On the Efficiency of Some Finite Groups

George Havasa, M. F. Newmanb, E. A. O'Brienc

aCentre for Discrete Mathematics and Computing, School of Information Technology and Electrical Engineering, The University of Queensland, Queensland, Australia

bMathematical Sciences Institute, Australian National University, Canberra, Australia

cDepartment of Mathematics, University of Auckland, Auckland, New Zealand

Online Publication Date: 31 December 2004

To cite this Article: Havas, George, M. F. Newman, and O'Brien, E. A. (2004) 'On the Efficiency of Some Finite Groups'. Communications in Algebra, 32:2, 649 - 656

To link to this article: DOI: 10.1081/AGB-120027920

URL: http://dx.doi.org/10.1081/AGB-120027920

PLEASE SCROLL DOWN FOR ARTICLE
On the Efficiency of Some Finite Groups

George Havas,1,* M. F. Newman,2 and E. A. O'Brien3

1Centre for Discrete Mathematics and Computing, School of Information Technology and Electrical Engineering, The University of Queensland, Queensland, Australia
2Mathematical Sciences Institute, Australian National University, Canberra, Australia
3Department of Mathematics, University of Auckland, Auckland, New Zealand

ABSTRACT

We describe a new technique for finding efficient presentations for finite groups. We use it to answer three previously unresolved questions about the efficiency of group and semigroup presentations.

Key Words: Efficient presentations; Finite groups; Finite semigroups.

1. INTRODUCTION

In this article we report on a new practical technique for studying finite presentations for finite groups. This technique has allowed us to answer three previously unresolved questions about the efficiency of some finite groups. The questions relate to some groups with order 3^8 (see Havas et al., 1996), the group PSU(3,3) (see Campbell et al., 2002) and some groups with order 2^{14} (see Havas and Newman, 1983).

*Communicated by D. Easdown.
*Correspondence: George Havas, Centre for Discrete Mathematics and Computing, School of Information Technology and Electrical Engineering, The University of Queensland, Queensland 4072, Australia; E-mail: havas@itee.uq.edu.au.
The new technique is based on the observation that presentations for a group built on different generating sets with the same size can have quite different properties. We expect that the most significant property in the context of the questions we have been considering is the length of the presentation; that is, the sum of the lengths of the relators or relations. The length of the shortest presentation on a generating set varies considerably over all generating sets with the same size of a fixed group. A simple example illustrates the extent of this length variation. Consider the alternating group A_5. For the generating set $\{a = (2, 5, 4), b = (1, 2, 3, 4, 5)\}$ a shortest presentation is $\{a, b \mid a^3, b^5, (ab)^2\}$ which has length 12. On the other hand for the generating set $\{a = (3, 4, 5), b = (1, 2, 3)\}$ a shortest presentation is $\{a, b \mid a^3, (aba^{-1}b)^2, abab^2abab^{-1}\}$ which has length 20. (The proof that it is shortest requires some work.) Note that the smallest number of relations relative to a generating set need not be the same for all minimal generating sets. The group of the trefoil knot is an example (Dunwoody and Pietrowski, 1973). It is not known whether this can happen for finite groups.

The successful method for finding groups with deficiency zero in Havas et al. (1996) involved looking at certain presentations with deficiency zero and observing the groups which are defined by them. This showed, for example, that 10 of the 14 groups with order 38 and trivial multiplicator have deficiency zero. We also found presentations (#11, #12, #13 and #14 in Havas et al., 1996, Sec. 3.4) with deficiency zero which were 'close' to defining the other 4 groups in that the groups defined have a largest soluble quotient which has order 38. Since then two of these presentations have been shown to define infinite groups: #14 is settled in Havas et al. (1999) and Derek Holt (private communication) has settled #13 using the same method.

The new technique involves taking many generating sets for a given group. On each generating set we build a presentation and then discard relations. Informally we regard two generating sets for a group as equivalent if the shortest presentations on them have the same length. For a generating set X of a group G, all the generating sets obtained from X by applying an automorphism of G to it are equivalent to X. So is the generating set obtained by inverting a generator. See Sec. 2 for details.

The first question we consider is whether the remaining 4 groups with order 38 and trivial multiplicator have deficiency zero. We introduce the name $38\#x$ for the group which is the largest 3-quotient of the group defined by the presentation $\#x$ in Sec. 3.4 of Havas et al. (1996). The new technique produces a number of efficient presentations for $38\#11$. These presentations are not restricted to the type guaranteed by Theorem 2 of Havas et al. (1996). This observation leads to other purely relator-based searches which found shorter presentations with deficiency zero for some of the groups settled in Havas et al. (1996). The searches did not produce an efficient presentation for any of the groups $38\#12$, $38\#13$ or $38\#14$. However, we produced more presentations which define groups whose largest soluble quotient is the group in question. Further details are in Sec. 3. We also applied a related technique to the groups with order 58 and trivial multiplicator.

Another question we consider arises from a paper of Campbell et al. (2002). They are interested in finding efficient semigroup presentations for finite groups. A finite semigroup presentation for a semigroup S is efficient if the number of relations minus the number of generators is the rank of the second homology group of S. They showed that every efficient group presentation for a finite group can be turned into an
efficient semigroup presentation by adding at most one more generator and, if so, one more relation and then suitably modifying the existing relations. Further they showed that if the group presentation has a special form then the extra generator and relation are not needed. They give, as an example where an extra generator is used, a 3-generator, 3-relation semigroup presentation for PSU(3,3). Our technique enables us to find a special group presentation for PSU(3,3), so there is an efficient semigroup presentation for PSU(3,3) with 2 generators and 2 relations. See Sec. 4 for details.

Finally, we consider a question which arises out of the paper of Havas and Newman (1983) in which it was shown that there are finite groups which cannot be generated by 3 elements and have a presentation with 4 generators and 5 relations. The method used in that paper was essentially a random search over presentations with 4 generators and 5 relations of a certain type. It produced groups of this kind with orders $2^{16}, 2^{17}, 2^{18}$ and 2^{19}. It is a well-known consequence of the Golod–Shafarevich Theorem that a finite p-group which has a minimal generating set with four elements needs at least five relations to define it. As was remarked in Havas and Newman (1983) the smallest order for a group of this kind is at least 2^{14}. Here we exhibit a 4-generator, 5-relator group with order 2^{14}. See Sec. 5 for details.

All computations reported in this paper were carried out using Magma (Bosma et al., 1997) on a variety of platforms.

2. PRESENTING A GROUP ON DIFFERENT GENERATING SETS

Recall that in our study of groups with deficiency zero in Havas et al. (1996) we constructed candidate groups. However, we made little use of the groups, instead concentrating on all short presentations of a certain kind. Here we focus on the groups.

We use the following technique to investigate whether a given group G has a presentation on k generators and r relators.

1. We determine a set of k-element subsets of G which generate G; the set is representative in the sense that every k-element generating set is equivalent to at least one member of it.
2. For each such generating set X of G, we obtain a finite presentation $\{X \mid R\}$ for G on X.
3. Finally, we consider all r-element subsets \mathcal{R} of R and investigate whether $\{X \mid \mathcal{R}\}$ presents G.

We now describe how to construct the representative k-element generating sets for G in more detail. The initial stage of the procedure is as follows.

(a) Construct $\text{Aut}(G)$, the automorphism group of G.
(b) Construct a list \mathcal{L}_1 of representatives of orbits under $\text{Aut}(G)$ of those elements of G not in the Frattini subgroup $\Phi(G)$.
(c) Let x_1, the first element of a putative generating set, range over the elements of \mathcal{L}_1.

Assume \([x_1, x_2, \ldots, x_i]/C_{138}\) has been constructed. The inductive stage is as follows.

(a) Let \(S_{x_1, \ldots, x_i}\) be the stabiliser of \([x_1, \ldots, x_i]\) in \(\text{Aut}(G)\).
(b) Construct a list \(\mathcal{L}_{i+1}\) of representatives of orbits under \(S_{x_1, \ldots, x_i}\) of those elements of \(G\) not in the subgroup \(\langle \Phi(G), x_1, \ldots, x_i \rangle\).
(c) Let \(x_{i+1}\) range over the elements of \(\mathcal{L}_{i+1}\).

As described, the procedure chooses representatives of orbits under \(\text{Aut}(G)\) of elements of \(G\). We can reduce the number of representatives by using length-preserving automorphisms of the corresponding free group. In practice, we merge the existing orbits under the mapping \(g \mapsto g^{-1}\). This usually gives a substantial reduction.

The procedure produces a representative list of generating sets for \(G\). Then, given as input \(G = \langle X \rangle\), the relation-finding command \text{FPGroup} of \text{Magma} is used to construct a finite presentation \(\langle X | \mathcal{R} \rangle\) for \(G\).

The final stage of our technique is to attempt to find an \(r\)-element subset \(\mathcal{S}\) of \(\mathcal{R}\) which defines \(G\). We do this by running through all \(r\)-element subsets of \(\mathcal{R}\).

A verification that \(\langle X | \mathcal{S} \rangle\) presents \(G\) relies on a successful coset enumeration (Havas and Ramsay, 2001). A successful enumeration over the trivial subgroup gives a direct proof. In more difficult cases, we enumerate cosets over a cyclic subgroup. If a cyclic subgroup is shown to have finite index, then the Reidemeister–Schreier algorithm can be used to find a presentation for it, and its order can be calculated by computing abelian quotient invariants.

It is possible to enumerate billions of cosets (Havas and Ramsay, 2000), but such enumerations are computationally expensive. Hence, we use cheap filters to remove presentations which cannot define the desired group. In particular, if \(G\) is a \(p\)-group, we check whether the group \(\langle X | \mathcal{S} \rangle\) has a larger \(p\)- or metabelian quotient than \(G\) and, if so, discard the presentation. Such filters are discussed in Sec. 3.3 of Havas et al. (1996). If \(G\) is perfect we check that the group defined by a presentation has trivial abelian quotient invariants.

As a further heuristic filter for hard cases, we first carry out restricted coset enumerations over some larger subgroups. If these succeed we attempt enumerations over cyclic subgroups, now allowing many more cosets to be defined.

Our technique has random components: the orbit representatives are selected randomly and the implementation of the relation-finding algorithm has some random aspects. Therefore different runs may produce different output presentations.

3. GROUPS WITH ORDER \(p^8\)

For brevity in the following sections we use the case inverse convention in which \(A\) and \(B\) denote \(a^{-1}\) and \(b^{-1}\), etc.

Theorem 3.1. The group defined by the presentation
\[
\{a, b, c | BcABACAB, acBABBBC, CCBBACBa\}
\]

is \(3^8 \# 11\).
Efficiency of Some Finite Groups

Its order can be verified by coset enumeration. That it is $3^8 \# 11$ can be proved by the standard presentation algorithm (O’Brien, 1994).

We obtained presentations for $3^8 \# 11$ by using the procedure described in Sec. 2 to produce about 75000 different generating sets. Among the subsets of relators for one of these generating sets we found the presentation of the theorem. This presentation does not conform to Theorem 2 of Havas et al. (1996):

Proposition 3.2. If a group of order p^8 has a 3-generator 3-relator presentation, then it has a presentation \{a, b, c \, | \, u, v, w\} where the length of each relator is at least $p + 2$ and the exponent sum matrix is diagonal with entries p, p, p.

It is easy to convert our presentation to a conforming presentation with length 27: multiply a cyclic permutation of the first relator by a cyclic permutation of the inverse of the second relator, and do the same with the third relator.

In Havas et al. (1996) we investigated conforming presentations with total relator length up to 21. The discovery of the presentation in Theorem 3.1 led us to investigate longer and nonconforming presentations involving relators with lengths up to 9. In a search through about 8 million presentations we found 30 nonconforming presentations with various lengths, none shorter than 23, for $3^8 \# 11$. Even though we applied both the new technique and these extra relator based searches, we did not find a 3-relator presentation for $3^8 \# 12$, $3^8 \# 13$ or $3^8 \# 14$.

We discovered nonconforming presentations shorter than our published presentations for other groups with order 3^8. Thus:

\[
\begin{align*}
\{a, b, c \, | \, bbcbC, ccAcA, abaabb\} & \quad \text{presents} \quad 3^8 \# 2; \\
\{a, b, c \, | \, bbcbC, ccAcA, abaabb\} & \quad \text{presents} \quad 3^8 \# 3; \\
\{a, b, c \, | \, abaabb, bbCbCC, cacBcA\} & \quad \text{presents} \quad 3^8 \# 6; \\
\{a, b, c \, | \, abaabb, bcbbCc, accbAcB\} & \quad \text{presents} \quad 3^8 \# 7.
\end{align*}
\]

We also found a shorter conforming presentation for $3^8 \# 9$, namely

\[
\{a, b, c \, | \, aaBab, bbCacB, ccBcAba\}.
\]

This was revealed by doing more comprehensive coset enumerations than when we first considered the presentation.

In Havas et al. (1996) we proposed a candidate efficient presentation for a group with order 5^8; however it presents an infinite group (Havas et al., 1999). The approach used successfully for $3^8 \# 11$ is not readily applicable to groups with order 5^8 since each group has too many representative generating sets. Instead we investigated a random selection of generating sets for each of the 32 groups with order 5^8 and trivial multiplicator. We found presentations with deficiency one for some of these groups, but none with deficiency zero.
4. PSU(3,3) AS AN EFFICIENT SEMIGROUP

Campbell et al. (2002) ask whether, given a group presentation for \(G \), one can always find a semigroup presentation for \(G \) on the same generating set and with the same deficiency. They have the following result.

Proposition 4.1. Let \(G \) be the group defined by the finite group presentation \(\mathcal{P} = \{ A \mid R \} \) where \(|R| \geq |A| \) and let \(A \) be a semigroup generating set for \(G \). In addition, assume that \(R \) contains a relation of the form \(E = 1 \), where \(E \) is a word which contains no inverses of generators, but which contains every generator at least once, and also contains the square of at least one generator. Then \(G \) has a semigroup presentation \(\{ A \mid Q \} \) with \(|Q| = |R| \).

Using another proposition, they obtain an efficient semigroup presentation for PSU(3,3) with 3 generators and 3 relations. They start from the efficient group presentation for PSU(3,3) due to Kenne (1986), which does not contain a relation which allows application of Proposition 4.1. We show that PSU(3,3) has a 2-generator, 2-relation semigroup presentation by producing a suitable group presentation for PSU(3,3).

An application of our technique produces efficient presentations for PSU(3,3). Some are shorter than that of Kenne, for example:

\[\{ a, b \mid B^2 A B a^3 B A, b^2 A B^2 A b^2 A B a \} . \]

However none of these are suitable for applying Proposition 4.1.

Instead, we obtained the following result by a variation of our methods.

Theorem 4.2. The group PSU(3,3) has the efficient presentation

\[\{ a, b \mid a^3 b^7, A B b a b a b b A B B \} . \]

This can be proved by coset enumeration. We constructed the presentation by using our technique to find a 3-relator presentation which satisfies the following proposition due to Campbell et al. (Submitted).

Proposition 4.3. Let \(G \) be a finite simple group. Suppose that \(G \), or some stem extension of \(G \), can be presented as

\[\{ a, b \mid a^p b^q = w(a, b) = 1 \} . \]

Then \(G \), the covering group of \(G \), and all stem extensions of \(G \), are efficient.

Since \(G \) is perfect, \(p \) and \(q \) are coprime. Campbell et al. (Submitted) show how to convert such a presentation to an efficient presentation involving two relators: \(a^p b^q \) and \(\tilde{w}(a, b) \) depending on \(w(a, b) \).

The relation-finding algorithm as implemented in MAGMA is well suited for this task, since it usually includes relators giving the order of the group generators.
Application of our procedure to PSU(3, 3) gives 1442 representative generating sets. Among the resulting 3-relator subsets we found a presentation including the relators a^3 and b^7 plus a third relator $w(a, b)$ which leads to $w(a, b) = ABAbaababbABBB$. We found several suitable group presentations on generating pairs with orders $\{3, 4\}$ and $\{3, 8\}$, as well as others with orders $\{3, 7\}$. However, we found no suitable presentation on a generating pair with orders $\{2, 7\}$. (An earlier attempt at finding one on generators with orders $\{2, 7\}$ is described in Gamble et al. (2002).)

5. AN EFFICIENT GROUP WITH ORDER 2^{14}

Recall from Havas and Newman (1983) that the smallest p-group with a 4-generator, 5-relator presentation has order at least 2^{14}. However, no 4-generator 5-relator group with order 2^{14} was known. An argument similar to that of Theorem 1 of Havas et al. (1996) shows that such a group has Frattini rank 4; its largest class 2 quotient has order 2^9 and nuclear rank 5; further its largest class 3 quotient has order precisely 2^{14} and is terminal. Such groups are candidates.

We used the p-group generation algorithm (see O’Brien, 1990) to construct a complete and irredundant list of candidates. A total of 3217 of the 6709 groups with order 2^9 and class 2 have nuclear rank equal to 5. Of these 14 have terminal immediate descendants with order 2^{14}: one has 104; each of the remaining 13 has 512. Hence there are 6760 candidates.

We constructed a presentation on a minimal generating set for each candidate. For each presentation and for each resulting 5-relator subset, we checked whether the group presented by this subset had largest 2-quotient with order 2^{14}. If so, we sought to prove finiteness by coset enumeration. This approach succeeded in exactly one instance.

Theorem 5.1. The presentation

$$\{a, b, c, d \mid cac Add, CDcaaBDB, CDcBaBDA, BCDaaBDC, cbABaBcb\}$$

defines a group with order 2^{14}.

A moderately hard coset enumeration shows that the subgroup $\langle a \rangle$ has index 2048 in the group and the order, 8, of a can be found by computing the abelian quotient invariants of $\langle a \rangle$. A difficult coset enumeration over the trivial subgroup gives the result directly.

We expect that by looking at many generating sets as described in Sec. 2 efficient presentations for other groups with order 2^{14} could be found, but we have not attempted to do so.

ACKNOWLEDGMENT

This work was supported in part by the Marsden Fund of New Zealand via grant UOA 124. The first author was partially supported by the Australian Research Council.
REFERENCES

Campbell, C. M., Havas, G., Ramsay, C., Robertson, E. F. (Submitted). Nice efficient presentations for all small simple groups and their covers.

Received September 2002
Revised November 2002
Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article’s rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Order Reprints" link below and follow the instructions. Visit the U.S. Copyright Office for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers’ (AAP) website for guidelines on Fair Use in the Classroom.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our Website User Agreement for more details.

Request Permission/Order Reprints

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081AGB120027920