
Hermite normal form computation

for integer matrices

George Havas∗ and Bohdan S. Majewski†

Key Centre for Software Technology

Department of Computer Science

The University of Queensland

Queensland 4072, Australia

Abstract

We consider algorithms for computing the Hermite normal form of integer

matrices. Various different strategies have been proposed, primarily trying to

avoid the major obstacle that occurs in such computations — explosive growth

in size of intermediate entries. We analyze some methods for computing the

Hermite normal form and we show the intractability of associated problems.

We investigate in detail a method based on an algorithm due to Blankinship

and show how improved performance is achieved.

1 Introduction

Integer matrices A and B are row equivalent if there exists a unimodular matrix P
such that A = PB. Matrix P corresponds to a sequence of elementary row operations:
negating a row; adding an integer multiple of one row to another; or interchanging two
rows. It follows from a result of Hermite [Her51] that for any integer matrix B there
exists a unique upper triangular matrix H, which satisfies the following conditions.
• Let r be the rank of B. Then the first r rows of H are nonzero.
• For 1 ≤ i ≤ r let H[i, ji] be the first nonzero entry in row i. Then j1 < j2 < . . . < jr.
• H[i, ji] > 0, for 1 ≤ i ≤ r.
• For 1 ≤ k < i ≤ r, H[i, ji] > H[k, ji] ≥ 0.

This matrix is called the row Hermite normal form (HNF) of the given matrix B
and has many important applications. There is a “standard” algorithm for computing
the HNF, based on Gaussian elimination. Unfortunately the standard algorithm
suffers from serious practical difficulties. Modular methods can be used, but the com-
plexity bounds have relatively high degree when compared to integer based methods.
That is why we study integer methods here.

∗E-mail: havas@cs.uq.oz.au; partially supported by the Australian Research Council
†E-mail: bohdan@cs.uq.oz.au

1

Many of the problems which we address here are very similar to problems which
arise in the related task of computing another canonical form of integer matrices, the
Smith normal form (SNF). Computation of that form is studied in detail in [HHR93],
which provides background material also relevant to HNF calculation. It presents
detailed justifications for the use of integer as against modular methods, and includes
a comprehensive bibliography plus a number of examples.

In this paper we indicate the difficulties that need to be faced in pursuing an
efficient method for computing the Hermite normal form of an integer matrix. We
present and analyze a method which gives more efficient solutions.

We use the following notation. For a m × n integer matrix B we denote its i-th
row by bi∗ and its j-th column by b∗j. The absolute value of x is denoted by |x|, while
det(B) stands for the determinant of B. We denote by ||B|| the maximum absolute
value of any entry in B. Matrix B may be alternatively written as

B = [b∗1, . . . ,b∗n] =









b1∗

...
bm∗









.

2 Existing methods

Our primary goal in Hermite normal form computations is to minimize the size of
the intermediate entry with maximum magnitude. In this section we discuss some
existing methods and describe how they deal with that problem.

Kannan and Bachem [KB79] compute the Hermite normal form of an integer
matrix B by putting the principal minors of B into HNF. They prove that such an
approach results in polynomial time algorithms. Chou and Collins [CC82] improve
the bounds given in [KB79] by modifying the procedure for normalizing entries above
the main diagonal. This approach has merits in that it provides a method whose
complexity can be formally analyzed. However it seems hard to modify in a way
which keeps the basic method but improves the performance. The main reason is the
inherently binary character of the method, in the sense that each of its row operations
involves at most two rows.

In general such a binary approach suffers greatly from a lack of broader perspective.
Consider the i-th step of the algorithm. In this step, the i-th row needs its leading
entries forced to 0. For j < i, the j-th entry, once made divisible by bjj, is changed
to 0 by adding row j multiplied by −bij/ gcd(bjj, bij) to row i. Most of the time
gcd(bjj, bij) is a small constant, 1 being very common for large matrices. Hence the
entries in the i-th row may essentially be squared each time an entry is forced to zero.
More precisely we have:

Theorem 1 [KB79, Lemma 2] At any stage of the execution of the algorithm the
largest entry in B does not exceed 22nn20n3

||B1||12n3

.

Here B1 denotes the original matrix, which has size n × n, and B is the working
matrix. Thus, although the algorithm is polynomial, the upper bound on the length
of numbers it may operate on is in excess of 20n3 digits.

2

An alternative way to compute the Hermite normal form is to compute it column
by column [Bod56, Bra71, Fru76, Hu69, PB74], which necessitates forcing all entries
in a column below the main diagonal to 0. Such a technique allows greater freedom,
as more than two rows at a time can participate in calculations. Unfortunately, as
often reported in the literature, many methods that use this approach perform quite
badly.

In a study on SNF calculation in [HHR93], there are examples where, after a small
number of steps, naive methods create intermediate entries hundreds of digits long.
On the other hand a number of heuristics are given in [HHR93] that perform very well
in practice. A good example is provided by their 26×27 integer matrix called R1. The
entry with largest magnitude in the initial matrix R1 is −3, and 46% of all entries
are 0. In this case, pivoting on the maximum entry generates an entry with 1626
decimal digits in an incomplete calculation during which only the first 12 columns
are cleared below the diagonal. Pivoting on the first nonzero element gives a largest
entry with 262 decimal digits in completely computing the HNF. The algorithms
of Kannan-Bachem and Chou-Collins both lead to 12 decimal digit numbers, which
needs multiple precision on 32 bit machines. Heuristic approaches, which take into
account issues considered in this paper, complete the process with 7 decimal digit
largest entries. In fact, excluding a final column adjustment step (which converts the
matrix from a row echelon form to HNF), the largest entry is the same as the largest
entry in the final output, 5 decimal digits.

In the following section we look at the difficulties and give reasons for the bad
performance of naive methods. Next we explain why heuristic methods like those
presented in [HHR93] perform so much better.

3 Entry explosion

We distinguish two different techniques. The first one, which is simpler, computes
the gcd of a number of elements (expressed as their linear combination) explicitly
([Bod56, Bra71, Hu69]). In other words, in the i-th step we ask for an integer vector
x, such that

x · b∗i = gcd(bii, . . . , bni).

Once this is achieved we use the i-th row to force the remaining entries to 0. (The
leading entry of the i-th row divides any other entry in the i-th column, hence forcing
any entry to 0 is a straightforward operation.)

The simplicity of this approach relies on the fact that at each step we are only
concerned with gcd computations for n numbers, a problem which is studied in detail
in [MH94]. Unfortunately, the method has significant disadvantages. Let us analyze
the method by looking at the operations performed for the first column. Firstly we
have the issue of finding a short vector x.

Theorem 2 [MH94] For a given vector of n positive integers a = [a1, . . . , an] the task
of finding the shortest, with respect to either the L0 metric or the L∞ norm, vector x

which solves x · a =
n
∑

i=1

xiai = gcd(a1, . . . , an) is NP-hard.

3

Furthermore, small multipliers will not necessarily help us a lot. In all likelihood
the gcd of the entries in the first column, for large n, will be 1. Then forcing bi1

to 0 will require subtracting row 1 multiplied by bi1 from row i. In other words,
the unimodular matrix P , such that PB has has only one nonzero entry in the first
column, will have the following form:

P =



















x1 x2 x3 . . . xm

−b21x1 1− b21x2 −b21x3 . . . −b21xm

−b31x1 −b31x2 1− b31x3 . . . −b31xm

...
. . .

−bn1x1 −bn1x2 −bn1x3 . . . 1− bn1xm



















(1)

To compute the HNF of B we need to calculate k = min(m,n) such unimodular
matrices. It follows that even if we could find short vectors x (say, meaning |xi| ≤ c,
for some constant c) the best bound on the maximum entry in B, before the process
of column normalization takes place, is O(||B||2

k

). This gives the algorithm no better
than a clearly exponential upper bound on time complexity. (Frumkin [Fru76] gives
the bound of O(||B||3

k

); this occurs if xi = O(||B||), which is often the case for existing
gcd algorithms.)

Alternatively, we could ask for a vector x which minimizes the new entries in B.
This however is not an easy task. The expression for the new value of bij is

bij ←
m
∑

k=1

xk

det

([

bk1 bkj

bi1 bij

])

gcd(b11, . . . , bm1)
. (2)

Consider now a single new row of B. Denote by dT
ij = [dij1, . . . , dijn] the vector of

coefficients associated with the xk’s in (2), dijk = (bk1bij − bkjbi1)/ gcd(b11, . . . , bm1).
Each bij can be expressed as dij ·x. Hence the i-th row of B, bi∗, can be computed as

bi∗ = Tix
T =

m
∑

i=1

t∗ixi (3)

where Ti = [tpq], with tpq = dipq. The last equation presents a rather unpleasant
consequence. The problem of minimizing the maximum entry in bi∗, where bi∗ is
expressed as a linear combination of n vectors, is NP-hard [vEB81].

A second technique we can employ is to find a method of computing the trans-
forming, unimodular matrix P in such a way that the entries in each row are small.
(In this method we compute the entire matrix P in one go, instead of computing
its first vector which, together with matrix B, determines the remaining vectors of
P .) As a starting point we use the algorithm of Blankinship [Bla63]. Originally, the
purpose of the algorithm was to express the gcd of n ≥ 2 numbers as their linear
combination. However the algorithm actually produces a unimodular matrix P such
that, for a vector of n integers a = [a1, . . . , an]

T , we have
∑n

j=1 p1jaj = gcd(a1, . . . , an)
and

∑n
j=1 pijaj = 0, for 2 ≤ j ≤ n. Thus, such algorithms can be utilized to handle a

matrix B column by column.
For completeness we give an outline of Blankinship’s method here. In the first

step, set P equal to In, an n×n identity matrix. Select the smallest element in a, say

4

ai. Select any other nonzero element in a, say aj. Compute aj = qai + r and replace
aj by r. Apply this same operation to matrix P by subtracting q times row i from
row j. Repeat this process until only one nonzero element in a is left.

Suppose that the method of selecting a nonzero element of a is to choose the
smallest j 6= i for which aj 6= 0. Let a1 = min(a1, . . . , an) and, for simplicity, assume
that gcd(a1, a2) = gcd(a1, . . . , an) (an event quite likely to occur). Blankinship’s
algorithm then starts by computing p11a1 + p12a2 = gcd(a1, a2). Next, rows 3 to n
will be modified by subtracting p1∗ × ak/ gcd(a1, a2), for k = 3, . . . , an. As a result,
matrix P may have entries as large as max(ai)

2, which we see witnessed later in our
example and which is clearly undesirable. Thus the Blankinship method, without
some modification, is unattractive. In addition, determining an optimum matrix P ,
with respect to the L∞ norm, is an NP-hard task, as shown by the following theorem.

Theorem 3 The problem of minimizing the vectors, with respect to the maximum
norm, of the final matrix given by a Blankinship-type algorithm is NP-hard.

Proof. We give a transformation between a known NP-hard problem and our task.
The BOUNDED HOMOGENOUS LINEAR EQUATION (BHLE) problem [vEB81]
asks if, for a vector of n integers [a1, . . . , an], there exists a nontrivial solution to
the equation

∑n
i=1 xiai = 0 such that each |xi| is bounded above by some predefined

constant K. This problem is NP-complete. The transformation is straightforward.
By applying Blankinship’s algorithm to the vector a we obtain n−1 bounded homoge-
neous linear equations. The ability to carry out polynomially bounded computations
during Blankinship’s method in such a way that the rows of the final matrix are
optimal with respect to the maximum norm would imply the ability to solve the
BHLE problem. ut

Obtaining small entries in P is vital, even if computing ‘the best’ possible matrix
P is hard. If we could design a method that bounds the size of |pij| by some
constant, independent of the numbers in a, we would immediately have a method
that guarantees polynomial time complexity for Hermite norm computations based
on it. This however is impossible, as indicated by the next lemma.

Lemma 4 There is a vector a = [a1, a2, . . . , an]
T , such that the absolute value of the

largest entry in any matrix P = [pij], such that Pa = [gcd(a1, . . . , an), 0, . . . , 0]
T , is

equal to the largest entry in a.

Proof. Simply consider the vector [1, a2, . . . , an]
T , where a2 = a3 = . . . = an > a1.

One solution is given by the matrix

P =























1 0 0 0 . . . 0
−a2 1 0 0 . . . 0

0 −1 1 0 . . . 0
0 0 −1 1 . . . 0
...

. . .

0 0 0 0 . . . 1























In finding any solution, whatever order is chosen for Blankinship type operations, the
last remaining entry with value a2 can only be removed by subtracting a2 times 1,

5

necessitating an entry in the solution matrix whose absolute value is a2. Thus the
maximum entry in P must remain as large as max(ai). ut

Thus we know that calculating a unimodular matrix P with small entries is
intractable, unless P = NP. We also know that any algorithm that guarantees ||P || to
be no worse than max(ai) is, in a sense, optimal. In the following section we provide
two ways of significantly improving Blankinship’s algorithm and provide some analysis
of them.

(Note that the proof of Lemma 4 relies on the fact that there are only 2 distinct
numbers in the vector. An interesting question to ask is: what is the worst case for a
vector with n numbers of which a specified minimum are distinct?)

4 Improvements to the algorithm of Blankinship

Blankinship’s method, like the algorithms of Kannan and Bachem [KB79] and Chou
and Collins [CC82], suffers from narrowness of its horizon. The selected entry in a is
used to reduce only one other entry. If it happens that we keep on reducing two entries
that have the same gcd as the whole column, then Blankinship’s method ends up using
only two rows and generating only two multipliers. Intuitively, using more than two
rows, possibly all n rows, should give us some benefits. One simple modification that
results in very good overall performance is the following. The selected element is used
to reduce all other elements of a. Hence one row of P is subtracted (possibly 0 times
for some rows) from all other rows of P . In this section we give examples and analyze
the impact of such a strategy for the relatively simple case of just 3 numbers.

Example. Consider the vector [fn, fn+1, fn+2 − 1]T , where fi is the i-th Fibonacci
number. The matrix P given by Blankinship’s algorithm for this vector is (after
swapping the first two rows to make the first row the gcd constructing row)







−fn−1 fn−2 0
fn+1 −fn 0

−(fn+2 − 1)fn−1 (fn+2 − 1)fn−2 1







Observe that two entries in the third row are quite large, approximately squaring
initial vector entries. Now suppose we perform the same basic sequence of operations,
except that we subtract the operator row from both other rows. (During Blankinship’s
odd numbered steps we subtract the first row from the second and third, and during
the even numbered steps, which are unchanged for this vector, we subtract the second
row from the first.) As a result we obtain







−fn−1 fn−2 0
fn+1 −fn 0

−(fn−1 + 1) fn−2 − 1 1







Notice the big reduction in the sizes of two entries in the last row, which are now
linear in the initial vector entries. Even better performance is obtained if we use the

6

best remainder strategy ([HHR93]). Then we obtain






1 1 −1
fn−4 − 5 fn−4 + 3 −fn−4

fn−2 − 2 fn−2 + 1 −fn−2







Thus the advantage of using the operator row on all rows instead of just one is
quite pronounced. ut

Now we analyze the following modification of Blankinship’s method, which is based
on the method used in the second case above. For a vector of 3 integers [a1, a2, a3]

T ,
we start by permuting the vector in such a way that a2 ≥ a3. Next we set up matrix
P , with P = I3 initially. For the rest of this section we use superscripts to indicate
algorithm steps. Thus, pk

ij denotes the value of pij after the k-th step of the algorithm.

In every odd step, subtract q2k−1
2 times a1 from a2 and q2k−1

3 times a1 from a3,
where q2k−1

2 = ba2/a1c and q2k−1
3 = ba3/a1c. Apply the same operations to the rows

of P . In every even step, execute the same operations, but this time subtracting a2

from a1 and a3, q2k
1 and q2k

3 times, respectively, and again do the same to P . The
algorithm stops when either a1 or a2 becomes 0 and the other is gcd(a1, a2).

Lemma 5 Throughout the modified algorithm the following holds

|p31| ≤ max(|p11|, |p21|)
|p32| ≤ max(|p12|, |p22|)

}

always

|p31| ≤ |p21|
|p32| ≤ |p22|

}

in the odd steps

|p31| ≤ |p11|
|p32| ≤ |p12|

}

in the even steps

Proof. (Informally, the proof is simple. The sizes of p11, p12, p21 and p22 constantly
grow, maintaining the same sign throughout execution of the algorithm. However,
p31 and p32 may vary in sign, but never have enough time to outgrow the above four
entries. The worst case occurs if the third row is modified only half the time, always
by the same row, so that it does not change sign. Notice that the third row cannot
be modified more often than the second row. Consequently, on average, the third
row cannot ‘keep up’ with the other two rows, and during some iterations it will be
modified only by one of rows 1 and 2. Indeed, the size of the entries in the third row
will often be much smaller than the entries in rows 1 and 2.)

Initially we have p0
11 = 1, p0

12 = 0, p0
21 = 0, p0

22 = 1, p0
31 = p0

32 = 0. Observe that in
every odd step q2k−1

2 ≥ q2k−1
3 and in every even step q2k

1 ≥ q2k
3 . Furthermore, observe

that throughout the algorithm p11 > 0, p12 ≤ 0, p21 ≤ 0 and p22 > 0.
After the first step, as q1

2 ≥ q1
3, we have |p1

31| ≤ |p
1
21|, both negative. After the

second step p2
31 ← p1

31 − q2
3p

1
21 = p1

31 + q2
3|p

1
21| and p2

11 ← 1 + q2
1|p

1
21| and therefore

|p2
31| ≤ |p

2
11|. Again, trivially, |p2

32| ≤ |p
2
12|. Thus we have established that, for k = 1,

the following inequalities hold:

|p2k
31| ≤ |p

2k
11| |p2k−1

31 | ≤ |p2k−1
21 |

|p2k
32| ≤ |p

2k
12| |p2k−1

32 | ≤ |p2k−1
22 |

7

Now assume that these inequalities hold for some k ≥ 1. In the next step, 2k + 1,
the following modifications occur:

p2k+1
31 ← p2k

31 − q2k+1
3 p2k

11

p2k+1
32 ← p2k

32 − q2k+1
3 p2k

12

p2k+1
21 ← p2k

21 − q2k+1
2 p2k

11

p2k+1
22 ← p2k

22 − q2k+1
2 p2k

12

In order to establish |p2k+1
31 | ≤ |p2k+1

21 | we must verify that |p2k
31 − q2k+1

3 p2k
11| ≤ |p

2k
21 −

q2k+1
2 p2k

11|. As p2k
21 is negative, the last inequality is violated if either p2k

31 − q2k+1
3 p2k

11 >
|p2k

21| + q2k+1
2 p2k

11 (for p2k
31 positive) or if |p2k

31| + q2k+1
3 p2k

11 > |p2k
21| + q2k+1

2 p2k
11 (for p2k

31

negative). In the former case we would have p2k
31 > |p2k

21|+ p2k
11(q

2k+1
3 + q2k+1

2), which is
impossible, as |p2k

31| ≤ |p
2k
11| and q2k+1

3 + q2k+1
2 ≥ 1. In the latter case, to disprove our

claim, we observe that

|p2k+1
31 | > |p2k+1

21 | ⇐⇒ |p2k
31|+ q2k+1

3 p2k
11 > |p2k

21|+ q2k+1
2 p2k

11

⇐⇒
∣

∣

∣p2k−1
31 + q2k

3 |p
2k−1
21 |

∣

∣

∣+ q2k+1
3 p2k

11 > |p2k−1
21 |+ q2k+1

2 p2k
11

⇐⇒ q2k
3 |p

2k−1
21 | − |p2k−1

31 |+ q2k+1
3 p2k

11 > |p2k−1
21 |+ q2k+1

2 p2k
11

Notice that q2k+1
3 p2k

11 ≤ q2k+1
2 p2k

11, hence in order to fulfil the last inequality we
need q2k

3 |p
2k−1
21 | − |p2k−1

31 | > |p2k−1
21 |, which is equivalent to |p2k−1

31 | < |p2k−1
21 |(q2k

3 − 1).
However, this case was considered under the assumption that p2k

31 is negative, namely,
p2k−1

31 + q2k
3 |p

2k−1
21 | < 0 ⇐⇒ |p2k−1

31 | > q2k
3 |p

2k−1
21 |, so we have a contradiction. Thus

we proved that after the (2k + 1)-st step |p2k+1
31 | ≤ |p2k+1

21 |. Next we check if |p2k+1
32 | ≤

|p2k+1
22 |, which amounts to

∣

∣

∣p2k
32 + q2k

3 |p
2k
12|
∣

∣

∣ ≤ p2k
22 + q2k+1

2 |p2k
12|. If p2k

32 is negative we
can see that the inequality is true by the same argument as for the negative case for
p2k+1

31 . If p2k
32 is positive we require p2k

32 ≤ p2k
22. However p2k

32 = p2k−1
32 − q2k

3 p2k−1
22 and

|p2k−1
32 | ≤ p2k−1

22 , so it follows that if p2k
32 > 0 then p2k

32 ≤ p2k
22. This finishes our proof for

the (2k + 1)-st step.
To complete the proof, we need to check the relations that hold in the (2k+2)-nd

step. The analysis is similar, and hence the claimed inequalities are true. ut

Theorem 6 There is a modification of Blankinship’s algorithm for three numbers
whose performance is close to the optimal bound, namely no entry in the final matrix
exceeds (5/4)max(a1, a2, a3).

Proof. By Lemma 5, if gcd(a1, a2) = g2 divides a3 evenly, the previous modification
suffices. If (a3 mod g2) = r3 6= 0, we may split the algorithm into two phases:
the first runs as described above; and the second, where the gcd of g2 and r3 is
computed. In this second phase we apply Blankinship’s original algorithm (which,
for two numbers, is essentially a standard extended gcd calculation) to the vector
[g2, 0, r3]

T . For convenience we assume gcd(a1, a2, a3) = 1. The final matrix P is then
equal to

P =







y1 0 y2

0 1 0
−r3 0 g2





×







x1 x2 0
−a2/g2 a1/g2 0

p31 p32 1







8

Here y1g2 + y2r3 = gcd(a1, a2, a3) = 1. It is possible (cf. [Lev56]) to execute both
phases in such a way that |x1| ≤ a2/(2g2), |x2| ≤ a1/(2g2), |r3| ≤ g2/2, |y1| ≤ r3/2,
|y2| ≤ g2/2, |p31| ≤ a2/g2 and |p32| ≤ a1/g2 (the last two inequalities follow from
Lemma 5). It then suffices to verify that

|y1x1 + y2p31| ≤ a2

|y1x2 + y2p32| ≤ a1

|g2x1 + r3p31| ≤ (5/4)a2

|g2x2 + r3p32| ≤ (5/4)a1

which, in view of the above estimates, can be seen to hold. All other entries in P are
clearly bounded by one of the three numbers. ut

This indicates that, by modifying Blankinship’s method so that the selected ele-
ment ai is used to reduce all other elements, we greatly improve the overall perfor-
mance of the method, in terms of the size of the final entries. Such an approach is
already used successfully in [HHR93]. It seems harder to analyze modifications based
on best remainders rather than positive remainders. Another question which needs
further study is: in which order should elements of a be chosen to reduce the other
elements? A good approximation scheme that selects ai in an intelligent manner and
guarantees certain performance, in terms of the size of the entries of P , could greatly
influence the overall performance of Hermite normal form computations.

5 Conclusions

If modular methods are not used then Hermite normal form computation for an
integer matrix is liable to involve unacceptable intermediate entry explosion. Even
polynomial time algorithms, like those of Kannan and Bachem [KB79] or Chou and
Colling [CC82], offer relatively poor performance and their implementation requires
infinite precision arithmetic for practical examples. On the other hand, as indicated
in [HHR93], for many matrices such computations can be done using standard 32 bit
arithmetic.

Here we have investigated a possible option for designing an efficient algorithm for
Hermite normal form computations. A promising approach is offered by a suitable
modification of Blankinship’s algorithm [Bla63]. We showed that for three numbers,
by using a specific technique, we can achieve close to optimal performance. This type
of approach can be extended to an arbitrary number of numbers. A careful study of
this technique may lead to efficient integer based methods.

We have developed practical implementations of HNF algorithms consistent with
the analyses presented here, which will be described elsewhere. They have very
attractive performance, including applications to matrices arising in computational
group and number theory. They are based on heuristics which reduce intermediate
entry growth in Gaussian elimination over the integers. They outperform previous
integer methods on a wide range of examples. We have also tested these ideas in
other contexts and they have shown general applicability. Thus, similar methods
improve the performance of exact rational Gaussian elimination, and we expect that
the principles will extend to other exact matrix computation problems.

9

References

[Bla63] W.A. Blankinship. A new version of the Euclidean algorithm. Amer. Math.
Mon., 70:742–745, 1963.

[Bod56] E. Bodewig. Matrix Calculus. North Holland, Amsterdam, 1956.

[Bra71] G.H. Bradley. Algorithms for Hermite and Smith normal matrices and linear
diophantine equations. Math. Comput., 25:897–907, 1971.

[CC82] T-W.J. Chou and G.E. Collins. Algorithms for the solution of systems of
linear Diophantine equations. SIAM J. Comput., 11:687–708, 1982.

[Fru76] M.A. Frumkin. An application of modular arithmetic to the construction
of algorithms for solving systems of linear equations. Soviet Math. Dokl.,
17:1165–1168, 1976.

[Her51] C. Hermite. Sur l’introduction des variables continues dans la théorie des
nombres. J. Reine Angew. Math., 41:191–216, 1851.

[HHR93] G. Havas, D.F. Holt, and S. Rees. Recognizing badly presented Z-modules.
Linear Algebra and its Applications, 192:137–163, 1993.

[Hu69] T.C. Hu. Integer Programming and Network Flows. Addison-Wesley,
Reading, MA, 1969.

[KB79] R. Kannan and A. Bachem. Polynomial algorithms for computing Smith and
Hermite normal forms of an integer matrix. SIAM J. Comput., 8:499–507,
1979.

[Lev56] R.J. Levit. A minimum solution to a diophantine equation. American Math.
Mon., 63:647–651, 1956.

[MH94] B.S. Majewski and G. Havas. The complexity of greatest common divisor
computations. Technical Report TR0296, The University of Queensland,
Brisbane, 1994.

[PB74] I.S. Pace and S. Barnett. Efficient algorithms for linear system calculations;
part I — Smith form and common divisors of polynomial matrices. J. of
System Science, 5:403–411, 1974.

[vEB81] P. van Emde Boas. Another NP-complete partition problem and the
complexity of computing short vectors in a lattice. Technical Report
MI/UVA 81–04, The University of Amsterdam, Amsterdam, 1981.

10

