Magma V2.15-13 Sun Jan 10 2010 04:10:45 on emory [Seed = 3099276670] Type ? for help. Type -D to quit. > G := Group< a,b | a^2, b^3, (a*b)^13, (a,b)^4 >; > AQInvariants( G ); //shows G is perfect [] > LI := LowIndexSubgroups( G, 26 ); > S := LI[10]; S; //S has index 26 in G Finitely presented group S on 3 generators Index in group G is 26 = 2 * 13 Generators as words in group G S.1 = a S.2 = b * a * b * a * b^-1 S.3 = b^-1 * a * b * a * b * a * b * a * b^-1 * a * b * a * b * a * b^-1 * a * b > h1, P := CosetAction( G, S ); ChiefFactors( P ); G | A(2, 3) = L(3, 3) * | Cyclic(2) (12 copies) 1 > #Complements( P, pCore(P,2) ); //the max normal 2-sgp is complemented in P 2 > hbar, PP := CosetAction( G, LI[2] ); #PP; //LI[2] has index 13 in G 5616 > KK := Kernel( hbar ); Index( G, KK ); Index( P, h1(KK) ); 5616 5616 > KK := Rewrite( G, KK : Simplify:=false ); > _ := pQuotient( KK, 2, 2 : Print:=1 ); //shows that KK = (C_2)^12 Lower exponent-2 central series for KK Group: KK to lower exponent-2 central class 1 has order 2^12 Group completed. Lower exponent-2 central class = 1, Order = 2^12 > T := LI[6]; //T has index 26 in G > h2, Q := CosetAction( G, T ); ChiefFactors( Q ); G | A(1, 25) = L(2, 25) 1 > L := Kernel( h2 ); L := Rewrite( G, L : Simplify:=false ); > AQInvariants( L ); [] > x := (a*b)^2*a*b^-1; x in S; Order( h1(x) ); Order( h2(x) ); true 16 13 > //Compute the inverse image I of a Sylow 2-subgroup P_2 x Q_2 of P x Q. > //This is not completely straightforward, but may be done as follows. > //(It is convenient to choose I such that x^13 is in I$, which is the > //purpose of the explicit for loop in the following code.) > P2 := Sylow( P, 2 ); > for g in Transversal( P, P2 ) do for> if h1(x^13) in P2^g then P2 := P2^g; break; end if; for> end for; > h1(x^13) in P2; true > m1 := CosetAction( P, P2 ); > IP2 := sub< G | h1*m1 >; Index( G, IP2 ); IP2 := Rewrite( G, IP2 ); 351 > h2r := hom< IP2 -> Q | [ h2(IP2.i) : i in [1..Ngens(IP2)] ] >; > Q2 := Sylow( Q, 2 ); m2 := CosetAction( Q, Q2 ); > I := sub< IP2 | h2r*m2 >; Index( IP2, I ); 975 > I := Rewrite( IP2, I : Simplify:=false ); > _, pqm := pQuotient( I, 2, 12 : Print:=1 ); Lower exponent-2 central series for I Group: I to lower exponent-2 central class 1 has order 2^6 Group: I to lower exponent-2 central class 2 has order 2^10 Group: I to lower exponent-2 central class 3 has order 2^13 Group: I to lower exponent-2 central class 4 has order 2^15 Group: I to lower exponent-2 central class 5 has order 2^16 Group: I to lower exponent-2 central class 6 has order 2^17 Group: I to lower exponent-2 central class 7 has order 2^18 Group: I to lower exponent-2 central class 8 has order 2^19 Group: I to lower exponent-2 central class 9 has order 2^20 Group completed. Lower exponent-2 central class = 9, Order = 2^20 > Factorisation( #P2 * #Q2 ); [ <2, 19> ] > y := I!IP2!(x^13); Order( pqm( y ) ); 16 > S := Rewrite( G, S ); x := S!x; > Index( S, sub : CosetLimit:=10^8, Hard:=true, Mendelsohn:=true ); 66355200 > [ pMultiplicator( P, p ) : p in [2,3,13] ]; [ [ 2, 2 ], [ 1 ], [ 1 ] ] > [ pMultiplicator( Q, p ) : p in [2,3,5,13] ]; [ [ 2 ], [ 1 ], [ 1 ], [ 1 ] ] > //We determine the structure of the normal subgroup of order 2^13. > //To build the subgroup we choose random elements in I and test them for > //membership in the subgroup, until we have the complete subgroup. > C := pCore(P,2); elts := []; > repeat repeat> repeat z := Random(I,10,15); until h1(z) in C and h2r(z) eq Id(Q); repeat> Append(~elts, pqm(z)); U := sub< Image(pqm) | elts >; repeat> until #U eq 2^13; > IsExtraSpecial(U); true > FormType( ActionGroup( GModule( P, C ) ) ); orthogonalminus > Ep := ExtraSpecialGroup( 2, 6 : Type := "+" ); > Em := ExtraSpecialGroup( 2, 6 : Type := "-" ); > #{ x : x in Ep | Order(x) eq 2 }; #{ x : x in Em | Order(x) eq 2 }; 4159 4031 > #{ x : x in U | Order(x) eq 2 }; 4031 > //We now address H > H := Group< c,d | c^2, d^3, (c*d)^13 * (c,d)^-4 >; > AQInvariants( H ); [] > Index( H, sub< H | c*d, (c,d) > ); 1 Total time: 1550.490 seconds, Total memory usage: 2562.94MB