methods; Knuth- 
Bendix or term-rewriting methods; and quotient group 
methods.

2.2 Coset Enumeration and Related Algorithms
Given an fp-group G,G = CtI,...rcr| R[,...,R) (where Ri,...,Rs 
are words in the generators Xi ,...rcr), and given a subgroup H 
of G, H = (h\,...,ht> (where hu...,htare also words in the 
generators), classical coset enumeration procedures 
attempt to construct a permutation representation for G, 
corresponding to the action of Gby (right) multiplication 
on the (right) cosets of H, by means of a trial-and-error 
process. The cosets are traditionally identified with the 
integers 1where coset 1 always corresponds to the 
given subgroup H. A new coset k is defined as the image of 
some existing coset i under (right) multiplication by some 
generator xj of G or by an inverse xy\ The cosets must 
satisfy the following conditions:
(a) coset 1 must be mapped to itself by each of
(b) each coset j must be mapped to itself by each of the 

defining relators /?i,...,Rs and by each product xyxi'-
The action of the G-generators on the cosets is stored in 

a two-dimensional array known as a coset table. Enforce­
ment of rules (a) and (b) yields values for some hitherto 
unknown coset table entries (deductions) and, also, the 
identification of cosets which have been multiply defined 
(coincidences). The procedure terminates when
(i) for each coset i, the action of each generator xj and 

inverse xy' on i is known; and
(ii) rules (a) and (b) are satisfied.

This procedure was used extensively in hand computa­
tion prior to the development of computers. Beginning in 
1952, different versions of the procedure have been 
adapted for machine computation and it is perhaps the 
most widely applied technique in computational group 
theory. However, despite its antiquity, our understanding 
of the relationship between a given presentation for G and 
the performance of a particular version of coset enumera­
tion when applied to that presen tationis poor. Introductory 
descriptions of the procedure are giveh by Cannon, Dim- 
ino, Havas and Watson (1973), Johnson (1980), Leech 
(1970b, 1984) and Neubiiser (1982). Sims (to appear) 
gives a formal account pf coset enumeration in terms of 
automata and rational languages.

Performance of the procedure is very sensitive to 
changes in the'rules used to introduce new cosets. Because 
of the many possible variations in the manner in which 
new cosets are introduced, coset enumeration must be 
regarded as a family of procedures rather than as a single 
procedure. For a given coset enumeration procedure, there 
is no computable bound, in terms of length of input and a 
hypothetical index, to the number of cosets \yhich need to 
be defined in the coset enumeration process to complete 
the enumeration. (The existence of such a bound would 
violate the unsolvability of the word problem for finitely 
presented groups.) Further, Sims (to appear) has proved 
that there does not exist a polynomial bound, in terms of 
the maximum number of cosets defined, for the number of 
coset tables which may be constructed using simple coset
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table operations similar to those employed in a coset enu­
meration procedure. This result indicates that the running 
time of a coset enumeration procedure, as a function of 
available space, may be unpleasant.

Cannon et al (1973) identify a number of factors that 
affect the efficiency of an enumeration. The next signifi­
cant study of coset enumeration procedures was carried 
out by Sims (to appear). Recently, after extensive experi­
mentation, Havas introduced new coset enumeration 
strategies, which exhibit dramatically better performance 
than previous versions when applied to many “difficult” 
enumerations. The performance of a coset enumeration 
program, in doing a particular enumeration, is measured in 
large part by the maximum number of cosets that are 
simultaneously defined and by the total number of cosets 
defined during the course of the enumeration. The maxi­
mum gives a direct measure of the storage requirements. 
For example, consider the presentation <x,y,z \ xyx~\ yzy~2, 
zxz~4> for a group of order 210, essentially due to Mennicke 
(1959). The subgroup <x) has index 105. Methods des­
cribed in Cannon et al (1973) define as many as a maxi­
mum of 1230970 cosets and a total of 1250191 to com­
plete this enumeration, and the most space-economical of 
those methods requires a maximum of 127846 cosets and 
a total of 128218. The new procedure, with its default 
strategy, requires a maximum of 2854 cosets and total 
2859, while individual tuning can lead to completion with 
a maximum of 1648 and total of 1652. A preliminary 
account of this work is given by Havas (1991) and a full 
description is in preparation.

In favourable circumstances, the current generation of 
programs may successfully complete enumerations where 
the index of H in G is up to about 107. Unfortunately, it is 
easy to construct presentations for the trivial group which 
will easily defeat these programs. Coset enumeration is the 
basis of the standard computational technique employed 
when attempting to prove that an fp-group G is finite. If the 
procedure terminates, given a subgroup Hof G known to 
be finite, we immediately deduce that G is finite and, 
moreover, we obtain a bound on the order of G. If G is not 
only finite but also sufficiently small so that the cosets of 
the trivial subgroup may be enumerated, the resulting 
coset table provides us with a solution to the word problem 
for G.

The range of applicability of current coset enumeration 
programs is limited mainly by the memory required to 
store the coset table. Since, in the case of non-pathological 
enumerations, the space required is roughly proportional 
to the index of H in G, workers in the field have long 
dreamt of generalizing coset enumeration to a procedure 
capable of enumerating the double cosets HxL of sub­
groups H and L of G. A significant step towards this goal 
was taken recently by Linton (1991a) who successfully 
implemented a double coset enumeration procedure, first 
suggested by Conway (1984), for the case where H is a

“large” subgroup of G and L is a small subgroup in which 
detailed structural computation is possible. Since the 
number of double cosets HxL is often a small fraction of 
the number of single cosets Hx, this techinque, when appli­
cable, offers potentially great space savings.

As noted at the outset, the classical coset enumeration 
procedure constructs a permutation representation for G 
on the cosets of H. Linton (1991b) describes a version of 
coset enumeration which constructs a matrix representa­
tion for G over a designated field k (usually a finite field). 
In the simplest interpretation, Linton’s algorithm con­
structs the permutation module corresponding to the 
action of G on the cosets of a subgroup H. However, since 
the algorithm works by constructing representations of the 
group algebra kG, given a suitable choice of ideal genera­
tors in kG, it is possible, for example, to directly construct 
constituents of a permutation module for G.

Our discussion so far assumes that we are given some 
subgroup Hof G. How do we proceed when we are unable 
to identify useful subgroups by direct inspection of the 
presentation: If G is an fp-group then, for each positive 
integer n, there exist only finitely many subgroups Hof G of 
index n. More precisely, given a homomorphism <(>: G — 
Sym(ri), of G into the symmetric group of degree n, such 
that 4>(G) is transitive, then H<t>= {g e G | = 1} is a
subgroup of index n in G. Such homomoiphisms may be 
constructed by enumerating coset tables. Given a generat­
ing set for G and a positive integer n, there is a one-to-one 
correspondence between the subgroups having index n in 
G and the set of standard coset tables having n rows (where 
the entries in standard tables satisfy certain ordering con­
ditions). The low index subgroup algorithm, discovered 
independently in the sixties by Sims and Schaps, enumer­
ates all n-row standard coset tables using a combination of 
coset enumeration and backtrack search methods (see 
Dietze and Schaps, 1974; Neubiiser, 1982; Sims, to 
appear). The low index subgroup algorithm outputs either 
a generating set for each subgroup of index n, or a list of all 
transitive permutation representations of G having degree 
n.

Versions of the low index subgroup algorithm (differing 
in the relative emphasis on coset enumeration or back­
track search) have been designed and implemented by 
Sims, Lepique (1972), Dietze and Schaps, Cannon and 
Gallagher (1976, unpublished), and Cannon (see Cannon 
and Bosma, 1991). In favourable circumstances, the low 
index algorithm may be used to find all subgroups having 
index up to 100 or even more. For example, the Cannon- 
Sims implementation is able to compute all conjugacy 
classes of subgroups in the Coxeter group (a,b,c,d | 
a\b2,c2,d?-, (ab)5, (be)3, (cd)3, [a,c),[b,d],[a,dp with index 
not exceeding 240 in less than two hours CPU time! Since 
this technique is applicable to infinite groups, it provides us 
with a tool for proving that an fp-group is infinite. The 
structure of each quotient H/H', where H is a subgroup
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produced by the low index algorithm, is examined for the 
presence of infinite factors.

Having the coset table for a subgroup Hof the fp-group 
G enables us to construct a presentation for H. A lemma of 
Schreier describes a generating set for H in terms of the 
generators of G and a system of coset representatives for H 
in G. (Such coset representatives may be read off the coset 
table for H in G.) The Reidemeister rewriting process 
permits us to rewrite the relators of G and their conjugates 
as words in these Schreier generators. The ensuing relators 
constitute a presentation for H. Again, the coset table 
contains all the information needed to perform Reidemeis­
ter rewriting. Details are given by Johnson (1980) and 
Neiibuser (1982). A variation of the Reidemeister rewrit­
ing process, which rewrites //-elements given as words in 
the generators of G as words in an arbitrary generating set 
for H, was described by Benson and Mendelson (1966) 
(see also Neubiiser, 1982). Using this theoretical basis, 
programs for constructing presentations of subgroups of 
finite index in fp-groups have been implemented by a 
number of workers, including Havas (1974) and Arrell and 
Robertson (1984).

Subgroup presentations produced by a Reidemeister- 
Schreier process generally involve large numbers of 
generators and relators and are poorly suited for human or 
computer use. A theorem of Teitze asserts that, given 
presentations for two isomorphic groups, repeated appli­
cation of three simple rules (Tietze transformations) will 
suffice to transform one presentation into the other. How­
ever, there is no general algorithm for identifying the order 
in which the Tietze transformation rules should be applied. 
Presentation simplification programs which take “bad” 
presentations and produce “good” presentations for 
groups have been developed by Havas, Kenne, Richardson 
and Robertson (1984) and Robertson (1988).

As noted at the outset, coset enumeration over a sub­
group H constructs a permutation representation for G. 
We can no w study the quotient of G defined by this repres­
entation using permutation group methods. Conversely, 
given a finite group G in some concrete repfesentation, we 
may use the group multiplication to construct cosci tables. 
For such a group G with moderate order, Cannon (1973) 
shows how to construct a compact presentation for G from 
a coset table so that we can then apply fp-group methods to 
G.

2.3 Term-rewriting Methods
A specialization of the Knuth-Bendix term-rewriting 
procedure (Knuth and Bendix, 1970) has been applied to 
fp-groupsfStarting with a finite presentation for a monoid 
M, the Knuth-Bendix procedure for strings (KB-procedure) 
attempts to construct a confluent presentation for M A 
confluentpresentation for M consists of a system of rewrit­
ing rules which convert any element of M into a unique 
normal form. The KB-procedure has been studied exten­
sively. Some applications to groups are given by Gilman

(1979) and Le Chenadec (1986), while Sims (to appear) 
investigates the procedure in detail.

A major success of the KB-procedure in group theory 
was its application by Sims (1987) to verify nilpotency of 
an fp-group. The nilpotent quotient algorithm (see below) 
is used initially to construct a polycyclic presentation for 
the nilpotent quotient Q of G. Using the relations of this 
presentation as an initial set of rewrite rules, and a special 
term-ordering, Sims was able to develop an effective algo­
rithm for verifying the triviality of the kernel of the quo­
tient Q. (If the kernel is nontrivial, the algorithm fails to 
terminate.)

A major advantage of the KB-procedure over coset 
enumeration is that it may sometimes be used to construct 
a confluent presentation for an infinite group. In the case of 
a finite fp-group, coset enumeration is usually the most 
efficient method for constructing a confluent presentation. 
Epstein, Holt and Rees (1991) describe a practical algo­
rithm based on the KB-procedure for constructing a solu­
tion to the word problem for groups known as automatic 
groups. This class of groups has solvable word problem 
and includes many important families of groups which 
arise naturally in geometry and topology (e.g. hyperbolic 
and Euclidean groups).

Recently, Holt and Rees (to appear a) developed a 
program which endeavours to determine whether or not 
two fp-groups G and K are isomorphic. The program 
alternates between attempting to construct an isomor­
phism between G and K, and attempting to prove non­
isomorphism by discovering a structural difference. The 
Knuth-Bendix procedure is used to construct a reduction 
machine for each of G and K These two reduction 
machines are used to systematically construct homomor- 
phisms 6: G—ATand then to test each such homomorphism 
6 for the properties of being surjective and injective. The 
nonisomorphism testing relies on findipg some structural 
difference by comparing various kinds of quotients of G 
and K When applied to special classes of groups, such as 
automatic groups, it can be quite successful. For example, 
Holt and Rees report thaf it was able to quickly settle the 
isomorphism question for all but two pairs in a collection 
of about 30 pairs of link groups. It resolved the question for 
the last two pairs with more difficulty, taking some hours 
oh a Sun 3/60.

Sims (1991) employed the KB-procedure to deduce 
non-obvious relations in two groups. In each case, the 
relations could not have been discovered using the current 
generation of coset enumeration procedures. This is one of 
the first reported instances where the KB-procedure out­
performs coset enumeration when both are potentially 
applicable.

2.4 Quotient Group Methods
An important technique for studying an fp-group G 
involves constructing homomorphic images of G, which 
may be either members of some class of fp-groups having
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solvable word problem, permutation groups or matrix 
groups. As noted above, a successful coset enumeration 
of the cosets of some subgroup yields a homomorphism 
onto a permutation group, while the low index algorithm 
systematically searches for homomorphisms into the 
symmetric group Sym(ri), for small n. In this section we 
examine techniques for directly constructing abelian, nil- 
potent and soluble quotients of an fp-group. In each case, a 
confluent presentation for the quotient group is con­
structed. Note that, if the particular quotient is equal to G, 
this effectively solves the word problem for G.

The structure of a finitely generated abelian group A 
may be obtained by computing the Smith normal form of 
its relation matrix (an integer matrix). Efficient algorithms 
for computing this form for large matrices have been 
described by Havas and Sterling (1979). If the isomor­
phism between A and its canonical form is required, the 
reduced basis algorithm of Lenstra, Lenstra and Lovasz 
(1982) may be utilized, as described by Sims (to appear, 
Chapter 8). Thus, given an arbitrary fp-group G, the struc­
ture of its maximal abelian quotient, GIG', is readily 
obtained.

Hand computations in the sixties led to the develop­
ment by Macdonald (1974) and Wamsley (1974) of algo­
rithms for computing finite nilpotent p-quotients of G, 
wherep is a prime dividing the order of GIG'. Starting with 
an exponent-p-quotient of GIG', the algorithms succes­
sively extend a current p-quotient H by an elementary 
abelian group that is centralized by H. Since the extension 
theory is particularly simple in this situation, it is possible 
to design extremely effective algorithms. Nice descriptions 
of a basic algorithm are given by Newman (1976) and 
Havas and Newman (1980). The algorithm outputs the 
p-quotient in terms of a power-commutator presentation, a 
special confluent presentation. The p-quotient algorithm 
relies critically on a particular string rewriting procedure 
known as commutator collection, where the rewrite rules 
are the relations of a power-commutator presentation (see 
Felsch, 1976; Havas and Nicholson, 1976; Leedham- 
Green and Soicher, 1990; and Vaughan-Lee, 1990b). 
Since the development of the original p-quotient algo­
rithms, Havas and Newman (1980) and Vaughan-Lee 
(1984) have introduced many improvements. A new 
implementation has been recently developed in Canberra 
by Newman and O’Brien with additional enhancements.

The algorithm has been extensively applied to the 
investigation of Burnside groups (see Vaughan-Lee, 
1990a). As an illustration of the power of current imple­
mentations, the p-quotient algorithm has computed a 
power-commuter presentation for the three-generator res­
tricted Burnside group of exponent 5, a group with class 17 
and order 52282. Building on the p-quotient algorithm, 
Leedham-Green and Newman designed and implemented 
an algorithm for generating descriptions of p-groups. In 
his PhD thesis at the Australian National University, 
O’Brien significantly refined these methods and success­

fully applied them to determine all groups with order 
dividing 256: there are 56092 groups of order 256 
(O’Brien, 1990,1991).

A number of variations on the original p-quotient algo­
rithm have been made. Thus, a general nilpotent quotient 
program (with no dependency on a prime p and allowing 
infinite quotients) was prototyped by Sims in Mathematica 
and a new implementation has just been developed by 
Nickel at ANU. Havas, Newman and Vaughan-Lee 
(1990) have produced an analogue of the group nilpotent 
quotient algorithm for graded Lie algebras. This has appli­
cations to p-groups where the quotients are too large to be 
handled by the group program and has been used to inves­
tigate questions related to the Burnside problem. Finally, 
during a recent visit to Australia, Vaughan-Lee developed 
a variation for finitely presented associative algebras.

A more difficult area is the computation of soluble 
quotients. Wamsley (1977), Leedham-Green (1984) and 
Plesken (1987) have proposed generalizations of the nil- 
potent quotient algorithm to a soluble quotient algorithm. 
The Plesken algorithm has been implemented by Wegner 
at St Andrews as part of his PhD thesis, and has had some 
success. Baumslag, Cannonito and Miller (1981) outlined 
a method for constructing polycyclic quotients. While 
their interest was purely theoretical, Sims (1990b) has 
further developed their ideas and implemented them in the 
special case of metabelian quotients. An implementation 
of the general algorithm (see Sims, to appear, chapters 9 
and 10) involves a sophisticated combination of many 
algorithms, including Grobner basis techniques (Buch- 
berger, 1985). Success has been reported in specific cases 
by Neubiiser and Sidki (1988), Newman and O’Brien (to 
appear) and Havas and Robertson (to appear), all using 
combinations of previously described programs.

At the DIMACS Workshop on Groups and Computa­
tion in 1991, Holt and Rees (to appear b) demonstrated a 
program for finding certain quotients of finitely presented 
groups. A backtrack search attempts to construct a 
homomorphism between the given fp-group G and nomi­
nated permutation representations of selected finite 
groups. In particular, this program may be used to identify 
small perfect groups that occur as quotients of G. This 
work builds on the classification by Holt and Plesken 
(1989) of all perfect groups of order up to a million. 
Having found a representation of G, the program converts 
it to a regular representation, and then attempts to con­
struct larger quotients of G by performing elementary 
abelian extensions using either a Reidemeister-Schreier or 
p-quotient algorithm. The portion of the subgroup lattice 
obtained is represented graphically and may be manipu­
lated interactively.

3 PERMUTATION GROUPS '
3.1 Introduction
Computational methods for permutation groups differ 
fundamentally from those designed for fp-groups since the
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undecidability of the word problem means that many fp- 
group procedures cannot be guaranteed even to terminate. 
Thus, if we are lucky, the fp-procedures may provide us 
with some information about the overall properties of the 
group under consideration. However, in the case of a per­
mutation group, it is possible to design fast algorithms 
which can provide us with highly detailed information 
about the structure of the group.

Over the past two decades, a large number of useful 
permutation group algorithms have been discovered. 
Because the field is so extensive, this survey is restricted to 
a few fundamental classes of algorithms and no attempt is 
made at completeness, even in the case of the areas we do 
consider. A more complete account of basic permutation 
group algorithms is given by Cannon (1984) and Bosma 
and Cannon (to appear). Butler (1991) provides an intro­
ductory account of many basic algorithms. We do not 
attempt to survey the extensive literature on the complex­
ity of permutation group algorithms but rather refer the 
reader to Babai (1991).

Let G be a permutation group acting on the finite set Cl 
and suppose G is given in terms of a small set X of generat­
ing permutations. The following are representative of the 
type of information sought by permutation group theorists:
— What are the G-invariant subsets (partitions) of the set

n?
— What is the order of the group G?
— Is a given element of Sym(Cl) a member of the group G?
— Find generators for the stabilizer of a sequence (set) of 

elements of Cl.
— Determine the various series of characteristic sub­

groups of G: derived series; lower central series; upper 
central series.

— Find generators for the Sylowp-subgroup of G, where p 
is a prime dividing the order of G.

— Compute the centralizer (normalizer, normal closure) 
of a subgroup H of G.

— Determine representatives for the conjugacy classes of 
elements of G.

— Compute a composition series for G and determine the 
isomorphism type of each composition factor.
The construction df a G-invariant partition of Cl pro­

ceeds by computing the finest G-invariant partition that 
contains a given pair of points a and fi. Consideration of all 
such pairs of points in turn will yield the complete list of 
minimal G-invariant partitions of Cl. Various reductions 
which greatly improve efficiency are possible. Thus, if Gis 
transitive, it suffices to consider the pairs a, (3, where a is 
fixed andjs runs through the elements of the set fl — {a}. A 
particularly efficient version of such an algorithm is des­
cribed by Atkinson (1975). Used to .test primitivity of G, 
the algorithm has running time 0(mn2), where m = \X\ and 
n = | n|.

3.2 Base and Strong Generating Sets
All but the first of the above questions involve quantifying

over the set of elements of G. The design of effective 
algorithms depends critically on the method chosen to 
represent this set. The representation should have the fol­
lowing features:
(a) it should display key aspects of the group structure;
(b) it should have the property of inheritance, thus a sub­

group of G should directly inherit its representation 
from that of G;

(c) it should be effectively computable.
Sims (1970,1971a, 1971b) introduced the notion of a 

base and strong generating set (BSGS) as the appropriate 
set representation for a permutation group. A base for G is 
a sequence B = (pu...,/3k> of distinct elements of Cl such that 
the identity is the only element of G that fixes B pointwise. 
Let G« .„>at denote the pointwise stabilizer of {au...,ak}c Cl. 
Then B defines a sequence of subgroups, G = G° > G2) >
... > Gk*l) = <1>, where G® = Gpt..p._r A strong generating set
S for G, relative to the base B, is a generating set for G 
which contains generators for each subgroup in the chain. 
Given B and S, it is a straightforward matter to compute 
the orbit A, =ft0® anda transversal (A0for G'+1) in G®, for 
i = 1 ,...,k

Knowledge of A; and G® for i = 1 ,...,k immediately gives 
us the order of G, a membership test for G, and the possibil­
ity of listing the elements of G without repetition. The 
central philosophy in permutation group computation is to 
assume that the group Gis represented in terms of a BSGS 
(whose construction is discussed below). Sims showed that 
the availability of a BSGS enables us to design effective 
algorithms for constructing important classes of sub­
groups and quotient groups of G. Wherever possible, algo­
rithms for constructing such subgroups and quotient 
groups of G are organized in such a way that the new group 
inherits a BSGS from the known BSGS for G. For example, 
the backtrack algorithms for constructing subgroups, des­
cribed below, automatically produce a BSGS for the 
subgroup. *

The design of fast methods for constructing a BSGS for 
G is one of the first problems which must be solved. In 
1967, Sims developed a BSGS algorithm based on the 
following lemma of Schreier: Let G be a group with gener­
ating set X, arid let H be a subgroup of G. If U is a right 
transversal for H in G such that U contains the identity 
element then H is generated by the set {ux<p(ux)—1 \ ue U, 
x e X}, where 4>(ux) is the unique element of U such that 
Hux = H4>(ux).

In theoretical terms, the algorithm proceeds as follows: 
For B\ choose any point not fixed by every element of X. 
Compute the orbit of B\ together with the corresponding 
transversal Now apply Schreier’s lemma to construct 
a set of generators for Gp = G®. Iterating this process, we 
successively construct base points {S2,-,Pb and generating 
sets for the stabilizers G(3),...,G®+ ri The process terminates 
when we reach the trivial subgroup. This algorithm is 
impractical as it stands because of the large number of
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generators produced by the lemma. In fact, the number of 
elements needed to generate the stabilizer is usually a tiny 
fraction of the number produced by the lemma. (It is easy 
to see that at most n elements are needed to generate the 
stabilizer of a point in G.) With careful organization, the 
above idea yields a BSGS algorithm that produces small 
generating sets for the terms of the stabilizer chain. In 
practice, the algorithm works well for degrees less than 
100 but becomes impractical as the degree increases 
beyond a few hundred. For the case of a soluble permuta­
tion group, Sims (1990a) describes a BSGS algorithm 
which takes account of the particular structure of these 
groups.

For larger degrees a different approach is adopted. First 
a “probable” BSGS for G is constructed, and then an 
algorithm is applied which either verifies that the BSGS is 
correct, or establishes that it is incomplete. A “probable” 
BSGS may be constructed very quickly by using a fixed 
number of randomly chosen elements of G in place of the 
products ux in Schreier’s lemma (probabilistic Schreier 
algorithm). The main inductive step in BSGS verification is 
the following: Suppose H is a subgroup of G-2) with a 
certified BSGS. If we can show that H = G®, then we will 
have verified the correctness of the BSGS for G. In prac­
tice, //will be the approximation to G® constructed by the 
probabilistic Schreier algorithm. The first verification 
algorithm was developed by Sims and published by Leon 
(1980) and involves using the Todd-Coxeter algorithm to 
construct a presentation for G in terms of strong genera­
tors. A presentation is assumed to be known for H on its 
strong generating set by induction. The verification 
involves comparing the index of //in G with the length of 
the orbit fif. This method made it practical to construct 
BSGSs for groups having degree in the low thousands. In 
1986, Brownie and Cannon implemented a new verifica­
tion algorithm suggested by Sims. Instead of testing each 
of the Schreier generators given in the above lemma for 
membership of H, we test a much smaller subset defined in 
terms of representatives for the orbits of certain one-point 
and two-point stabilizers. This algorithm, as implemented 
in Cayley, has constructed BSGSs for groups of degree up 
to 500000 and, given sufficient memory, is capable of 
computing BSGSs for groups having degrees up to a 
million.

, The theoretical complexity of BSGS algorithms 
depends heavily upon the choice of data structures, partic­
ularly on the data structure used to store the transversals 
U©. Sims stored each transversal G® in the form of a 
linearized tree structure known as a Schreier vector and the 
running time of his original algorithm was bounded by 
0(n6), where n is the degree of G. Using the so-called 
labelled branching data structure for the G®, Jerrum 
(1986) described a variant of the original Sims algorithm 
with running time 0(n5). Cooperman and Finkelstein 
(1991) describe an algorithm which verifies strong genera­
tion in 0(n4) time. More experimental work needs to be

done in order to establish whether or not the Cooperman- 
Finkelstein algorithm is a practical competitor to the 
Brownie-Cannon-Sims algorithm.

Given a particular base B for G and strong generators 
relative to B, there exist fast algorithms for computing 
strong generators for G relative to a different base B' for G. 
Sims (1971a, 1971b) shows how to modify the strong 
generators when two adjacent base points are inter­
changed. By concatenating the new base B'onto the end of 
B, the desired base change may be achieved by performing 
a succession of adjacent interchanges. Some modifications 
to speed up this procedure are described in Butler (1991). 
Cooperman, Finkelstein and Luks (1989) describe a base 
change algorithm with running time 0(kn2). A different 
approach to changing base is to use a probabilistic proce­
dure similar to the random Schreier algorithm mentioned 
above (see Leon, 1980). Such a procedure is employed in 
the Brownie-Cannon-Sims verification algorithm. The 
complexity of such algorithms has been analyzed by 
Cooperman, Finkelstein and Sarawagi (1990).

3.3 Subgroup Constructions
The base change algorithm enables us to rapidly construct 
a BSGS for the pointwise stabilizer of a sequence of points 
from Cl. The availability of a BSGS for G enables us to test 
membership of G in polynomial time, where the degree of 
the polynomial (dependent on the data structure and space 
used) may be as low as 2. The combination of a BSGS 
algorithm and membership testing immediately allows us 
to construct the normal closure of a subgroup of G. The 
availability of a normal closure algorithm in turn enables 
us to construct the derived series and lower central series 
for G, and also allows us to test subgroups for the proper­
ties of being perfect, soluble, nilpotent, subnormal, etc. (see 
Butler and Cannon, 1982).

The availability of the BSGS representation of a permu­
tation group provides the appropriate foundation for the 
design of efficient backtrack searches for subgroups of G 
whose elements satisfy some elementary property. By 
carefully choosing a base adapted to a particular back­
track search, we can often greatly reduce the size of the 
search tree. The BSGS backtrack search of a permutation 
group was introduced by Sims in 1970, when he described 
backtrack algorithms for computing centralizers and 
intersections of subgroups. Over the next decade, Butler, 
Cannon and Sims developed backtrack searches for con­
structing set stabilizers, normalizers, Sylow p-subgroups 
and for testing conjugacy of elements and subgroups (see 
Sims, 1971a, 1971b; Butler, 1982, 1983, 1991). Holt 
(1991) presents a backtrack algorithm for computing sub­
group normalizers which employs many additional tests to 
prune the backtrack search tree. The performance of his 
algorithm is superior in many cases to the Butler algorithm 
as implemented in the Cayley library of intrinsic functions.

Very recent work of Leon (1991) represents a major 
step in the evolution of backtrack algorithms for permuta­
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tion groups. The efficiency of a backtrack search is heavily 
dependent upon the information available to prune the 
search tree. Using the idea of successive refinement of 
ordered partitions, first introduced by McKay (1978, 
1981) as part of his highly successful graph isomorphism 
algorithm, Leon is able to devise new and powerful tests. 
An early implementation of a set stabilizer algorithm 
based on these ideas demonstrates performance that is 
dramatically superior to the “first generation” set stabil­
izer algorithm. As a result of this work we can expect a 
new generation of backtrack algorithms, exhibiting super­
ior performance, to emerge in the near future.

Let p be a prime dividing | G|, and let P denote the Sylow 
p-subgroup of G. Traditional approaches to computing P 
have involved performing a series of cyclic extensions 
commencing with the subgroup generated by an element 
of p-power order. Butler and Cannon (1989) describe an 
algorithm which employs a backtrack search for possible 
extending elements. This algorithm is restricted to groups 
having degrees in the low hundreds and primes whose 
exponent in | G| does not exceed 16. Holt (1991) suggests 
using his fast normalizer algorithm to locate possible 
extending elements. Butler and Cannon (1991) present a 
recursive method based on reduction of the degree. The 
reduction is based on the observation that if zis ap-central 
element having order p, then the kernel of the action of the 
centralizer of z on the cycles of z is a p-group. This algo­
rithm, which may involve a probabilistic search for a 
p-central element of G, generally runs a great deal faster 
than the backtrack method. Yet another method based on 
the use of homomorphisms has been suggested by Atkin­
son and Neumann (1990). Kantor (1985) and Kantor and 
Taylor (1988) give polynomial time algorithms for com­
puting Sylow p-subgroups which appear to be of theoreti­
cal interest only.

3.4 Abstract Structure
Given the availability of constructions for centralizer, 
normal closure and Sylow subgroup, one can contemplate 
computing a description of the abstract jtructure of G. 
Such a goal became particularly attractive with|the com­
pletion of the classific|tion of the finite simple groups.

A very important requirement is to be able to determine 
quickly whether or not a permutation group G of degree n 
contains the alternating group Alt(n) in its natural repres­
entation. Indeed, it is desirable to recognize this situation 
before incurring the expense of constructing a BSGS for G. 
The starting point is a theorem of Jordan which states that 
if a primitive group contains ap-cycle, wherep < n — 3 is 
a prime, then G contains Alt(n). This theorem has been 
subsequently extended by other workers to identify many 
other permutation cycle types that are Jordan witnesses ior 
Alt(n). Cameron and Cannon, in work extending over a 
decade, have constructed a subtle probabilistic recognition 
procedure for groups containing Alt(n). The basic idea is to 
sample a very small number of elements of G and, if G does

indeed contain Alt(n), deduce from these elements the 
primitivity of G and the presence of Jordan witnesses. This 
algorithm is applicable to groups having degree up to a 
million and, if G does contain Alt(n), it usually only needs 
to sample two or three elements in order to recognize the 
fact.

As a next step, Cameron and Cannon (1991) developed 
an algorithm for identifying any doubly transitive group. 
By carefully analyzing the lengths of the orbits of a two- 
point stabilizer (three-point stabilizer in a triply transitive 
group), the algorithm avoids having to compute the 
derived subgroup of G, except in the case of some rela­
tively small groups (eg. one-dimensional affine groups).

At the 1985 Groups — St Andrews meeting, Neumann 
(1986) described a practical algorithm, based on the 
O’Nan-Scott Theorem, for determining a BSGS for each 
composition factor of a general permutation group G. The 
general strategy involves reducing to a primitive group T, 
locating the socle of T, and then splitting the socle into its 
simple direct factors. Luks (1987) published a polynomial 
time algorithm for this problem which appears to be of 
theoretical interest only. Neumann’s algorithm made some 
use of the fact that practical computation with such an 
algorithm will be restricted to groups having degree at 
most a few million. Kantor (1991) pushes this approach 
somewhat further and shows that, except in the case of a 
few small groups, it is possible to name the composition 
factors of any permutation group having degree not 
exceeding 106 at the cost of computing a BSGS for G and 
the derived subgroup of G. Thus, Kantor improves on the 
Neumann method by avoiding the step of constructing and 
splitting the socle of T. It appears that the Kantor algo­
rithm may be generalized to groups of degree up to 108 so 
that his approach covers all permutation groups that are 
presently amenable to practical computation.

Going in the other direction, Holt has developed an 
algorithm for constructing the first and second cohomol- 
ogjf groups of a permutation group. This very'complex 
aif orithm builds on several of the permutation group algo­
rithms described above^ employs the nilpotent quotient 
algorithm and involves intricate module-theoretic calcula­
tions (see Holt, 1984,1985a, 1985b).
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