CENTRE FOR DISCRETE MATHEMATICS AND COMPUTING

School of Computer Science & Electrical Engineering
and Department of Mathematics,
The University of Queensland, QLD 4072

Technical Report #14

Title: ACE for Amateurs (Version 3.001)
Author: Colin Ramsay
Date: March 29, 2001
Version: draft (incomplete)
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of figures</td>
<td>v</td>
</tr>
<tr>
<td>List of tables</td>
<td>vi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Administrivia</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Code</td>
<td>1</td>
</tr>
<tr>
<td>2 Background</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Terminology</td>
<td>3</td>
</tr>
<tr>
<td>2.2 History</td>
<td>3</td>
</tr>
<tr>
<td>3 ACE Level 2: an interactive interface</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Enumeration mode & style</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Predefined strategies</td>
<td>6</td>
</tr>
<tr>
<td>4 ACE Level 1: a core wrapper</td>
<td>8</td>
</tr>
<tr>
<td>5 ACE Level 0: the core enumerator</td>
<td>9</td>
</tr>
<tr>
<td>A Examples</td>
<td>10</td>
</tr>
<tr>
<td>A.1 Getting started</td>
<td>10</td>
</tr>
<tr>
<td>A.2 Emulating Sims</td>
<td>14</td>
</tr>
<tr>
<td>A.3 Row filling</td>
<td>16</td>
</tr>
<tr>
<td>A.4 Equivalent presentations</td>
<td>18</td>
</tr>
<tr>
<td>A.5 Deduction queues</td>
<td>18</td>
</tr>
<tr>
<td>A.6 Large enumerations</td>
<td>18</td>
</tr>
<tr>
<td>A.7 Looping</td>
<td>18</td>
</tr>
<tr>
<td>A.8 Use of st</td>
<td>18</td>
</tr>
<tr>
<td>A.9 Use of cy, nc, cc and rc</td>
<td>18</td>
</tr>
</tbody>
</table>
B Command summary 19
C State machine details 36
D Abbreviations 43
References 47
List of figures

C.1	The R/C style	36
C.2	The R* style	37
C.3	The Cr style	38
C.4	The C style	39
C.5	The Rc style	40
C.6	The R style	41
C.7	The CR style	42
List of tables

2.1 The coset table for S_4/S_3 .. 4
3.1 The styles ... 6
3.2 The predefined strategies .. 7
B.1 Possible enumeration results 28
B.2 Possible progress messages 29
Chapter 1

Introduction

ACE is designed to work with partial tables, as well as complete tables exhibiting a finite index. TBA: Intended user groups ...

ACE is divided into three ‘levels’. The actual enumerator, called the “core enumerator”, is ACE Level 0, while the standard driver for the enumerator, the “core wrapper”, is ACE Level 1. A stand-alone ‘example’ application, called the “interactive interface”, is ACE Level 2. To assist those interested in the actual source code, the function and variable names are prepended with AL0, AL1 & AL2 respectively. ACE also includes the “proof table” package (PT for short), which can be compiled into the executable if required. The proof table cuts across the level structure, and can only be used as part of the interactive interface. Function and variable names of the PT package are prepended with PT. TBA: this package ...

TBA: version history, 3.000 vs 3.001, ... TBA: default build ...

1.1 Administrivia

It is assumed that ACE is run on a Unix-box of some description. TBA: how to compile ...

In order not to clutter-up the body of the text with examples, the bulk of these are gathered into a separate appendix. These examples illustrate many of the features of ACE, and can also serve as a source of interesting enumerations. Some are referred to in the text, but they can all be read independently. ACE script input generating these examples is available in the ex***.in files, as part of the documentation.

1.2 Code

You will note in the source code various sections preceded by a warning comment containing the DTT acronym. This stands for “debug/test/trace”, and denotes code that was added temporarily for one reason or another. None of this code should be active; i.e., it should all be commented out. It does not form part of the ACE distribution. Of course, gurus will find this code intriguing, and will probably want to uncomment it to see what happens!

TBA: The source code is heavily commented, and is considered to be part of the documentation. Conceptually, coset enumeration is easy, but there are tricky details
and subtle performance issues – you need to read the source code, to experiment, and to think to appreciate these.
Chapter 2

Background

2.1 Terminology

Although ACE can accept either letters or numbers for group generators, we generally use letters, since these are much easier to understand. (Unless you need more than 26 generators, or are using some form of automatically generated presentation, you should adopt the same convention.) Lower-case letters denote generators, with inverses being denoted by either upper-case letters or negative superscripts; e.g., \(ABab \) and \(a^{-1}b^{-1}ab \) are equivalent. We use 1 to denote the identity element and/or the subgroup (i.e., coset #1).

... scanning, applying, closing. ... dead coset(s), compact(ion). ... \(S_n, A_n, C_n \). ... \(|X : Y| \) denotes index.

2.2 History

The concept of a subgroup, and its cosets, has been known since the beginnings of group theory. One of the earliest (practical?) uses of cosets seems to have been by Moore [12], who gives presentations for \(S_n \& A_n \) and proves them correct by, in effect, counting the \(n \) cosets of \(S_n/S_{n-1} \& A_n/A_{n-1} \). Dickson [5, §264] presents a more accessible account, and explicitly notes that “these sets form a rectangular table”. To illustrate this, we paraphrase Dickson’s proof for the case \(S_4 \).

Let \(G_4 \) be the abstract group

\[
\langle b_1, b_2, b_3 | b_1^2, b_2^2, b_3^2, b_1b_3 = b_3b_1, b_1b_2b_1 = b_2b_1b_2, b_2b_3b_2 = b_3b_2b_3 \rangle.
\]

Now \(S_4 \) is generated by the transpositions \(s_1 = (12) \), \(s_2 = (23) \) & \(s_3 = (34) \). Putting \(s_i = b_i \), \(1 \leq i \leq 3 \), we see that these transpositions satisfy the defining relations of \(G_4 \). So \(S_4 \) is a quotient group of \(G_4 \), and \(|G_4| \geq |S_4| = 4! = 24 \).

That \(|G_4| \leq 24 \), and so \(G_4 \cong S_4 \), is proved by induction. Let \(G_3 \) be the subgroup of \(G_4 \) generated by \(b_1 \& b_2 \). (The actual induction is on the \(b_i \). For our purposes, we’ll simply assume that \(|G_3| \leq 6 \).) Now consider the cosets \(O_4 = G_3 \), \(O_3 = G_3b_3 \), \(O_2 = G_3b_2b_2 \& O_1 = G_3b_3b_2b_1 \). We’ll show that these four cosets are merely permuted by the \(b_i \), so that the index \(|G_4 : G_3| \leq 4 \); hence \(|G_4| \leq 24 \), as required.

Obviously, \(O_4b_3 = O_3 \), \(O_3b_2 = O_2 \& O_2b_1 = O_1 \). Since the \(b_i \) are involutions, then \(O_3b_3 = G_3b_3b_3 = G_3 = O_4 \). Similarly, \(O_2b_2 = O_3 \& O_1b_1 = O_2 \). Since \(b_1 \& b_2 \) generate
Table 2.1: The coset table for S_4/S_3

<table>
<thead>
<tr>
<th>Coset</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_4 (G_3)</td>
<td>O_4</td>
<td>O_4</td>
<td>O_4</td>
</tr>
<tr>
<td>O_3 (G_3b_3)</td>
<td>O_3</td>
<td>O_2</td>
<td>O_1</td>
</tr>
<tr>
<td>O_2 ($G_3b_3b_2$)</td>
<td>O_1</td>
<td>O_3</td>
<td>O_2</td>
</tr>
<tr>
<td>O_1 ($G_3b_3b_2b_1$)</td>
<td>O_2</td>
<td>O_1</td>
<td>O_1</td>
</tr>
</tbody>
</table>

G_3, then $O_4b_1 = O_4b_2 = O_4$. Now, since b_1 & b_3 commute, then $O_3b_1 = G_3b_3b_1 = G_3b_1b_3 = O_4b_1b_1 = O_4b_3 = O_3$. Now consider $O_1b_3 = G_3b_3b_2b_1b_3 = G_3b_3b_2b_3b_1$. Since $b_2b_2b_2 = b_3b_2b_3$, then this can be written as $G_3b_2b_3b_2b_1 = O_4b_2b_3b_2b_1 = O_4b_3b_2b_1 = O_1$. In a similar manner, $O_1b_2 = O_1$ & $O_2b_3 = O_2$. Our coset table (see Table 2.1) is now complete, so $|G_4 : G_3| \leq 4$. Note that each b_i gives rise to the transposition (O_iO_{i+1}), and leaves the other cosets fixed.

The construction of a coset table was systematised and popularised by Todd & Coxter [16]. The first computer implementation was that of Haselgrove in 1953. This, along with other early implementations, is described by Leech [9]. Detailed accounts of the techniques used in coset enumeration can be found in [3, 6, 10, 13, 15]. Formal proofs of the correctness of various strategies for coset enumeration are given in [11, 13, 15].
Chapter 3

ACE Level 2:
an interactive interface

Level 2 of ACE is a complete, standalone application for generating and manipulating coset tables. It can be used interactively, or can take its input from a script file. It is reasonably robust and comprehensive, but no attempt has been made to make it ‘industrial strength’ or to give it any of the features of, say, MAGMA [2] or GAP [14]. Most of its features have been added in response to user requests, and it is assumed that the user is ‘competent’. One of the primary goals in developing ACE was to demonstrate how to correctly use ACE Levels 0 & 1; some care is taken to ensure that the user cannot generate ‘invalid’ tables.

A complete description of all the Level 2 commands is given in Appendix B.

3.1 Enumeration mode & style

The core enumerator takes two arguments, which select the enumeration mode and style. The mode determines whether or not we retain any existing table information. Initially, we start with an empty table and use the begin mode (the beg command). This can be followed by a series of continue and/or redo modes (the cont & redo commands) which build on or modify the table generated by the begin mode. So it is possible to do an enumeration in stages, altering the parameters at each stage. Various interlocks are present to prevent a combination of choices which (potentially) leads to an invalid table.

The enumeration style is the balance between C-style definitions (i.e., coset table based, Felsch style) and R-style definitions (i.e., relator based, HLT style), and is controlled by the ct & rt parameters. The absolute values of these parameters sets the number of definitions (C-style) or coset applications (R-style) per pass through the enumerator’s main loop. The sign of these parameters sets the style, and the possible combinations are given in Table 3.1

In R style all the definitions are made via relator scans; i.e., this is HLT mode. In C style all the definitions are made in the next empty table slot and are tested in all essentially different positions in the relators; i.e., this is Felsch mode. In R/C style we run in R style until an overflow, perform a lookahead on the entire table, and then switch to CR style. Defaulted R/C style is the default style, and here we use R/C style with ct:1000 and rt set to approximately 2000 divided by the total
Table 3.1: The styles

<table>
<thead>
<tr>
<th>Rt value</th>
<th>Ct value</th>
<th>style name</th>
</tr>
</thead>
<tbody>
<tr>
<td><0</td>
<td><0</td>
<td>R/C</td>
</tr>
<tr>
<td><0</td>
<td>0</td>
<td>R*</td>
</tr>
<tr>
<td><0</td>
<td>>0</td>
<td>Cr</td>
</tr>
<tr>
<td>0</td>
<td><0</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>R/C (defaulted)</td>
</tr>
<tr>
<td>0</td>
<td>>0</td>
<td>C</td>
</tr>
<tr>
<td>>0</td>
<td><0</td>
<td>Rc</td>
</tr>
<tr>
<td>>0</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>>0</td>
<td>>0</td>
<td>CR</td>
</tr>
</tbody>
</table>

length of the relators, in an attempt to balance R & C definitions when we switch to CR style. Rc & Cr styles are like R & C styles, except that a single C or R style pass (respectively) is done after the initial R or C style pass. R* style makes definitions the same as R style, but tests all definitions as for C style. In CR style alternate passes of C style and R style are performed, with all definitions tested. The Ct < 0 C style is reserved for future use, and should not be used.

3.2 Predefined strategies

The versatility of ACE means that it can be difficult to select appropriate parameters when presented with a new enumeration. The problem is compounded by the fact that no generally applicable rules exist to predict, given a presentation, which parameter settings are ‘good’. To help overcome this problem, ACE contains various commands which select particular enumeration strategies. One or other of these strategies may work and, if not, the results may indicate how the parameters can be varied to obtain a successful enumeration. The thirteen standard strategies are listed in Table 3.2.

Note that we explicitly (re)set all of the listed enumerator parameters in all of the predefined strategies, even although some of them have no effect. For example, the fi value is irrelevant in HLT mode. The idea behind this is that, if you later change some parameters individually, then the enumeration retains the ‘flavour’ of the last selected predefined strategy. Note also that other parameters which may effect an enumeration are left untouched by setting one of the predefined strategies; for example, the values of max &asis. These parameters have an effect which is independent of the selected strategy.

Note that, apart from the fel:0 & sims:9 strategies, all of the strategies are distinct, although some are very similar. Further details of each strategy are contained in their entry in Appendix B.
<table>
<thead>
<tr>
<th>strategy</th>
<th>path</th>
<th>row</th>
<th>mend</th>
<th>no</th>
<th>look</th>
<th>com</th>
<th>ct</th>
<th>rt</th>
<th>fi</th>
<th>pmod</th>
<th>psiz</th>
<th>dmod</th>
<th>dsiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>def</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>-1</td>
<td>n</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>256</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>easy</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>0</td>
<td>n</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>1</td>
<td>0</td>
<td>256</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>fel:0</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>0</td>
<td>n</td>
<td>10</td>
<td>1000</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>256</td>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>fel:1</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-1</td>
<td>n</td>
<td>10</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>256</td>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>hard</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>-1</td>
<td>n</td>
<td>10</td>
<td>1000</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>256</td>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>hlt</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>1000</td>
<td>1</td>
<td>0</td>
<td>256</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>pure c</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>0</td>
<td>n</td>
<td>100</td>
<td>1000</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>256</td>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>pure r</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>0</td>
<td>n</td>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>1</td>
<td>0</td>
<td>256</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>sims:1</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>0</td>
<td>n</td>
<td>10</td>
<td>0</td>
<td>1000</td>
<td>1</td>
<td>0</td>
<td>256</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>sims:3</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>0</td>
<td>n</td>
<td>10</td>
<td>0</td>
<td>-1000</td>
<td>1</td>
<td>0</td>
<td>256</td>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>sims:5</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>0</td>
<td>n</td>
<td>10</td>
<td>0</td>
<td>1000</td>
<td>1</td>
<td>0</td>
<td>256</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>sims:7</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>0</td>
<td>n</td>
<td>10</td>
<td>0</td>
<td>-1000</td>
<td>1</td>
<td>0</td>
<td>256</td>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>sims:9</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>0</td>
<td>n</td>
<td>10</td>
<td>1000</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>256</td>
<td>4</td>
<td>1000</td>
</tr>
</tbody>
</table>
ACE Level 0 is a complete, efficient coset enumerator. However, it is ‘naked’, in the sense that it expects all its data structures to be correctly setup and it assumes that it is ‘sensibly’ driven. ACE Level 1 is a simple wrapper for Level 0 which processes the presentation and the parameters, and sets up the appropriate data structures. It contains some utility routines to help drive ACE, and it prevents some of the more obvious errors. Although it has to be used with care, the wrapper is a great deal easier to drive than the core enumerator, and is its recommended interface.
Chapter 5

ACE Level 0:
the core enumerator

TBA: …
Appendix A

Examples

In this appendix we give some examples of ACE runs. A stand-alone discussion of some of the features of these runs is included, although parts of these runs are mentioned in the body of the text, as illustrations of specific features of ACE’s behaviour. The ex***.in files supplied as part of this documentation can be used to run these examples, although an example may be presented as if it were generated interactively, and the output may be edited for reasons of space or perspicuity. There may be minor variations in the exact format of the output, since ACE is continually being ‘improved’. Unless otherwise noted, all parameters are defaulted and the default build of ACE was used. In multipart runs, note that parameters from an earlier part may carry across to a later one. Note that some of the examples may require a machine with a large amount of memory.

A.1 Getting started

This example uses input file ex000.in, and illustrates the basics of ACE. Note how the input is generally insensitive to command synonyms, capitalisation, white space, and ; & ; characters. When ACE starts up, it prints out its version, the date & time, and the name of the host on which it’s running. If we attempt to do an enumeration immediately we get an error, since the lack of generators means we can’t build the (empty) coset table.

```
ACE 3.000 Sat May 8 13:50:29 1999
========================================
Host information:
  name = flute
end;
** ERROR (continuing with next line)
  can’t start (no generators?)
```

After defining two generators, we can do an enumeration. The default state is not to echo the presentation or print any messages; only the result line is printed. The group is free, since there are no relators, and the subgroup is trivial. So the enumeration overflows.

```
gr:ab;    # A stupid comment
Begin
OVERFLOW (a=249998 r=83333 h=83333 n=249999; l=337 c=0.97;
          m=249998 t=249998)
```
The `sr` commands dumps out the presentation and the parameters for the run. All of these are currently defaulted, apart from those dependent on there being two (non-involutionary) generators.

```bash
sr:1;
#-- ACE 3.000: Run Parameters ---
Group Name: G;
Group Generators: ab;
Group Relators: ;
Subgroup Name: H;
Subgroup Generators: ;
Wo:1000000; Max:249998; Mess:0; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:1; Mend:0; No:0; Look:0; Com:10;
C:0; R:0; Fi:7; FMod:3; FSiz:256; DMod:4; DSiz:1000;
#--------------------------------
```

This is the first part of the table. Note that, as there are no relators, the table has separate columns for generator inverses. So the default workspace of 1000000 words allows a table of $249998 = 1000000 - 4$ cosets. As row filling is on by default, the table is simply filled with cosets in order. Note that a compaction phase is done before printing the table, but that this does nothing here (the lower-case `co` tag), since there are no dead cosets. The coset representatives are simply all possible freely reduced words, in length plus lexicographic order.

```text
pr:-1,12;
co: a=249998 r=83333 h=83333 n=249999; c=+0.00
```

| coset | a | A | b | B | order | rep've |
|-------+---+---+---+---+-------+-------|
1	2	3	4	5		
2	6	1	7	8	0 a	
3	1	9	10	11	0 A	
4	12	13	14	1	0 b	
5	15	16	1	17	0 B	
6	18	2	19	20	0 aa	
7	21	22	23	2	0 ab	
8	24	25	2	26	0 aB	
9	3	27	28	29	0 AA	
10	30	31	32	3	0 Ab	
11	33	34	3	35	0 AB	
12	36	4	37	38	0 ba	
```

We now set things up to do the alternating group on five letters, of order 60. We turn messaging on, but set the interval high enough so that there will be no progress messages.

```bash
Enum: A_5;
rel: a^2, b^3, ababababab;
subgr: trivial;
mess: 1000; start;
```

The presentation and the parameters are echoed, the enumeration is performed, and then the results of the run are printed. Note that the exponent of the `ababababab` word has been correctly deduced, and that `a` is treated as an involution. So the table
has only three columns now. Definitions are HLT-style, and a total of 76 cosets (incl. the subgroup) were defined.

#-- ACE 3.000: Run Parameters ---
Group Name: A_5;
Group Generators: ab;
Group Relators: (a)^2, (b)^3, (ab)^5;
Subgroup Name: trivial;
Subgroup Generators: ;
Wo:1000000; Max:333331; Mess:1000; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;
C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;
#--------------------------------
INDEX = 60 (a=60 r=77 h=1 n=77; l=3 c=0.00; m=66 t=76)

We now use a non-trivial subgroup, and monitor all the actions of the enumerator.

Subgroup Name: C_5 ;
gen:ab;
Monit :1
END;
#-- ACE 3.000: Run Parameters ---
Group Name: A_5;
Group Generators: ab;
Group Relators: (a)^2, (b)^3, (ab)^5;
Subgroup Name: C_5;
Subgroup Generators: ab;
Wo:1000000; Max:333331; Mess:1; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;
C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;
#--------------------------------
AD: a=2 r=1 h=1 n=3; l=1 c=+0.00; m=2 t=2
SG: a=2 r=1 h=1 n=3; l=1 c=+0.00; m=2 t=2
RD: a=3 r=1 h=1 n=4; l=2 c=+0.00; m=3 t=3
RD: a=4 r=2 h=1 n=5; l=2 c=+0.00; m=4 t=4
RD: a=5 r=2 h=1 n=6; l=2 c=+0.00; m=5 t=5
RD: a=6 r=2 h=1 n=7; l=2 c=+0.00; m=6 t=6
RD: a=7 r=2 h=1 n=8; l=2 c=+0.00; m=7 t=7
RD: a=8 r=2 h=1 n=9; l=2 c=+0.00; m=8 t=8
RD: a=9 r=2 h=1 n=10; l=2 c=+0.00; m=9 t=9
CC: a=8 r=2 h=1 n=10; l=2 c=+0.00; d=0
RD: a=9 r=5 h=1 n=11; l=2 c=+0.00; m=9 t=10
RD: a=10 r=5 h=1 n=12; l=2 c=+0.00; m=10 t=11
RD: a=11 r=5 h=1 n=13; l=2 c=+0.00; m=11 t=12
RD: a=12 r=5 h=1 n=14; l=2 c=+0.00; m=12 t=13
RD: a=13 r=5 h=1 n=15; l=2 c=+0.00; m=13 t=14
RD: a=14 r=5 h=1 n=16; l=2 c=+0.00; m=14 t=15
CC: a=13 r=6 h=1 n=16; l=2 c=+0.00; d=0
CC: a=12 r=6 h=1 n=16; l=2 c=+0.00; d=0
INDEX = 12 (a=12 r=16 h=1 n=16; l=3 c=0.00; m=14 t=15)

We now dump out the statistics accumulated during the run. The run had a=12 & t=15, so there must have been three coincidences (qcoinc=3). Of these, two were primary coincidences (rdcoinc=2). Since t=15, there must have been fourteen coset definitions; one was during the application of coset #1 (i.e., the subgroup) to the
subgroup generator (apdefn=1), and the remainder during the application of the

cosets to the relators (rddefn=13).

STATistics;
#- ACE 3.000: Level 0 Statistics --
cdcoinc=0 rdcoinc=2 apcoinc=0 rldcoinc=0 clcoinc=0
xcoinc=2 xcols12=4 qcoinc=3
xsave12=0 s12dup=0 s12neu=0
xcrep=6 crepred=0 crepwrk=0 xcomp=0 compwrk=0
xsaved=0 sdmax=0 sdoflow=0
xapply=1 apdedn=1 apdefn=1
rldedn=0 cldedn=0
xrdefn=1 rddedn=5 rddefn=13 rdfill=0
xcdefn=0 cddproc=0 cdddedn=0 cddedn=0
cdgap=0 cdidefn=0 cddedn=0 cdpd1=0 cdpo=0
cdpdead=0 cdpdefn=0 cddefn=0
#----------------------------------

Note how the pre-printout compaction phase now does some work (the upper-case CO
tag), since there were coincidences, and hence dead cosets. Note how b/B have been
used as the first two columns, since these must be occupied by a generator/inverse
pair or a pair of involutions. The a column is also the A column, as a is an involution.

print TABLE : -1, 12 ;
CO: a=12 r=13 h=1 n=13; c=+0.00

coset | b B a order rep’ve
-------+--------------------------------------
 1 | 3 2 2
 2 | 1 3 1 3 B
 3 | 2 1 4 3 b
 4 | 8 5 3 5 ba
 5 | 4 8 6 2 baB
 6 | 9 7 5 5 baBa
 7 | 6 9 8 3 baBab
 8 | 5 4 7 5 bab
 9 | 7 6 10 5 baBab
10 | 12 11 9 3 baBaba
11 | 10 12 12 2 baBabaB
12 | 11 10 11 3 baBabab

If we define the generator order to be that of the columns, then the table above
is not in canonic form, and the coset representatives are not in order. We now
standardise the table; note the compaction phase before standardisation, although
it does nothing in this particular case. Note how, if we read through the table in
row-major order, new cosets are introduced using the smallest available number, and
that the representatives are now in order and are minimal.

st;
co/ST: a=12 r=13 h=1 n=13; c=+0.00
pr:-1,12;
co: a=12 r=13 h=1 n=13; c=+0.00

coset | b B a order rep’ve
-------+--------------------------------------
 1 | 2 3 3
 2 | 3 1 4 3 b
We now exit ACE, printing out the version and the date & time again.

q
========================================

ACE 3.000 Sat May 8 13:52:49 1999

A.2 Emulating Sims

Here we demonstrate the various sims modes, and see if we can duplicate the m (maximum active cosets) and t (total cosets defined) values (see the input file ex001.in). The ability to do so gives our confidence in the correctness of ACE a large boost. We work with the formal inverses of the relators and subgroup generators from [15], since definitions are made from the front in Sims’ routines and from the rear in ACE. We may also have to use the asis flag, to force the column order (by entering involutions as xx) and to preserve the relator ordering. We match Sims’ values for R style & R* style (sims:1 & 3) and C style (sims:9), but may not do so if we use Mendelsohn (sims:5 & 7); this makes sense, since the order of processing cycled relators is not specified by Sims.

The input and output files for Example 5.2:

```
gr: r,s,t;
rel: (r^tRR)^-1, (s^rSS)^-1, (t^sTT)^-1;
text: ;
text: ** Sims:1 (cf. 1502/1550) ...; sims:1; end;
text: ** Sims:3 (cf. 673/673) ...; sims:3; end;
text: ** Sims:5 (cf. 1808/1864) ...; sims:5; end;
text: ** Sims:7 (cf. 620/620) ...; sims:7; end;
text: ** Sims:9 (cf. 588/588) ...; sims:9; end;
```

```
#-- ACE 3.000: Run Parameters ---
Group Name: G;
Group Relators: rrTRt, ssRSr, ttSTs;
Subgroup Name: H;
Subgroup Generators: ;
```

```
** Sims:1 (cf. 1502/1550) ...
INDEX = 1 (a=1 r=2 h=2 n=2; l=3 c=0.01; m=1502 t=1550)
** Sims:3 (cf. 673/673) ...
INDEX = 1 (a=1 r=2 h=2 n=2; l=3 c=0.01; m=673 t=673)
** Sims:5 (cf. 1808/1864) ...
INDEX = 1 (a=1 r=2 h=2 n=2; l=3 c=0.01; m=1603 t=1603)
** Sims:7 (cf. 620/620) ...
```
The input and output files for Example 5.3, $k = 8$:

```plaintext
gr: x,y;
rel: (xx)^-1, (y^-3)^-1, ((xy)^7)^-1, ((xyy)^8)^-1;
text: ;
sr;
text: ** Sims:1 (cf. 87254/128562) ...
** Sims:3 (cf. 31678/32320) ...
** Sims:5 (cf. 99632/178620) ...
** Sims:7 (cf. 30108/31365) ...
** Sims:9 (cf. 39745/39745) ...
```

#-- ACE 3.000: Run Parameters ---
Group Name: G;
Group Relators: XX, YYY, YXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXYXY;
Subgroup Name: H;
Subgroup Generators: ;
#--------------------------------
** Sims:1 (cf. 87254/128562) ...
INDEX=10752 (a=10752 r=128563 h=1 n=128563; l=27 c=1.00; m=87254 t=128562)
** Sims:3 (cf. 31678/32320) ...
INDEX=10752 (a=10752 r=32321 n=32321; l=10 c=0.81; m=31678 t=32320)
** Sims:5 (cf. 99632/178620) ...
INDEX=10752 (a=10752 r=168547 n=168547; l=24 c=1.50; m=96952 t=168546)
** Sims:7 (cf. 30108/31365) ...
INDEX=10752 (a=10752 r=5738 n=31673; l=8 c=0.90; m=30420 t=31672)
** Sims:9 (cf. 39745/39745) ...
INDEX=10752 (a=10752 r=1 h=39746 n=39746; l=43 c=1.37; m=39745 t=39745)
```

The input and output files for Example 5.4:

```plaintext
gr: a,b;
rel: (a^-8)^-1, (b^-7)^-1, ((ab)^2)^-1, ((Ab)^3)^-1;
gen: (a^-2)^-1, (Ab)^-1;
asis:1;
text: ;
sr;
text: ** Sims:1 (cf. 2174/2635) ...
** Sims:3 (cf. 1199/1212) ...
** Sims:5 (cf. 2213/2619) ...
** Sims:7 (cf. 1258/1284) ...
** Sims:9 (cf. 1302/1306) ...
```

#-- ACE 3.000: Run Parameters ---
Group Name: G;
Group Relators: AAAAAAAAA, BBBBBBB, BABA, BABA;
Subgroup Name: H;
Subgroup Generators: AA, Ba;
#--------------------------------
** Sims:1 (cf. 2174/2635) ...
INDEX = 448 (a=448 r=2636 h=1 n=2636; l=4 c=0.02; m=2174 t=2635)
** Sims:3 (cf. 1199/1212) ...
INDEX = 448 (a=448 r=576 h=1213 n=1213; l=3 c=0.02; m=1199 t=1212)
** Sims:5 (cf. 2213/2619) ...
INDEX = 448 (a=448 r=2620 h=1 n=2620; l=4 c=0.03; m=2213 t=2619)
** Sims:7 (cf. 1258/1284) ...
```
A.3 Row filling

If all definitions are made by applying cosets to relators, then the coset table can contain holes, either because the form of the relators ‘hides’ one of the generators from one of the cosets, or because one of the generators is not present in the relators. The row and mend parameters can be used to deal with these sorts of situations. Consider the following examples, drawn from [17]; see the input file ex002.in. Note that, although the row parameter is specifically intended to prevent the table containing holes, the mend parameter actually yields better enumeration statistics. Note also the use of the asis parameter to control whether or not the presentation is reduced.

asis:1; pure r; end;
#-- ACE 3.000: Run Parameters ---
Group Name: infinite cyclic group;
Group Generators: xy;
Group Relators: yxyxY;
Subgroup Name: self (index 1);
Subgroup Generators: x;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:1; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;
#--------------------------------
OVERFLOW (a=249992 r=249996 h=1 n=249999; l=253 c=1.19; m=249992 t=249998)
pr:-1,12;
CD: a=249992 r=249990 h=1 n=249993; c=+0.33

<table>
<thead>
<tr>
<th>coset</th>
<th>x</th>
<th>X</th>
<th>y</th>
<th>Y</th>
<th>order</th>
<th>rep’ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>yX</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>yX</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>y</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>0 yX</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>yyy</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>yXyy</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>0</td>
<td>yyyy</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>yXyyy</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>9</td>
<td>0</td>
<td>yyyy</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>yXyyyy</td>
</tr>
</tbody>
</table>

asis:0; pure r; end;
INDEX = 1 (a=1 r=2 h=2 n=2; l=3 c=0.00; m=12 t=17)

asis:0; pure r; end;
INDEX = 1 (a=1 r=2 h=2 n=2; l=3 c=0.00; m=5 t=6)

asis:0; pure r; end;
#-- ACE 3.000: Run Parameters ---
Group Name: infinite cyclic group;
Group Generators: xy;
Group Relators: xyx;
Subgroup Name: self (index 1);
Subgroup Generators: x;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSize:256; DMod:0; DSize:1000;

INDEX = 1 (a=1 r=2 h=2 n=2; l=3 c=0.00; m=1 t=1)

asis:1; pure r; end;
#

Group Name: C_3;
Group Generators: xy;
Group Relators: xxyxyxxx, yyyxyxyyy;
Subgroup Name: trivial (index 3);
Subgroup Generators: ;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:1; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSize:256; DMod:0; DSize:1000;

OVERFLOW (a=181146 r=38770 h=1 n=249999; l=32 c=0.67; m=181146 t=249998)
pr:-1,16;
CO:a=181146 r=28074 h=1 n=181147; c+=0.28

<table>
<thead>
<tr>
<th>coset</th>
<th>x</th>
<th>X</th>
<th>y</th>
<th>Y</th>
<th>order</th>
<th>rep’ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>xx</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>xxx</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>xxxY</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0</td>
<td>31</td>
<td>4</td>
<td>0</td>
<td>xxxY</td>
</tr>
<tr>
<td>7</td>
<td>47</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>y</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>0</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>yy</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>10</td>
<td>52</td>
<td>8</td>
<td>0</td>
<td>yyy</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0</td>
<td>72</td>
<td>11</td>
<td>0</td>
<td>yyyX</td>
</tr>
<tr>
<td>11</td>
<td>63</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>yyyX</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>4</td>
<td>14</td>
<td>13</td>
<td>0</td>
<td>xxxx</td>
</tr>
<tr>
<td>13</td>
<td>89</td>
<td>14</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>xxxxY</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>0</td>
<td>85</td>
<td>12</td>
<td>0</td>
<td>xxxxy</td>
</tr>
<tr>
<td>15</td>
<td>101</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>xy</td>
</tr>
<tr>
<td>16</td>
<td>109</td>
<td>0</td>
<td>17</td>
<td>15</td>
<td>0</td>
<td>xyy</td>
</tr>
</tbody>
</table>

pure r; row:1; end;
IND = 3 (a=3 r=468 h=1 n=468; l=3 c=0.00; m=343 t=467)
pure r; mend:1; end;
IND = 3 (a=3 r=29 h=29 n=29; l=3 c=0.00; m=21 t=28)

asis:0; pure r; end;
#

Group Name: C_3;
Group Generators: xy;
Group Relators: xyy, xyx;
Subgroup Name: trivial (index 3);
Subgroup Generators: ;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
A.4 Equivalent presentations

TBA: $F(2,7)$, using rep & aep ...

A.5 Deduction queues

TBA: ... (see test009)

A.6 Large enumerations

Suppose that the presentation given is such that the final coset table exceeds the 4 Gbyte limit imposed by 32-bit machines; e.g., an index of $250 \times 10^6$, with a 5-column table and 4 byte integers. We are justified in regarding such an enumeration as ‘big’, since it will require more than 4 Gbyte of storage no matter how efficiently it is performed. Of course, even trivial enumerations may exceed this limit if they are very pathological (see, e.g., [7]). However, we have no (easy) way of knowing whether or not such enumerations can be done within the 4 Gbyte limit, so we are hesitant to classify them as big. ACE is 64-bit ‘aware’, and can use more than 4 Gbyte of memory if it is available. Note however that the number of cosets (i.e., the number of rows in the coset table) is still limited by the size of a signed int. So the maximum size of a table is $2^{31} - n$ cosets, where $n$ is probably 3; one since we can’t actually represent $+2147483648$, one since coset #0 is not used, and one since we need to count one past the top of the table.

Some trivial group enumerations involving more than 1 G total cosets and 4 Gbyte of memory were reported in [7]. However, the first big enumeration, in the above sense, done by ACE was the Thomson simple group. This group has order $TBA$, and contains $TBA$ as an index $TBA$ subgroup. TBA: ...

A.7 Looping

TBA: ...

A.8 Use of st

TBA: ...

A.9 Use of cy, nc, cc and rc

TBA: ...
Appendix B

Command summary

This appendix gives details of all the commands available when using the interactive interface. The section headings match the help screen produced by the `help` command, and are in the same order. Alternate forms of a command are separated by a `/`, while any optional part of a command is denoted by `[...]`. Case is not significant in command names, but that part of a command actually present must be correct, modulo white space. Appendix A contains many examples of how to correctly drive ACE.

Parameters to a command are supplied after a colon (:``). Each command is terminated by a newline or a semicolon (`;`), except in some cases where the argument may be a list of words, in which case newlines are ignored and a semicolon is the only terminator. (E.g., the `add gen`, `add rel`, `rel & gen` commands.) In many cases the parameters are optional, and entering the command without an argument prints the parameter's current value. If the no-argument form has a special meaning, this is noted in its entry below. Where there is no danger of confusion, the `:` and/or the `;` can usually be dispensed with.

Note: Some of the command names or synonyms might strike you as peculiar. These names were *not* chosen by me, but were dictated by the need for compatibility with previous coset enumerators (ie, `tc` & `ce/ace`).

```
add gen[erators] / sg : <word list> ;
```

Adds the words in the list to any subgroup generators already present. The enumeration must be (re)started or redone, it cannot be continued.

```
add rel[ators] / rl : <relation list> ;
```

Adds the words in the list to any relators already present. The enumeration must be (re)started or redone, it cannot be continued.

```
aep : 1..7 ;
```

The `aep` (all equivalent presentations) option runs an enumeration for each possible combination of relator ordering, relator rotations, and relator inversions. As discussed by Cannon, Dimino, Havas & Watson [3] and Havas & Ramsay [8] such equivalent presentations can yield large variations in the number of cosets required in an enumeration. For this command, we are interested in this variation.
The \texttt{aep} option first performs a \enquote{priming run} using the parameters as they stand. In particular, the \texttt{asis} \& \texttt{mess} parameters are honoured. It then turns \texttt{asis} on and \texttt{mess} off, and generates and tests the requested equivalent presentations. The maximum and minimum values attained by \texttt{maxcos} \& \texttt{totcos} are tracked, and each time a new \enquote{record} is found the relators used and the summary result line is printed. At the end, some additional status information is printed: the number of runs which yielded a finite index; the total number of runs (excluding the priming run); and the range of values observed for \texttt{maxcos} \& \texttt{totcos}. \texttt{asis} \& \texttt{mess} are now restored to their original values, and the system is ready for further commands.

The mandatory argument is considered as a binary number. Its three bits are treated as flags, and control relator rotations (the $2^0$ bit), relator inversions (the $2^1$ bit) and relator orderings (the $2^2$ bit); \enquote{1} means \enquote{active} and \enquote{0} means \enquote{inactive}. The order in which the equivalent presentations are generated and tested has no particular significance, but note that the presentation as given (after the initial priming run) is the \textit{last} presentation to be generated and tested, so that the group’s relators are left \enquote{unchanged} by running the \texttt{aep} option.

As an example (drawn from the discussion in [8]) consider the index 448 enumeration of $(8, 7 \mid 2, 3)/\langle a^2, Ab \rangle$, where

$$(8, 7 \mid 2, 3) = \langle a, b \mid a^8 = b^7 = (ab)^2 = (Ab)^3 = 1 \rangle.$$ 

There are $4! = 24$ relator orderings and $2^4 = 16$ combinations of relator or inverted relator. Exponents are taken into account when rotating relators, so the relators given give rise to 1, 1, 2 \& 2 rotations respectively, for a total of 1.1.2.2 = 4 combinations. So the command \texttt{aep:7} would generate and test $24.16.4 = 1536$ equivalent presentations, while \texttt{aep:3} would generate and test $16.4 = 64$ equivalent presentations.

\textbf{Notes}: There is no way to stop the \texttt{aep} option before it has completed, other than killing the task. So do a reality check beforehand on the size of the search space and the time for each enumeration. If you are interested in finding a \enquote{good} enumeration, it can be very helpful, in terms of running time, to put a tight limit on the number of cosets via the \texttt{max} parameter. (You may also have to set \texttt{com:100} to prevent time-wasting attempts to recover space via compaction.) This maximises throughput by causing the \enquote{bad} enumerations, which are in the majority, to overflow quickly and abort. If you wish to explore a very large search-space, consider firing up many copies of \texttt{ACE}, and starting each with a \enquote{random} equivalent presentation. Alternatively, you could use the \texttt{rep} command.

\texttt{ai / alter input} : [\texttt{<filename>}] ;

By default, commands to \texttt{ACE} are read from the standard input file (i.e., the \enquote{keyboard}, \texttt{stdin}). The \texttt{ai} command closes the current input file (unless it’s \texttt{stdin}), and opens \texttt{filename} as the source of commands. If \texttt{filename} can’t be opened, input reverts to \texttt{stdin}.
NOTES: If you switch to taking input from a(nother) file, remember to switch back to the previous file before the end of the current file. If you don’t, the EOF in the current file will cause ACE to terminate.

    ao / alter o[utput] : [<filename>] ;

By default, output from ACE is sent to the standard output file (i.e., the ‘terminal’, stdout). The ao command closes the current output file, and opens filename for all future output. If filename can’t be opened, output reverts to stdout.

    as[is] : [0/1] ;

By default, ACE freely & cyclically reduces the relators, freely reduces the subgroup generators, and sorts relators & generators in length-increasing order (a stable insertion sort is used). If you do not want this, you can switch it off by asis:1.

NOTES: As well as allowing you to process the presentation in the form given, this is useful for forcing definitions to be made in a prespecified order, by introducing dummy (i.e., freely trivial) subgroup generators. Note also that the exact form of the presentation can have a significant impact on the enumeration statistics; it is not the case that the default option always yields the best enumeration.

GURU NOTES: When asis:0, a (reduced) relator of the form aa or Aa causes that generator to be treated as an involution. In the relators and subgroup generators, the inverses of involutionary generators are automatically replaced with the generator. When asis:1, only relators of the form a^2 cause the generator to be treated as an involution. The forms aa & a^-2 are preserved in any printout, so that you can track ACE’s behaviour.

    beg[in] / end / start ;

Start an enumeration. Any existing information in the table is cleared, and the enumeration starts from coset #1 (i.e., the subgroup).

    bye / exit / q[uit] ;

This exits ACE nicely, printing the date and the time. An EOF (end-of-file; i.e., ^d) has the same effect, so proper termination occurs if ACE is taking its input from a script file.

    cc / coset coinc[ience] : int ;

Print out the representative of coset #int, and add it to the subgroup generators; i.e., equates this coset with coset #1, the subgroup.


The value of this parameter sets the ‘blocking factor’ for C-style definitions; i.e., the number of coset definitions made by filling the next empty coset table position during each pass through the enumerator’s main loop. The absolute value of int is the value
used. The enumeration style is selected by the values of the \texttt{ct} & \texttt{rt} parameters; see Section 3.1.

\texttt{check / redo ;}

An extant enumeration is redone, using the current parameters. Any existing information in the table is retained, and the enumeration is restarted from coset \#1 (i.e., the subgroup).

\textbf{NOTES:} This option is really intended for the case where additional relators and/or subgroup generators have been introduced. The current table, which may be incomplete or exhibit a finite index, is still ‘valid’. However, the additional data may allow the enumeration to complete, or cause a collapse to a smaller index.

\texttt{com[paction] : [0..100] ;}

The key word \texttt{com} controls compaction of the coset table during an enumeration. Compaction recovers the space allocated to cosets which are flagged as dead (i.e., which were found to be coincident with lower-numbered cosets). It results in a table where all the active cosets are numbered contiguously from \#1, and with the remainder of the table available for new cosets.

The coset table is compacted when a coset definition is required, there is no space for a new coset available, and provided that the given percentage of the coset table contains dead cosets. For example, \texttt{com:20} means compaction will occur only if 20\% or more of the cosets in the table are dead. The argument can be any integer in the range 0–100, and the default value is 10 or 100; see Section 3.2. An argument of 100 means that compaction is never performed, while an argument of 0 means always compact, no matter how few dead cosets there are (provided there is at least one, of course).

Compaction may be performed multiple times during an enumeration, and the table that results from an enumeration may or may not be compact, depending on whether or not there have been any coincidences since the last compaction (or from the start of the enumeration, if there have been no compactions). If messaging is enabled (i.e., \texttt{mess} \neq 0), then a progress message (labelled \texttt{CD}) is printed each time the compaction routine is actually called (as opposed to each time it is potentially called).

\textbf{NOTES:} In some strategies (e.g., HLT) a lookahead phase may be run before compaction is attempted. In other strategies (e.g., \texttt{Sims:3}) compaction may be performed while there are outstanding deductions; since deductions are discarded during compaction, a final \texttt{RA} phase will (automatically) be performed. Compacting a table ‘destroys’ information and history, in the sense that the table entries for any dead cosets are deleted, along with their coincidence list data. At Level 2, it is not possible to access the ‘data’ in dead cosets; in fact, most options that require table data compact the table automatically before they run.

\texttt{cont[inue] ;}
Continue the current enumeration, building upon the existing table. If a previous run stopped without producing a finite index you can, in principle, change any of the parameters and continue on. Of course, if you make any changes which invalidate the current table, you won’t be allowed to continue, although you may be allowed to redo.

```plaintext
cycles;
```

Print out the table in cycles; i.e., the permutation representation.

```plaintext
ded mode / dmode : [0..4];
```

A completed table is only valid if every table entry has been tested in all essentially different positions in all relators. This testing can either be done directly (Felsch strategy) or via relator scanning (HLT strategy). If it is done directly, then more than one deduction (i.e., table entry) can be outstanding at any one time. So the untested deductions are stored in a stack. Normally this stack is fairly small but, during a collapse, it can become very large.

This command allows the user to specify how deductions should be handled. The options are: 0, discard deductions if there is no stack space left; 1, as 0, but purge redundant cosets off the top of the stack at every coincidence; 2, as 0, but purge all redundant cosets from the stack at every coincidence; 3, discard the entire stack if it overflows; 4, if the stack overflows, then double the stack size and purge all redundant cosets from the stack.

The default deduction mode is either 0 or 4, depending on the strategy selected (see Section 3.2), and it is recommended that you stay with the default. If you want to know more details, read the code.

**NOTES:** If deductions are discarded for any reason, then a final RA phase will be run automatically at the end of the enumeration, if necessary, to check the result.

```plaintext
ded size / dsiz[e] : [0/1..] ;
```

Sets the size of the (initial) allocation for the deduction stack. The size is in terms of the number of deductions, with one deduction taking two words (i.e., 8 bytes). The default size, of 1000, can be selected by a 0 argument. See the `dmode` entry for a (brief) discussion of deduction handling.

```plaintext
default;
```

This selects the default strategy, which is based on the defaulted R/C style; see Sections 3.1 & 3.2. The idea here is that we assume that the enumeration is ‘easy’, and start out in R style. If it turns out not to be easy, then we regard it as ‘hard’, and switch to CR style, after performing a lookahead on the entire table.

```plaintext
del generators / ds : <int list> ;
```

This command allows subgroup generators to be deleted from the presentation. If the generators are numbered from one in the output of, say, the `sr` command, then
the generators listed in \texttt{int list} are deleted. \texttt{int list} must be a strictly increasing sequence.

\texttt{del rel[ators] / dr : <int list> ;}

As \texttt{del gen}, but for the group’s relators.

\texttt{d[ump] : [0/1/2[,0/1]] ;}

Dumps the internal variables of \texttt{ACE}. The first argument selects which of the three levels of \texttt{ACE} to dump, and defaults to Level 0. The second argument selects the level of detail, and defaults to 0 (i.e., less detail). This option is intended for gurus; the source code should be consulted to see what the output means.

\texttt{easy ;}

If this strategy is selected, we run in R style (i.e., HLT) and turn lookahead & compaction off. For small and/or easy enumerations, this mode is likely to be the fastest.

\texttt{echo : [0/1] ;}

By default, \texttt{ACE} does not echo its commands. If you wish it to do so, turn this feature on with \texttt{echo:1}. This feature can be used to render output files from \texttt{ACE} less incomprehensible.

\texttt{enum[eration] / group name : <string> ;}

This command defines the name by which the current enumeration (i.e., the group being used) will be identified in any printout. It has no effect on the actual enumeration, and defaults to \texttt{G}. An empty name is accepted; to see what the current name is, use the \texttt{sr} command.

\texttt{fel[sch] : [0/1] ;}

An argument of 0 or no argument selects the Felsch strategy, while an argument of 1 selects Felsch with all relators in the subgroup and turns gap-filling on; see Section 3.2.

\texttt{f[actor] / fi[l]l factor] : [0/1..] ;}

If gap-filling is on, then gaps of length one found during deduction testing are preferentially filled (see [6]). However, this potentially violates the formal requirement that all rows in the table are eventually filled (and tested against the relators). The fill factor is used to ensure that some constant proportion of the coset table is always kept filled. Before defining a coset to fill a gap of length one, the enumerator checks whether \texttt{fi} times the completed part of the table is at least the total size of the table and, if not, fills rows in standard order instead of the gap.

An argument of 0 selects the default value of \([5(n + 2)/4]\), where \(n\) is the number of columns in the table. All other things being equal, we’d expect the ratio of the
total size of the table to the completed part of the table to be \( n + 1 \), so the default fill factor allows a moderate amount of gap-filling.

**NOTES:** If \( f_i \) is smaller than \( n \), then there is generally no gap-filling, although its processing overhead is still incurred. A large value of \( f_i \) can cause infinite looping. However, in general, a large value does work well. The effects of the various gap-filling strategies vary widely. It is not clear which values are good general defaults or, indeed, whether any strategy is always 'not too bad'.

**gen[erators] / subgroup gen[erators] :** <word list> ;

By default, there are no subgroup generators and the subgroup is trivial. This command allows a list of subgroup generating words to be entered. The format is the same as for relators, except that 'genuine' relations (i.e., \( w_1 = w_2 \)) are not allowed.

**gr[oup generators] : [<letter list> / int] ;**

This command introduces the group generators, which may be represented in one of two ways. They may be presented as a list of lower-case letters, optionally separated by commas. This is the usual method, and gives up to 26 generators. Subsequently, upper-case letters can be used, if desired, to stand for the inverse of their lower-case versions; e.g., \( A \) for \( a^{-1} \), \( B \) for \( b^{-1} \), etc. Alternatively, a positive integer can be used to indicate the number of generators. For example, \( gr:5 \) indicates that there are five generators, designated \( 1, 2, 3, 4 \& 5 \), with inverses \(-1\), etc.

**Notes:** Any use of the \( gr \) command which actually defines generators invalidates any previous enumeration, and stays in effect until the next \( gr \) command. Any words for the group or subgroup must be entered using the nominated generator format, and all printout will use this format. This command is not optional, nor is there any default. A valid set of generators is the minimum information necessary before \( ACE \) will attempt an enumeration.

**Guru Notes:** The columns of the coset table are allocated in the same order as the generators are listed, insofar as this is possible, given that the first two columns must be a generator/inverse pair or a pair of involutions. (This is an implementation issue, and is not formally necessary; see [1].) The ordering of the columns can, in some cases, effect the definition sequence of cosets and impact the statistics of an enumeration.

**group relators / rel[ators] :** <relation list> ;

By default, or if an empty argument to this command is used, the group is free. Otherwise, this command is used to introduce the group's defining relators. In order to allow \( ACE \) to accept presentations from a variety of sources, many kinds of word representations are allowed. \( ACE \) accepts words in the nominated generators, allowing \( * \) for multiplication, \( ^\_ \) for exponentiation and conjugation, and brackets for precedence specification. Round or square brackets may be used for commutation. (There is no danger of confusion between \( [a,b]/(a,b) \) and \( (ab) \), since \( a , \) implies commutation,
while no comma implies a word.) If letter generators are used, multiplication and exponentiation signs (but not conjugation signs) may be omitted; e.g., \(a^3\) is the same as \(a^*3\) and \(ab\) is the same as \(a*b\). Also, the exponent \(-1\) can be abbreviated to \(-\), so \(a^*\) stands for \(A\). Inverses can also be denoted by \(^\prime\) or /, so \(w_1w_2^' = w_1/w_2 = w_1w_2^{-1}\). The * can also be dropped for numeric generators; but of course two numeric generators, or a numeric exponent and a numeric generator, must be separated by whitespace. Remember that \(A\) stands for \(a^*-1\), \(a^b\) for \(Bab\) and \([a,b] \& [a,b,c]\) for \(ABab \& [[a,b],c]\).

relation list is a comma-separated list of relations. A relation is either a word \(w\) (equivalent to the relation \(w = 1\)) or a set of equivalent words, \(w_1 = w_2 = w_3\) say (equivalent to \(w_1w_2^{-1} = 1\) and \(w_1w_3^{-1} = 1\)). A (somewhat sketchy) BNF for the words is:

```plaintext
<word> = <factor> { "*" | "/" <factor> }
<factor> = <element> [["^"] <integer> | "^" <element>]
<element> = <generator> ["^"™]
| "(" <word> { "," <word> } ")" ["^"]™]
| "[" <word> { "," <word> } "]" ["^"]™]
```

In many ‘hard’ enumerations, a mixture of R-style and C-style definitions, all tested in all essentially different positions, is appropriate. This option selects such a mixed strategy; see Section 3.2. The idea here is that most of the work is done C-style (with the relators in the subgroup and with gap-filling active), but that every 1000 C-style definitions a further coset is applied to all relators.

**Guru Notes:** The 1000/1 mix is not necessarily optimal, and some experimentation may be needed to find an acceptable balance (see, for example, [8]). Note also that, the longer the total length of the presentation, the more work needs to be done for each coset application to the relators; one coset application can result in more than 1000 definitions, reversing the balance between R-style and C-style definitions.

```
help ;
```

Prints the help screen; i.e., all the headings in this appendix. Note that this list is fairly long, so its top may disappear off the top of the screen.

```
hlt ;
```

Selects the standard HLT strategy; see Section 3.2.

```
hole limit : [-1/0..100] ;
```

An experimental feature which allows an enumeration to be terminated when the percentage of holes in the table exceeds a given value. In practice, calculating this is very expensive, and it tends to remain constant or decrease throughout an enumeration. So the feature doesn’t seem very useful. The default value of -1 turns this feature off. If you want more details, read the source code.
look[ahead] : [0/1..4] ;

Although HLT-style strategies are fast, they are local, in the sense that the implications of any definitions/deductions made while applying cosets may not become apparent until much later. One way to alleviate this problem is to perform lookaheads occasionally; that is, to test the information in the table, looking for deductions or coincidences. ACE can perform a lookahead when the table overflows, before the compaction routine is called. An argument of 0 disables lookahead. Lookahead can be done using the entire table or only that part of the table above the current coset, and it can be done R-style (scanning cosets from the beginning of relators) or C-style (testing all definitions in all essentially different positions). An argument of 1 does a partial table, R-style lookahead; 2 does all the table, C-style; 3 does all the table, R-style; and 4 does a partial table, C-style. The default is either 0 or 1; see Section 3.2.

NOTES: A lookahead can do a significant amount of work, so this phase may take a long time. The value of mend is honoured during R-style lookaheads.

loop[ limit] : [0/1..] ;

The core enumerator is organised as a state machine, with each step performing an ‘action’ (i.e., lookahead, compaction) or a block of actions (i.e., |ct| coset definitions, |rt| coset applications). The number of passes through the main loop (i.e., steps) is counted, and the enumerator can make an early return when this count hits the value of loop. A value of 0, the default, turns this feature off.

GURU NOTES: You can do lots of really neat things using this feature, but you need some understanding of the internals of ACE to get real benefit from it. Read the code!

max[ cosets] : [0/2..] ;

By default, all of the workspace is used, if necessary, in building the coset table. So the table size is an upper bound on how many cosets can be active at any one time. The max option allows a limit to be placed on how much of the physical table space is made available to the enumerator. Enough space for at least two cosets (i.e., the subgroup and one other) must be made available. An argument of 0 selects all of the workspace.

mend[elsohn] : [0/1] ;

Mendelsohn style processing during relator scanning/closing is turned on by mend:1 and off by mend:0. Off is the default, and here coset applications are done only at the start (and end) of a relator. Mendelsohn on means that coset applications are done at all cyclic permutations of the (base) relator. The effect of the Mendelsohn parameter is case-specific. It can mean the difference between success or failure, or it can impact the number of cosets required, or it can have no effect on an enumeration’s statistics.
Table B.1: Possible enumeration results

<table>
<thead>
<tr>
<th>result</th>
<th>level</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX = x</td>
<td>0</td>
<td>finite index of x obtained</td>
</tr>
<tr>
<td>OVERFLOW</td>
<td>0</td>
<td>out of table space</td>
</tr>
<tr>
<td>SG PHASE OVERFLOW</td>
<td>0</td>
<td>out of space (processing subgroup generators)</td>
</tr>
<tr>
<td>ITERATION LIMIT</td>
<td>0</td>
<td>loop limit triggered</td>
</tr>
<tr>
<td>TIME LIMIT</td>
<td>0</td>
<td>ti limit triggered</td>
</tr>
<tr>
<td>HOLE LIMIT</td>
<td>0</td>
<td>ho limit triggered</td>
</tr>
<tr>
<td>INCOMPLETE TABLE</td>
<td>0</td>
<td>all cosets applied, but table has holes</td>
</tr>
<tr>
<td>MEMORY PROBLEM</td>
<td>1</td>
<td>out of memory (building data structures)</td>
</tr>
</tbody>
</table>

Notes: Processing all cyclic permutations of the relators can be very time-consuming, especially if the presentation if large. So, all other things being equal, the Mendelsohn flag should normally be left off. Note that Mendelsohn’s paper [11] discusses tracing all cyclic shifts of both the relators and their formal inverses. ACE only process the relators. However, since relators are scanned from both the front and the rear, we effectively process the inverses.

mess[ages] / mon[itor] : [int] ;

By default, or if the argument is 0, ACE prints out only a single line of information giving the result of each enumeration. If mess is non-zero then the presentation & the parameters are echoed at the start of the run, and messages on the enumeration’s status as it progresses are also printed out. The absolute value of int sets the frequency of the progress messages, with a negative sign turning hole monitoring on. The initial printout of the presentation & the parameters is the same as that produced by the sr:1 command; see Appendix A for some examples.

The result line gives the result of the call to the enumerator and some basic statistics (see Appendix A for some examples). The possible results are given in Table B.1; any result not listed represents an internal error and should be reported. The statistics given are, in order: a, number of active cosets; r, number of applied cosets; h, first (potentially) incomplete row; n, next coset definition number; l, number of main loop passes; c, total CPU time; m, maximum active cosets; and t, total cosets defined.

The progress message lines consist of an initial tag, some fixed statistics, and some variable statistics. The possible message tags are listed in Table B.2, along with their meanings. The tags indicate the function just completed by the enumerator. The tags with a ‘y’ in the ‘action’ column represent functions which are aggregated and counted. Every time this count overflows the value of mess, a message line is printed and the count is zeroed. Those tags flagged with a ‘y*’ are only present if the appropriate option has been included in the build (see the opt command). Tags with an ‘n’ in the ‘action’ column are not counted, and cause a message line to be output every time they occur. They also cause the action count to be reset.

The fixed portion of the statistics consists of the a, r, h, n, l & c values, as for the result line, except that c is the time since the previous message line. If mess < 0 then
### Table B.2: Possible progress messages

<table>
<thead>
<tr>
<th>message</th>
<th>action</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>y</td>
<td>coset #1 application definition (SG/RS phase)</td>
</tr>
<tr>
<td>RD</td>
<td>y</td>
<td>R-style definition</td>
</tr>
<tr>
<td>RF</td>
<td>y</td>
<td>row-filling definition</td>
</tr>
<tr>
<td>CG</td>
<td>y</td>
<td>immediate gap-filling definition</td>
</tr>
<tr>
<td>CC</td>
<td>y*</td>
<td>coincidence processed</td>
</tr>
<tr>
<td>DD</td>
<td>y*</td>
<td>deduction processed</td>
</tr>
<tr>
<td>CP</td>
<td>y</td>
<td>preferred list gap-filling definition</td>
</tr>
<tr>
<td>CD</td>
<td>y</td>
<td>C-style definition</td>
</tr>
<tr>
<td>Lx</td>
<td>n</td>
<td>lookahead performed (type x)</td>
</tr>
<tr>
<td>CD</td>
<td>n</td>
<td>table compacted</td>
</tr>
<tr>
<td>CL</td>
<td>n</td>
<td>complete lookahead (table as deduction stack)</td>
</tr>
<tr>
<td>UH</td>
<td>n</td>
<td>updated completed-row counter</td>
</tr>
<tr>
<td>RA</td>
<td>n</td>
<td>remaining cosets applied to relators</td>
</tr>
<tr>
<td>SG</td>
<td>n</td>
<td>subgroup generator phase</td>
</tr>
<tr>
<td>RS</td>
<td>n</td>
<td>relators in subgroup phase</td>
</tr>
<tr>
<td>DS</td>
<td>n</td>
<td>stack overflowed (compacted and doubled)</td>
</tr>
</tbody>
</table>

Hole monitoring is active, and an h statistic (representing the percentage of holes in the table) is inserted between the n & l values. The variable portion of the statistics can be: the m & t values, as for the result line; d, the current size of the deduction stack; s, d & c (with DS tag), the new stack size, the non-redundant deductions retained, and the redundant deductions discarded.

**Notes:** Hole monitoring is expensive, so don’t turn it on unless you really need it. If you wish to print out the presentation & the parameters, but not the progress messages, then set mess non-zero, but very large. (You’ll still get the SG, DS, etc. messages, but not the RD, DD, etc. ones.) You can set mess to 1, to monitor all enumerator actions, but be warned that this can yield very large output files.

**mo[de] ;**  
Prints the possible enumeration modes, as deduced from the command history since the last call to the enumerator; see Section 3.1.

**nc / normal[ closure] : [0/1] ;**  
This option takes the current table (which may or may not be complete), and traces $g^{-1}wg$ and $gwg^{-1}$ for all group generators $g$ and all subgroup generator words $w$. The trace starts at coset #1 (ie, the subgroup), and we note whether we get back to coset #1 or not. If we do not, then we print out a line of output. If the argument is present & set (ie, 1), then the offending conjugate is also added to the subgroup generators; the default is not to do so. A single pass though the (original) subgroup generators is made, and scans which do not complete are not processed (ie, printed/added).

**Notes:** It is the users responsibility to rerun the enumeration (& the nc option) as necessary until the situation stabilises.
no[ relators in subgroup] : [-1/0/1..] ;

It is sometimes helpful to include the relators in the subgroup, in the sense that they are applied to coset #1 at the start of an enumeration. An argument of 0 turns this feature off, and an argument of -1 includes all the relators. A positive argument includes the appropriate number of relators, in order.

oo / order[ option] : int ;

This option finds a coset with order a multiple of \(|\text{int}|\) modulo the subgroup, and prints out its coset representative. If \(\text{int} < 0\), then all cosets meeting the requirement are printed. If \(\text{int} = 0\), then the orders of all cosets are printed. If \(\text{int} > 0\), then the first coset meeting the requirement is printed.

opt[ions] ;

This command dumps details of the options included in the version of ACE you’re running; i.e., what compiler flags were set when the executable was built. A typical output, illustrating the default build, is:

Executable built:
    Sat Feb 27 15:57:59 EST 1999
Level 0 options:
    statistics package = on
    coinc processing messages = on
    dedn processing messages = on
Level 1 options:
    workspace multipliers = decimal
Level 2 options:
    host info = on

par[ameters] ;

An old option, which did nothing. It is included for backward compatibility. Pre-ACE 3.001 scripts may contain this option, which is quietly ignored by ACE 3.001.

path[ compression] : [0/1] ;

To correctly process multiple coincidences, a union-find must be performed. If both path compression and weighted union are used, then this can be done in essentially linear time (see, e.g., [4]). Weighted union alone, in the worst-case, is worse than linear, but is subquadratic. In practice, path compression is expensive, since it involves many coset table accesses. So, by default, path compression is turned off; it can be turned on by \texttt{path:1}. It has no effect on the result, but may effect the running time and the internal statistics.

Guru Notes: The whole question of the best way to handle large coincidence forests is problematic. Formally, ACE does not do a weighted union, since it is constrained to replace the higher-numbered of a coincident pair. In practice, this seems to amount to much the same thing! Turning path compression on cuts down the amount of data movement during coincidence processing at the expense of having to trace the paths and compress them. In general, it does not seem to be worthwhile.
pd mode / pmod[e] : [0/1..3] ;

If the argument is 0, then Felsch style definitions are made using the next empty table slot. If the argument is non-zero, then gaps of length one found during relator scans in Felsch style are preferentially filled (subject to the value of fi). If the argument is 1, they are filled immediately, and if it is 2, the consequent deduction is also made immediately (of course, these are also put on the deduction stack). If the argument is 3, then the gaps are noted in the preferred definition queue. Provided a live such gap survives (and no coincidence occurs, which causes the queue to be discarded) the next coset will be defined to fill the oldest gap of length one. The default value is either 0 or 3, depending on the strategy selected (see Section 3.2). If you want to know more details, read the code.

pd size / psiz[e] : [0/2/4/8/...] ;

The preferred definition queue is implemented as a ring, dropping earliest entries. Its size must be $2^n$, for some $n > 0$. An argument of 0 selects the default size of 256. Each queue slot takes two words (i.e., 8 bytes), and the queue can store up to $2^n - 1$ entries.

print details / sr : [int] ;

This command prints out details of the current presentation and parameters. No argument, or an argument of 0, prints out the group & subgroup name, the group’s relators and the subgroup’s generators. If the argument is 1, then the current setting of the enumeration control parameters is also printed. (This printout is the same as that produced at the start of a run when messaging is on.) Arguments of 2 – 5 print out the current values of enum, rel, subg & gen, respectively. See Appendix A for some examples.

Notes: The output is printed out in a form suitable for input, so that a record of a previous run can be used to replicate the run. Note that, due to the defaulting of some parameters and the special meaning attached to some values, a little care has to be taken in interpreting the parameters. If you wish to exactly duplicate a run, you should use the output of sr after the run completes.

pr[int table] : [[-]int[,,int]] ;

Compact the table, and then print it out from the first to the second argument, in steps of the third argument. If the first argument is negative, then the orders (if available) and representatives of the cosets are printed also. The third argument defaults to one. The one-argument form is equivalent to the two-argument form with a first argument of 1 and the argument used as the second argument. The no-argument form prints the entire table, without orders or representatives.

pure c[t] ;

Sets the strategy to basic C-style (coset table based) – no compaction, no gap-filling, no relators in subgroup; see Section 3.2.
pure r[t] ;
Sets the strategy to basic R-style (relator based) – no Mendelsohn, no compaction, no lookahead, no row-filling; see Section 3.2.

rc / random coincidences: int[,int] ;
This option attempts to find nontrivial subgroups with index a multiple of the first argument by repeatedly putting random cosets coincident with coset #1 and seeing what happens. If the first argument is 0 any non-trivial finite index is accepted, while if it’s 1 any finite index will do. The starting coset table must be non-empty, but need not be complete. The second argument puts a limit on the number of attempts, with a default of eight. For each attempt, we repeatedly add random coset representatives to the subgroup and redo the enumeration. If the table becomes too small, the attempt is aborted, the original subgroup generators restored, the CT is recalculated, and another attempt made. If an attempt succeeds, then the new set of subgroup generators is retained.

GURU NOTES: (i) A coset can have many different representatives. Consider running st before rc, to canonicalise the table and the representatives. This makes the reps minimal; sadly, however, it will only do so for the first of a series of attempts. (ii) If a series of attempts to find a subgroup fails, consider running the enumeration with different parameters. Although rc is random, it is always working with the same coset table; changing the parameters will give a different table and hence a different set of reps.

rec[over] / contiguous ;
Invokes the compaction routine on the table to recover the space used by any dead cosets. A CO message line is printed if any cosets were recovered, and a co line if none were. This routine is called automatically if the cy, nc, pr or st options are invoked.

rep : 1..7[,int] ;
The rep (random equivalent presentations) option complements the aep option. It generates and tests some random equivalent presentations. The mandatory argument acts as for aep, while the optional second argument sets the number of presentations, with a default of eight.

The routine first turns asis on and mess off, and then generates and tests the requested equivalent presentations. For each presentation the relators used and the summary result line is printed. asis & mess are now restored to their original values, and the system is ready for further commands.

NOTES: The relator inversions & rotations are ‘genuinely’ random. The relator permuting is a little bit of a kludge, with the ‘quality’ of the permutations tending to improve with successive presentations. When the rep command completes, the presentation active is the last one generated.
**Guru Note:** It might appear that neglecting to restore the original presentation is an error. In fact, it is a useful feature! Suppose that the space of equivalent presentations is too large to exhaustively test. As noted in the entry for `aep`, we can start up multiple copies of `aep` at random points in the search-space. Manually generating ‘random’ equivalent presentations to serve as starting-points is tedious and error-prone. The `rep` option provides a simple solution; simply run `rep` before `aep`!

```
restart;
```

An old option, included for backward compatibility. Use the `check/redo` option instead. Pre-ACE 3.001 scripts may contain this option, which is quietly ignored by ACE 3.001.

```
```

The value of this parameter sets the ‘blocking factor’ for R-style definitions; i.e., the number of cosets applied to all the relators during each pass through the enumerator’s main loop. The absolute value of `int` is the value used. The enumeration style is selected by the values of the `ct` & `rt` parameters; see Section 3.1.

```
row[filling] : [0/1] ;
```

When making HLT-style definitions, it is normal to scan each row of the table after its coset has been applied to all relators, and make definitions to fill any holes encountered. Failure to do so can cause even simple enumerations to overflow; see Section A.3. To turn row filling off, use `row:0`.

```
sc / stabil[ising cosets] : int ;
```

This option takes the current table (which may or may not be complete), and looks for (the requested number of) cosets which ‘stabilise’ the subgroup. A coset $c$ stabilises the subgroup $\langle w_1, \ldots, w_s \rangle$ if $cw_j = c$ for all $1 \leq j \leq s$. If `int` > 0, the first `int` stabilising cosets found are printed. If `int` = 0, all of the stabilising cosets, plus their representatives, are printed. If `int` < 0, the first `$|\text{int}|$` stabilising cosets, plus their representatives, are printed.

```
sims : 1/3/5/7/9 ;
```

In his book [15], Sims discusses ten standard enumeration strategies. These are effectively HLT (with & without the `mend` parameter, and with & without continuous ‘lookahead’) and Felsch, all either with or without table standardisation as the enumeration proceeds. ACE does not implement table standardisation on an ongoing basis, although tables from an incomplete or paused enumeration can be standardised before the enumeration is continued. The other five strategies are implemented, and can be selected by this command. The argument matches the number given in [15, §5.5]; see Section 3.2 for the parameter settings. With care, it is possible to duplicate the statistics given in [15]; some examples are given in Section A.2.
This option compacts and then standardises the table (which may or may not be complete). That is, for a given ordering of the generators in the columns of the table, it produces the ‘canonic’ version of the current table. In such a table, a row-major scan encounters previously unseen cosets in (contiguous) numeric order; see Section A.1 for an example.

Notes: (i) In a canonic table, the coset representatives are in length plus (column order) lexicographic order, and each is the minimum in this order. Further, they are a Schreier set (i.e., each prefix of a rep is also a rep). (ii) See Sims [15] for a discussion of standardising tables, and what this achieves.

Guru Notes: In half of the ten standard enumeration strategies of Sims [15], the table is standardised repeatedly. This is expensive computationally, but can result in fewer cosets being necessary. The effect of doing this can be investigated in ACE by (repeatedly) halting the enumeration, standardising the table, and continuing; see Section A.8 for an example.

If the statistics package is compiled into the code (which it is by default, see the opt command), then dump the statistics accumulated during the most recent enumeration. See Section A.1 for an example, and the enum.c source file for the meaning of the variables.

Prints the current enumeration style, as deduced from the current Ct & Rt parameters; see Section 3.1.

This command defines the name by which the current subgroup will be identified in any printout. It has no effect on the actual enumeration, and defaults to H. An empty name is accepted; to see what the current name is, use the sr command.

Passes string to a shell, via the C library routine system().

Just echoes the string. This allows the output from a run driven by a script to be tarted up.

The ti command puts a time limit (in seconds) on the length of a run. An argument of < 0 mean there is no limit (the default). If the argument is ≥ 0 then the total elapsed time for this call is checked at the end of each pass through the enumerator’s
main loop, and if it’s more than the limit the run is stopped and the current table returned. Note that a limit of 0 performs exactly one pass through the main loop, since \(0 \geq 0\). If the enumerator is run in the continue mode, this allows a form of ‘single-stepping’. The time limit is approximate, in the sense that the enumerator may run for a longer, but never a shorter, time. So, if there is, e.g., a big collapse (so that the time round the loop becomes very long), then the run may run over the limit by a large amount.

**Notes:** The time limit is CPU-time, not wall-time. As in all timing under Unix, the clock’s granularity (usually 10 mSec) and the system load can affect the timing; so the number of main loop iterations in a given time may vary. If you want more precise control, use the `loop` option.

\[ \text{tw / trace[ word]} : \text{int},<\text{word}> ; \]

Traces `word` through the coset table, starting at coset `int`. Prints the final coset, if the trace completes.

\[ \text{wo[rkspace]} : [\text{int}[k/m/g]] ; \]

By default, ACE has a physical table size of \(10^6\) entries (i.e., \(4 \times 10^6\) bytes in the default 32-bit environment). The number of cosets in the table is the table size divided by the number of columns. The `wo` command allows the physical table size, in entries, to be set. The argument is multiplied by 1, \(10^3\), \(10^6\), or \(10^9\), depending as nothing, a `k`, an `m`, or a `g` is appended to the argument. Although the number of cosets is limited to \(2^{31} - 1\) (if the C `int` type is 32 bits), the table size can exceed the 4GByte 32-bit limit if a suitable machine is used.

**Notes:** If the binary option is set (see the `opt` command), the multipliers are 1, \(2^{10}\), \(2^{20}\) & \(2^{30}\) respectively. The actual number of cosets in the table is entries/columns – 2, rounded down to the nearest integer. The –2 is to allow for possible rounding errors and the fact that coset #0 is not used.

\[ \# ... <\text{newline}> \]

Any input between a sharp sign (#) and the next newline is ignored. This allows comments to be included anywhere in command scripts.
APPENDIX C

State machine details

Figure C.1: The R/C style

31 6
Chk
> 0 256

44 7
SG
260 2 1

To state 41
of CR style
Figure C.2: The R* style

```
Figure C.2: The R* style
```

```
import diagram

isave T
20 -
| | 1
Redo

59 5
| | CL
| 1

2 1

256

isave edapp T
2 -
| | 1
Start

60 7
| | SG
| 1 260

cdapp T

isave T
11 -
| | 1
Continue

61 9
| | RP
| 2 0 1

62 3
| | CO
| 0 1

31 6
| | Chk
| > 0 256
```
Figure C.3: The Cr style

To state 35
of C style
Figure C.4: The C style

- isave T
  - 24
    - Redo
      - 2
      - CL
      - 32
      - 5
      - 2
  - 33
    - SG
      - 2
      - 1
      - 260
  - 34
    - RS
      - 2
      - 0
      - 1

- isave T
  - 6
    - Start
      - 1

- isave T
  - 15
    - Continue
      - 1

- cdapp T
  - 31
    - Chk
      - > 0
      - 256
  - 32
    - CL
      - 2
      - 1
  - 33
    - SG
      - 2
      - 1
      - 260
  - 34
    - RS
      - 2
      - 0
      - 1

- cdapp T
  - 35
    - CD
      - 2
      - 0
      - 1
  - 36
    - CO
      - 0
      - 1
Figure C.5: The Rc style

- Redo
- Start
- Continue
- SG
- CO
- CD
- Clk
- F
- T
- isave
- cdapp
- F
- 1
- 2
- 5
- 6
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
Figure C.6: The R style

1. Start
2. RD
3. Lx
4. CO
5. Chk
6. SG
7. Redo
8. Continue
9. Continue
10. Continue
11. Continue
12. Continue
13. Continue
14. Continue
15. Continue
16. Continue
17. Continue
18. Continue
19. Continue
20. Continue
21. Continue
22. Continue
23. Continue
24. Continue
25. Continue
26. Continue
27. Continue
28. Continue
29. Continue
30. Continue
31. Continue
32. Continue
33. Continue
34. Continue
35. Continue
36. Continue
37. Continue
38. Continue
39. Continue
40. Continue
41. Continue

F = False
T = True
iso = isave
cdapp = check
APPENDIX D

Abbreviations

This appendix lists: the abbreviations and acronyms we use; the technical terms we use; the various terms used in describing ACE, and in explicating its internals; any terms specific to PACE or PEACE which are used. Note that this list includes both terms used in this manual and terms commonly used in the source code.

**ACE** advanced coset enumerator
aka also known as
alive an active (non-pending/dead) coset
ANSI American national standards institute
arg argument
asap as soon as possible
ave average
barrier sync point at which all threads wait until all are ready
beg(in) starts an enumeration ab initio
bn between
BSD Berkeley standard distribution
C the best programming language, ever
CC coinc coset processed (enumeration message/phase)
CD coset table definition (enumeration message/phase)
cds complete definition sequence
check synonym for redo
Chk result checking (enumeration message/phase)
CL coset table based lookahead (enumeration message/phase)
cmd command
CO table compaction (enumeration message/phase)
coinc coincidence. Primary coinc – occurs during defns/scans.
Secondary coinc – consequence of a primary one
col column
concurrent potentially at the same time, or virtual parallelism
cont(inue) continues the current enumeration
cos coset
C(PU) aggregated CPU time for an enumeration
CPU central processor unit
CRG the PACE style – coset table, relator tables & gap filling
CT coset table
DD serial deduction stack processing (enumeration message/phase)
dead a fully processed coinc coset
dedn deduction. Formally – a deduction made during relator scanning.
Loosely – any (new/altered) table entry which is stacked
defn definition
defn seq definition sequence
DG serial gap-filling (enumeration message/phase)
DOSTK dedn processing macro, calls appropriate handler
DS definition sequence
dtime total elapsed time in DOSTK macro (part of stats)
DTT special debug/test/trace code
edp essentially different position(s)
eg exempli gratio, for example
elt element
end synonym for begin (don’t blame me!)
EOF end-of-file
EOL end-of-line
Err error (enumeration message/phase)
etc et cetera
F FALSE
G the group
gen generator, either of grp or of subgrp
GNU GNU’s not Unix – quality ‘freeware’
g(p) growth function of T with p
grp group
H the subgroup
HD heuristic definition (enumeration message/phase)
ie id est, that is
inc(l) include/including
inc(r) increase/increasing
inv inverse
invol(n) involution
I/O input/output
IP, i/p input
item PWs are sequences of items
KISS keep it simple, stupid
(kn)h coset table rows <knh are guaranteed to be complete
(kn)r coset table rows <knr are guaranteed to scan at all relators
LC lower-case
len length
lst list
LWP lightweight process – sorta like a thread, but not quite
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m, M</td>
<td>MaxCos, the maximum number of cosets active</td>
</tr>
<tr>
<td>mode</td>
<td>start, continue or redo an enumeration</td>
</tr>
<tr>
<td>mutex</td>
<td>POSIX mutual exclusion lock</td>
</tr>
<tr>
<td>n</td>
<td>the number of slaves/threads (i.e., the argument of <code>beg</code>)</td>
</tr>
<tr>
<td>n/a</td>
<td>not applicable</td>
</tr>
<tr>
<td>n(extdf)</td>
<td>number of next coset to be defined</td>
</tr>
<tr>
<td>nproc</td>
<td>global variable containing value of <code>n</code></td>
</tr>
<tr>
<td>NW</td>
<td>non-whitespace (i.e., not space, tab, or (maybe) newline)</td>
</tr>
<tr>
<td>OP, o/p</td>
<td>output</td>
</tr>
<tr>
<td>OS</td>
<td>operating system</td>
</tr>
<tr>
<td>p</td>
<td>the dedn stack batching factor (i.e., the argument of <code>pf</code>)</td>
</tr>
<tr>
<td>PACE</td>
<td>parallel ACE</td>
</tr>
<tr>
<td>PAR</td>
<td>the parallelisable portion of the running time</td>
</tr>
<tr>
<td>para</td>
<td>paragraph</td>
</tr>
<tr>
<td>parallel</td>
<td>actually at the same time, or real parallelism</td>
</tr>
<tr>
<td>parallel</td>
<td>a PACE run with $n \neq 0$</td>
</tr>
<tr>
<td>parentheses</td>
<td>the &quot;(&quot; &amp; &quot;)&quot; characters</td>
</tr>
<tr>
<td>PC</td>
<td>proof certificate</td>
</tr>
<tr>
<td>pdl</td>
<td>preferred definition list</td>
</tr>
<tr>
<td>PEACE</td>
<td>proof extraction after coset enumeration</td>
</tr>
<tr>
<td>pending</td>
<td>a coset on the coinc queue but not yet processed</td>
</tr>
<tr>
<td>pfactor</td>
<td>global variable containing value of <code>p</code></td>
</tr>
<tr>
<td>pthread</td>
<td>POSIX thread</td>
</tr>
<tr>
<td>PD</td>
<td>parallel deduction stack processing (enumeration message/phase)</td>
</tr>
<tr>
<td>PG</td>
<td>parallel gap-filling (enumeration message/phase)</td>
</tr>
<tr>
<td>pos(n)</td>
<td>position</td>
</tr>
<tr>
<td>POSIXX</td>
<td>portable operating system interface</td>
</tr>
<tr>
<td>PPP</td>
<td>paranoia prevent problems (i.e., belts’n’braces)</td>
</tr>
<tr>
<td>pri</td>
<td>primary</td>
</tr>
<tr>
<td>PT</td>
<td>proof table</td>
</tr>
<tr>
<td>ptr</td>
<td>pointer</td>
</tr>
<tr>
<td>PW</td>
<td>proof word</td>
</tr>
<tr>
<td>RD</td>
<td>relator table definition (enumeration message/phase)</td>
</tr>
<tr>
<td>RA</td>
<td>relator application check (enumeration message/phase)</td>
</tr>
<tr>
<td>redo</td>
<td>redo the current enumeration (keeping the table)</td>
</tr>
<tr>
<td>red(n)</td>
<td>reduction</td>
</tr>
<tr>
<td>redundant</td>
<td>a dead coset</td>
</tr>
<tr>
<td>rel</td>
<td>relator and/or relation</td>
</tr>
<tr>
<td>rep</td>
<td>the (current) representative of a coincident coset</td>
</tr>
<tr>
<td>RS</td>
<td>relators in subgroup (enumeration message/phase)</td>
</tr>
<tr>
<td>sec</td>
<td>secondary</td>
</tr>
<tr>
<td>semaphore</td>
<td>sync primitive allowing signalling between threads</td>
</tr>
</tbody>
</table>
seq    sequence
SER    the serial portion of the running time
serial a PACE run using \texttt{beg:0}, or an ACE run
SG     subgroup generator (enumeration message/phase)
SMP    shared memory multiprocessor and/or symmetric multiprocessing
spin-lock sync via sitting in tight loop until a condition is met
square the “[” \& “]” characters

src    source
stats  statistics (package)
\textbf{start} synonym for \texttt{begin}
strategy the overall enumeration method (ie, HLT, Felsch, Sims:n, etc)
style  which of the state machines is active (ie, R, C, CR, etc)
subgrp subgroup
\textbf{Sync} the master-slave synchronisation overhead time
sync   synchronous, synchronisation
\texttt{t, T} TotCos, the total number of cosets defined
T      TRUE
TAB    tabulate character
TBA    to be announced/advised
thread an independent execution sequence within a process
tuple  4-element record of significant scan, see the \texttt{Dilett} type (in \texttt{a10.h})
UC     upper-case
UH     update hole count check (enumeration message/phase)
vs     versus
\texttt{W(ALL)} elapsed, or wall, time for an enumeration
wrd    word
WS     white-space; ie, blanks, tabs, \& newlines (maybe)
References


