
Centre for Disrete Mathematis and ComputingShool of Computer Siene & Eletrial Engineeringand Department of Mathematis,The University of Queensland, Qld 4072

Tehnial Report #25Title: ACME 1.000: an Andrews-Curtis move enumeratorAuthor: Colin RamsayDate: June 27, 2001Version: the rough guide



ii



1 Introdution / BakgroundTBA ...2 General ommandsbye / exit / q[uit℄ ;Exit ACME.h[elp℄ ;Print summary of all ommands.opt[ions℄ ;Dump date/time of ompilation, and mahine name.sys[tem℄ : <string> ;Pass the string along to a shell.text : <string> ;Dump the string { use for pretty-printing the output.# ... <newline> - a omment (ignored)As it says.3 Parameter settingsApart from the rel ommand, if a ommand whih normally takes an argument isentered without any argument, then its urrent value is printed.as[is℄ : [0/1℄ ;Before any of the ommands is run, the presentation is passed through a massagingroutine. If asis is false (ie, 0), then this will freely and ylially redue the presen-tation, and sort the relators into length plus lexiographi order. The default is forasis to be true; ie, use the presentation as given.Note that the routines whih implement AC-moves will usually (but not in all ases)perform free redutions as the relators are built up; so relators are usually freelyredued. Potential yli redutions, introdued by onjugation, are not normallydone. However, yli onjugates of relators whih have potential yli redutionshave potential free redutions, whih will usually be performed. This an sometimesause onfusion, so take are. (For example, if running plan9 with equiv:1, a proofhain may appear to start with a shorter presentation than the one indiated at thestart of the urrent iteration.)
1



ull : [0 / 1,int / 2,int / 3,int℄ ;Culling ontrols whether or not newly generated presentations are atually looked upin the tree (or whatever) and then added if they're really new; ulled presentationsare rejeted prior to the lookup stage. The �rst argument sets the ull parameterand the seond (if present) sets len. If ull is 0, there is no ulling. If ull is1, then presentations are ulled if any of the relators have length more than len,with len � 0. If ull is 2, then presentations are ulled if any of the relatorsare more than len longer than their initial lengths, with len � 0. If ull is 3,then presentations are ulled if the total presentation length is more than len, withlen � 0.Note that the default is ull:2 & len:0, and that not all ulling modes are imple-mented in all of the ommands. Seleting an unimplemented mode selets ull:0; ieno ulling.def[aults℄ ;Restores all the parameters to their defaults; this is, everything in this setion apartfrom gr & rel (whih are not altered).dump : [-1 / 0 / 1 / 2,int℄ ;Dumping ontrols whih presentations, with their proof hains, are printed; every timea new presentation is seen and added to the tree (or whatever), it may be dumpedout. The �rst argument sets the dump parameter and the seond (if present) setsdlen. If dump is -1, there is no dumping. If dump is 0, then every new presentation isdumped. If dump is 1, then solutions (ie, presentations of total length n) are dumped.If dump is 2, then solutions whih redue the presentation length by at least dlen aredumped, with dlen � 0.Note that the default is dump:1, and that not all dumping modes are implementedin all of the ommands. Seleting an unimplemented mode selets dump:-1; ie, nodumping.The dump is done by traing bakwards from the newly generated solution, so theroot node will appear at the bottom. Eah presentation is prefaed by its total length,and lengths shorter than the starting length are agged by a *. Although not visible,the printout of the relators inludes a trailing spae. Thus, eah relator has both aleading & a trailing spae, so the output an be onveniently searhed by grep orsomesuh utility without ambiguity.equiv : [0/1℄ ;Given a presentation with n generators & relators, and with the relators havinglengths li, then the presentation is one member of a lass of equivalent presentationsof size n!2nQ li, all of whih are AC-equivalent. It is often helpful, when extratingshortest proofs, to ignore initial or terminal AC-moves whih simply move betweensuh equivalent presentations; we are interested in the essential length of a proof.2



If equiv is 1, then all 2nQ li equivalent presentations due to relator ylings & inver-sions are put onto the tree as root nodes before any AC-moves are made. (Permutingthe order of the relators annot e�et the length of a shortest proof, so we don'tbother.) So any hains of AC-moves printed have had any inessential initial movesstripped o�. The default for equiv is false (ie, 0), where only the presentation asgiven is a root node.gr[oup generators℄ : [<letter list>℄ ;A list of lower-ase letters, with no repeats, perhaps separated by ommas. These arethe group's generators; numeri generators are not allowed.len[lim℄ : [0 / +int℄ ;In some ommands, a length limit parameter might be needed. If so, this is it. Thedefault of 0 means that it's inative, and a positive value is ative.lev[lim℄ : [0 / +int℄ ;In some ommands, a level limit parameter might be needed for the tree. If so, thisis it. The default of 0 means that it's inative, and a positive value is ative.mess[ages℄ / mon[itor℄ : [int℄ ;Sets the interval between progress messages. These messages are in terms of the num-ber of AC-moves made; ie, the number of (potentially) new presentations generated.A value of 0 (the default) turns this feature o�. Any positive value turns it on. Themessages are agged with AP and give ounts of ap (alls to the \add presentation"routine, whih ounts the number of newly generated presentations), nap (the numberof new presentations atually added) & nar (the number of new relators added).Note that the CPU time is aumulated during a run, and that the ounter for thisoften does strange things after 231 or 232 tiks (typially 35 min or 71 min). Toget aurate timings for long runs, make sure messaging is on, sine the CPU timeinrement is alulated at every progress printout.nap[lim℄ : [0 / +int℄ ;In some ommands, a \number of added presentations" limit parameter might beneeded for the tree (or whatever). If so, this is it. The default of 0 means that it'sinative, and a positive value is ative.param[eters℄ / sr ;Dumps the value of all parameters, inluding gr & rel.rel[ators℄ : <relation list> ;The group's relators. A variety of formats are aepted, as in ACE. Note that thevarious ommands will refuse to run if the presentation is not balaned.stat[s℄ : [0/1℄ ; 3



If ative (an argument of 1), this inludes in the printout details of the levels ofthe tree as they're proessed. After all the presentations at one level have beenproessed, details of the sizes of the parent and hild levels are dumped; the �guresare the number of new presentations and new relators at that level. The root is levelzero, so the number of moves in a hain of printed moves is the last level plus one.The feature is on by default, and an be turned o� by a 0 argument.term : [0 / 1 / 2,int℄ ;Termination ontrols under what irumstanes the searh will be halted, over andabove any termination due to the fat that the searh tree has been exhausted. The�rst argument sets the term parameter and the seond (if present) sets tlen. If termis 0, then there is no termination ondition other than the exhaustion of the BF-tree(if this ours). If term is 1, then stop as soon as a (new) presentation of length n(ie, a solution) is added to the tree. If term is 2, then stop if a presentation lengthredution of at least tlen is seen, with tlen � 0.Note that the default is term:1, and that not all termination modes are implementedin all of the ommands. Seleting an unimplemented mode selets term:0; ie, termi-nate on exhaustion.4 prog8 { breadth-�rst searh (tree)The prog8 ommand does a breadth-�rst searh through the tree of AC-moves. Theroot is the presentation as given (by default), or the 2nQ li members of its equivalenelass (if equiv:1). The unique relators and presentations seen are stored in trees, andthe presentation tree is threaded with linked lists for the BF-searh and for trainga node's anestors. These trees are still in existene when a ommand returns, andare only destroyed at entry to the next ommand (there may be a delay while thememory used is freed).The printout starts with a dump of the ative parameters and the presentation, andthen ontains any stat, mess & dump stu� as requested. Any dumped AC-move hainsare preeded by a ount, so you an work out whether or not you've seen all membersof some lass of presentations. The printout ends with a few statistis regarding thetotal number of moves made (alls to \addpres"), the number surviving ulling (allsto \fndrel"/\fndpres"), and the number of new presentations and relators seen. Notethat these ounts do not inlude the initial presentation(s). Finally, the aumulatedCPU time for the run is dumped.ulling: ull modes 0, 1, 2 & 3 are implemented.dumping: dump modes -1, 0, 1 & 2 are implemented.terminating: term modes 0, 1 & 2 are implemented. levlim & naplim are imple-mented. For levlim to work, stat must be ative. There may be a bit of slop in
4



naplim as it is only tested eah time all 3n2 moves from the urrent parent have beenmade.5 plan9 { random(ish) walk (tree)The plan9 ommand implements a (random) walk in the searh spae, attemptingto �nd an AC-move hain whih redues the presentation length as requested. It'sonly atually random in the sense that varying the naplim parameter varies whihpresentation is used to start the next iteration; there is not (as yet) any indeterminism.None of the dump or term modes should be used; instead, set lenlim to the totalpresentation length at whih (or below) you wish to stop. Although the normal ullmodes are present, they are w.r.t. the presentation at the start of the urrent iteration;so you should use the absolute length limit given by ull:3 (or, perhaps, ull:1).The printouts for iterations are separated by #-- lines, and eah iteration starts withthe AC-move hain from the previous starting presentation to the urrent startingone. A new iteration is started when naplim new presentations have been generated;the next starting presentation is the last new presentation generated. The CPU timefor eah iteration is the total CPU time so far. Note that, when the ommand �nishes,either beause the requested length redution has been found or beause the BF-treeis exhausted, then the urrent presentation is the presentation at the start of the lastiteration.ulling: ull modes 0, 1, 2 & 3 are implemented.dumping: Only dump:-1 is implemented; use lenlim.terminating: Only term:0 is implemented; use lenlim. levlim is not imple-mented. naplim ontrols iteration size, not termination.other: The ounting of dumped AC-move hains (ie, the number of iterations) isnot implemented. If equiv:1, it is ative at the start of every iteration.6 rev10 { breadth-�rst searh (reverse)The rev10 ommand is intended to run a BF-searh in reverse, from the standardpresentation (although you an start from whatever you want). Any AC-move hainsshould be read bakwards (ie, from top to bottom), sine the starting presentationis now the end of the hain, not the beginning. Conjugation & inversion are undoneby onjugation & inversion, so these moves are unhanged. Appending one relator toanother is undone by an inversion, an append, and an inversion; so the append movehas been replaed by an \append the inverse" move.ulling: ull modes 0, 1, 2 & 3 are implemented.dumping: dump modes -1 & 0 are implemented.
5



terminating: term mode 0 is implemented. levlim & naplim are implemented(see prog8 notes).other: The ounting of dumped AC-move hains is not implemented.7 temp11 { template (proof) searhThe temp11 ommand is intended to investigate the possible proof word templateswhih an be generated by AC-moves. The template of a proof word is simply theproof word stripped of all its onjugation, and with eah (initial) relator representedby a letter. We are interested is using a proof word generated by some means togenerate a proof of AC-equivalene; a neessary ondition for this is that we angenerate the template by AC-moves. The possible templates are easily generated bymodifying prog8 to disallow the onjugation move, to disallow free anellations, andby starting with the standard presentation. This is what temp11 does, although youare free to start with whatever presentation you want.ulling: ull modes 0, 1, 2 & 3 are implemented.dumping: dump modes -1 & 0 are implemented.terminating: term mode 0 is implemented. levlim & naplim are implemented(see prog8 notes).other: The equiv option is not implemented. The ounting of dumped AC-movehains is not implemented.8 duode { bidiretional searhIf you want to prove that a proof hain is shortest, and are unable to do so usingprog8 due to memory blow-out, then try duode. This does a rev10 type searhfor levlim levels, keeping the presentations produed, and then does a prog8 typesearh while heking eah new presentation against the reverse searh. So you ando exhaustive searhes to a greater depth. It an also, with suitable parameters, bemuh faster than a unidiretional searh for general (onstrained) searhes.The reverse searh starts by priming the root node with all eight presentations equiv-alent to (a; b), and then building a tree of presentations out to the levlim level. Thistree is preserved, and then the forward searh starts building its tree; both presenta-tion trees use the same relator tree. The forward searh primes the root node with the4l1l2 equivalent presentations (ie, equiv:1 is assumed). If a newly added presentationis in the reverse tree, then we've found a (shortest) proof, whih we dump and thenexit.All other things being equal, you should run this ommand with equal size forward& reverse searhes, to minimise time & spae usage. The reverse searh is faster thanthe forward one (sine we don't need to keep heking for a math), and its spae6



usage is known in advane (sine it always starts with the same presentation). (Anunonstrained reverse tree to eight levels needs ira 2Gb, on a 32-bit mahine.) So,erring on the side of a larger (but not by too muh) reverse searh is usually good.Note that the reverse tree is heked to see if it ontains the initial presentation (oran equivalent thereof) before the forward searh starts. If so, we print a proof andstop; this proof may not be a shortest (essential) proof, sine it is simply the �rstmath found between the two trees. To support a laim of shortest, both searhesmust go at least one level.ulling: ull modes 0, 1, 2 & 3 are implemented. However, the relative modedoesn't make too muh sense, given that there are two di�erent starting presentations.You should use ull:0 for an exhaustive searh, or ull:1 or ull:3 for onstrainedsearhes.terminating: The only termination for the reverse searh is levlim or BF-treeexhaustion. Tree exhaustion terminates the ommand, while levlim automatiallygoes on to the forward searh. The only termination for the forward searh is suess,naplim or BF-tree exhaustion.dumping: There is no dumping for the reverse searh. Suessful termination willdump out the proof hains for the reverse and forward parts of the searh.other: This ommand is only available for the n = 2 ase.9 Examples / Future Work / ConlusionsTBA ...

7


