Automorphism Groups of Certain Non-Quasiprimitive Almost Simple Graphs

Xin Gui Fang and George Havas*
Centre for Discrete Mathematics and Computing
Department of Computer Science and Electrical Engineering
The University of Queensland
Queensland 4072, Australia

Jie Wang
Department of Mathematics
Peking University
Beijing, 100871, P. R. China

Abstract
A graph Γ is G-quasiprimitive if G is a group of automorphisms of Γ such that each nontrivial normal subgroup of G acts transitively on the vertices of Γ. We consider Γ a finite, connected S-locally-primitive graph with S a nonabelian simple group and give a set of conditions under which we may guarantee that either the full automorphism group of Γ is not quasiprimitive or there is a non-quasiprimitive subgroup Y of $\text{Aut}\Gamma$ such that $C.G$ is maximal in Y, where C is the centralizer of S in $\text{Aut}\Gamma$ and G is an almost simple group with socle S. As an application of this result we show that, in certain circumstances, $\text{Aut}\Gamma = Z_p.G$, where p is a prime and $G = \text{Aut}\Gamma \cap \text{Aut}(S)$.

1 Introduction
A permutation group on a set Ω is said to be quasiprimitive if each of its nontrivial normal subgroups is transitive on Ω. By the structure theorem in [18, Section 2] quasiprimitive permutation groups may be divided into 8 disjoint types (HA, HS, HC, AS, SD, CD, TW, PA) in a way which is helpful for applications to graph theory (see the description in [3]). The main type considered in this paper is AS: a quasiprimitive group G is said to be of type AS if $S \leq G \leq \text{Aut}(S)$, for some nonabelian simple group S.

Let Γ be a finite simple undirected graph with vertex set $V\Gamma$ and edge set $E\Gamma$ and let G be a group of automorphisms of Γ. The graph Γ is said to be G-quasiprimitive if and only if G is quasiprimitive on $V\Gamma$. In particular, an $\text{Aut}\Gamma$-quasiprimitive graph is said to be quasiprimitive. The graph Γ is said to be G-locally-primitive if G is transitive on $V\Gamma$ and the stabilizer G_α is primitive on

*Email: havas@csee.uq.edu.au
\(\Gamma(\alpha) \), where \(\Gamma(\alpha) \) denotes the set of all vertices adjacent to \(\alpha \). The graph \(\Gamma \) is said to be \((G, 2) \)-arc transitive if \(G \) is transitive on the 2-arcs of \(\Gamma \).

Praeger in [19] raises the questions: (1) for a \(G \)-quasiprimitive graph \(\Gamma \), under what conditions can we be certain that \(\text{Aut}\Gamma \) is quasiprimitive on \(V\Gamma \)? (2) If \(\text{Aut}\Gamma \) and \(G \) are quasiprimitive with the same quasiprimitive type, is it possible that \(\text{soc}(G) \neq \text{soc}(\text{Aut}\Gamma) \), and if so what are the possibilities for these socles?

We look first at question (1). It is shown in [7] that, for a connected \(G \)-quasiprimitive graph \(\Gamma \) with \(G \) of type \(AS \), if \(\Gamma \) is \(G \)-locally-primitive then either \(\Gamma \) is quasiprimitive or \(\text{Aut}\Gamma \) has a restricted structure. Baddeley in [2, Section 6] constructs the first example of connected non-quasiprimitive graph \(\Gamma \) which is \((G, 2) \)-arc transitive, for some quasiprimitive group \(G \) of type \(TW \), and he comments there that such graphs seem difficult to construct. An infinite family of \((L_2(q), 2) \)-arc transitive graphs with valency 4 is constructed in [12], and Li [14] proves that the full automorphism groups are isomorphic to \(Z_2 \times L_2(q) \), which gives the first infinite family of non-quasiprimitive graphs \(\Gamma \) such that \(L_2(q) \) acts quasiprimitively on \(V\Gamma \). Recently an infinite family of \(U_3(q) \)-quasiprimitive transitive graphs of valency 9 has been constructed by the authors of this paper in [8]; their full automorphism groups are isomorphic to \(Z_3 \times G \) with \(Z_3 = C_{\text{Aut}}(U_3(q)) \) and \(U_3(q) \leq G \leq \text{Aut}(U_3(q)) \). From this we obtain a new infinite family of non-quasiprimitive graphs \(\Gamma \) admitting a quasiprimitive group of type \(AS \) acting transitively on the vertices and the 2-arcs of \(\Gamma \). Observing all non-quasiprimitive examples with \(G \) quasiprimitive given above, we find that \(\text{Aut}\Gamma = C \cdot G \) with \(C \) some small nontrivial cyclic group, which motivates us to suggest a set of conditions under which we may guarantee that either \(\Gamma \) is non-quasiprimitive or \(\text{Aut}\Gamma \) has a restricted structure. In this paper we concentrate on \(G \)-quasiprimitive graphs for \(G \) of type \(AS \). The set of conditions we employ is the following

Condition \(\mathcal{P} \). Let \(\Gamma \) be a connected, \(S \)-locally-primitive graph with \(S \) a nonabelian simple group. Set \(G = \text{Aut}(S) \cap \text{Aut}\Gamma \) and \(C = C_{\text{Aut}}(S) \). The graph \(\Gamma \) and \(G \) are said to satisfy Condition \(\mathcal{P} \) if \(C \neq 1 \) and \(\text{Aut}\Gamma \) has no quasiprimitive subgroup of type \(AS \) containing \(C \cdot G \) as its maximal subgroup.

Remarks on Condition \(\mathcal{P} \)

(a) Using [7, Theorem 1.2] we shall prove that, for a connected \(S \)-locally-primitive graph \(\Gamma \) with \(S \) a nonabelian simple group with \(\Gamma \) and \(G \) satisfying Condition \(\mathcal{P} \), then any quasiprimitive overgroup \(Y \) of \(G \) in \(\text{Aut}\Gamma \) must be of type \(AS \) (see Theorem 1.1). From this we conclude that Condition \(\mathcal{P} \) does guarantee that either \(\Gamma \) is non-quasiprimitive or \(\text{Aut}\Gamma \) has a non-quasiprimitive subgroup \(Y \) such that \(C \cdot G \) is maximal in \(Y \).

(b) For an arbitrary group \(C \), it is in general quite difficult to verify that \(\Gamma \) and \(G \) satisfy Condition \(\mathcal{P} \). However, if \(C \) is a nilpotent group and if \(p \) is a prime divisor of \(|C| \), then \(C \cdot G \) is a maximal \(p \)-local subgroup of \(Y \) whenever there exists such a quasiprimitive group \(Y \) of type \(AS \) in \(\text{Aut}\Gamma \). Note that all maximal \(p \)-local subgroups of almost simple groups have been determined (see, for example, [1, 5, 13, 16]). So we can find out which \(\Gamma \) and \(G \) satisfy Condition \(\mathcal{P} \) using a case-by-case check.
The main results of this paper are the following.

Theorem 1.1 Suppose that Γ and G satisfy Condition \mathcal{P}. Then either Γ is a non-quasiprimitive graph; or $\text{Aut}\Gamma$ is a quasiprimitive group of type AS and $\text{Aut}\Gamma$ contains a non-quasiprimitive subgroup Y such that $C.G$ is maximal in Y. Further, for any intransitive minimal normal subgroup N of Y, then: N centralizes S; or $N \cap C = 1$ and $N = Z^n_p$ for some prime p; and $S = S(q)$ is a simple group of Lie type over a field of order $q = p^e$, and further, N is the unique intransitive minimal normal subgroup of $\text{Aut}\Gamma$ not centralized by S.

For Γ and G given as in Theorem 1.1, let Γ^* denote the quotient graph modulo the C-orbits on $V\Gamma$ (obtained by taking C-orbits as vertices and joining two C-orbits by an edge if there is at least one edge in Γ joining a point in the first C-orbit to a point in the second one). By [17], Γ is a cover of Γ^*. As an application of Theorem 1.1 we have the following.

Theorem 1.2 Let Γ and G satisfy Condition \mathcal{P}. Suppose that C is a cyclic group with prime order and that $\text{Aut}\Gamma$ has no a subgroup $N:S$ given as in Table 1. If $\text{Aut}\Gamma^*$ is quasiprimitive of type AS with socle S, then Γ is non-quasiprimitive and $\text{Aut}\Gamma = C:G$.

Remark on Theorem 1.2

For each graph given as in [8, 14], we know that $C = Z_3$ or Z_2 and that $\text{Aut}\Gamma$ has no subgroup $N.S$ given as in Table 1. It is also easy to prove that $S \leq \text{Aut}\Gamma^* \leq \text{Aut}(S)$ (up to isomorphism). By Theorem 1.2, to show $\text{Aut}\Gamma = C.G$, it remains only to verify that Γ and G satisfy Condition \mathcal{P}, which can be completed by using the method mentioned in Remark (b) on Condition \mathcal{P}. Indeed, this is not difficult to check for the graphs given in [8, 14].

Theorems 1.1 and 1.2 are proved in the next section. In the final section we consider question (2) raised at the beginning of this paper and give some examples of G-quasiprimitive graphs such that $\text{Aut}\Gamma$ and G have same quasiprimitive type but $\text{soc}(\text{Aut}\Gamma) \neq \text{soc}(G)$.

<table>
<thead>
<tr>
<th>S</th>
<th>values for n/e</th>
<th>S</th>
<th>values for n/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_l(q), l = 3$ or 4</td>
<td>$[8, 9]$ or $[8, 16]$</td>
<td>$E_7(q)$</td>
<td>$[56, 63]$</td>
</tr>
<tr>
<td>$C_l(q), l = 3$ or 4</td>
<td>$[8, 9]$ or $[9, 16]$</td>
<td>$A^\pm_l(q)$, $l > 1$</td>
<td>$[l + 1, l(l + 1)/2]$</td>
</tr>
<tr>
<td>$D^+_l(q), l = 4$ or 5</td>
<td>$[8, 12]$ or $[16, 20]$</td>
<td>$B_l(q)$, $l > 4$</td>
<td>$[2l + 1, l^2]$</td>
</tr>
<tr>
<td>$3D_4(q), q$ odd</td>
<td>12</td>
<td>$C_l(q), l \neq 1, 3, 4$</td>
<td>$[2l, l^2]$</td>
</tr>
<tr>
<td>$E_{6^+}^l(q)$</td>
<td>$[27, 36]$</td>
<td>$D^+_l(q), l \neq 1, 2, 4, 5$</td>
<td>$[2l, l(l - 1)]$</td>
</tr>
</tbody>
</table>

Table 1
where $[i, j]$ stands $i \leq n/e \leq j$, for distinct integers i and j with $i < j$.

For Γ and G given as in Theorem 1.1, let Γ^* denote the quotient graph modulo the C-orbits on $V\Gamma$ (obtained by taking C-orbits as vertices and joining two C-orbits by an edge if there is at least one edge in Γ joining a point in the first C-orbit to a point in the second one). By [17], Γ is a cover of Γ^*. As an application of Theorem 1.1 we have the following.
2 Proof of Theorems 1.1 and 1.2

The first lemma is used in the proof of Theorem 1.1. Its proof follows immediately from [17] and the connectivity of \(\Gamma \).

Lemma 2.1 Let \(\Gamma \) be a connected, nonbipartite, \(Y \)-locally-primitive graph. Then each intransitive normal subgroup of \(Y \) is semiregular.

Suppose now that \(G \) is an almost simple group with socle \(S \) and let \(G \) and \(\Gamma \) be given as in Theorem 1.1. Write \(X := \text{Aut}\Gamma \) and \(C := C_X(S) \). Since \(S \) is locally primitive on \(VT \), \(S \) is transitive on the arcs of \(\Gamma \), and so \(S \) is not regular on \(VT \).

It follows that \(C \) is not transitive on \(VT \) (see, for example, [9, Proposition 2.4] or [21]).

Proof of Theorem 1.1 First we show that, for each overgroup \(K \) of \(S \) in \(X \), if \(K \) is quasiprimitive then \(K \) is of type \(AS \). Suppose to the contrary that \(K \) is not of type \(AS \). By [7, Theorem 1.2], either \(\Gamma = K_3 \) with \(S = \text{PSL}(2,7) \) and \(K = \text{AGL}(3,2) \); or \(K \) is of type \(PA \) with \(\text{soc}(K) = S_1 \times S_2 \cong S \times S \) and \(S \) is a diagonal subgroup of \(\text{soc}(K) \). In the former case, by [6], \(S_\alpha = Z_7:Z_3 \) and \(S_\alpha \) is a maximal subgroup, and hence \(S \) acts primitively on \(VT \). It follows from [21] that \(C = 1 \), which contradicts Condition \(P \). In the latter case, since \(S < \text{soc}(K), \Gamma \) is also \(\text{soc}(K) \)-locally-primitive. Since \(S_i < \text{soc}(K) \) and \(S_i \cong S \), for \(i = 1,2 \), the both \(S_1 \) and \(S_2 \) are transitive by Lemma 2.1. It follows that \(S_1 \) and \(S_2 \) are regular, which is impossible since \(|S_1| = |S| > |VT| \). So \(K \) is of type \(AS \). In particular, take \(K = X \), then \(X \) is of type \(AS \).

Suppose now that \(X \) is quasiprimitive. Since \(X \) is of type \(AS \), by Condition \(P \), \(G.C \) is not maximal in \(X \), and hence there is a proper subgroup \(Y \) of \(X \) containing \(G.C \) such that \(G.C \) is maximal in \(Y \). If \(Y \) is quasiprimitive then \(Y \) is of type \(AS \), which contradicts Condition \(P \). Thus \(Y \) is not quasiprimitive.

Let \(N \) be an intransitive minimal normal subgroup of \(Y \) with \(N \not\leq C \). Since \(\Gamma \) is also a \(Y \)-locally-primitive graph, by Lemma 2.1, \(N \) is semiregular on \(VT \). If \(N < C.G \) then \(CN/C \) is isomorphic to a normal subgroup of \(G \), which implies that either \(N \leq C \) or \(S \) isomorphic to a subgroup of \(CN/C \). The former case contradicts \(N \not\leq C \). While in the latter case we conclude that \(|N| \) is divisible by \(|S| \), which contradicts the fact that \(N \) is semiregular. Thus \(N \not\leq C.G \) and so \(Y = \langle N, C.G \rangle \) (since \(C.G \) is maximal in \(Y \)). Then arguing as in the proof of [7, Theorem 1.1] we conclude that \(N \) is an elementary abelian \(p \)-group, for some prime \(p \). If \(N \cap C \neq 1 \), then \(N \cap C \) is normalized by \(N \) and \(C.G \), respectively. Thus \(N \cap C \) is a nontrivial normal subgroup of \(Y \). Since \(N \cap C \leq C \) and \(N \) is a minimal normal subgroup of \(Y \), \(N \cap C = N \) and hence \(N \not\leq C \), which is not the case. So \(N \cap C = 1 \). It follows that \(S \) acts faithfully by conjugation on \(N \). Thus \(S \) has a faithful projective \(p \)-modular representation of degree \(n \). A similar argument as in the proof of [10, Theorem 1.1] shows that \(S \) and \(n/e \) are given as in Table 1. For example, we look at the case where \(S = A_l(q) \) with \(q = p_1^t \) for some prime \(p_1 \). If \(p_1 \neq p \) then \(n/e \geq (q-1)/(2q-1) \) by [13, Table 5.3.A], and hence
\[
|N| \geq q^{t(q-1)/(2q-1)} \geq |A_l(q)| > |VT|.
\]
which is impossible. So \(p_1 = p \). Now let \(R_p(S) \) denote the minimal dimension of a faithful, irreducible, projective \(K \)-module, where \(K \) is an algebraically closed field of characteristic \(p \). By [13, Table 5.4.C], \(R_p(S) = l + 1 \), which implies that \(n/e \geq l + 1 \). On the other hand, since a Sylow \(p \)-subgroup of \(S \) has order \(q^{\ell(l+1)/2} \) and since \(|S| \) is divisible by \(|N| \), \(n/e \leq l(l+1)/2 \). So \(n/e \) lies in \([l+1,l(l+1)/2]\). A similar argument deals with other nonabelian simple groups \(S \).

Finally, for \(S \) in the first column of Table 1 or \(E_7(q) \), if there is another intransitive minimal normal subgroup \(K \) not centralized by \(S \), then a similar argument as above implies that \(K \cong Z_p^n \) with \(m/e \) in the second column of Table 1 or [56, 63]. Set \(W = NK \). Now \(W \) is a normal \(p \)-subgroup of \(X \) with \(|W| = p^{a+m} \). Since \(p^{a+m} \) is greater than the \(p \)-part of \(|S| \), \(W \) must be transitive on \(VT \) by Lemma 2.1. Recall that \(S \) is one of the following groups: \(B_l(q) \) or \(G_l(q) \) with \(l \in \{3, 4\} \), \(D_l^\pm(q) \) with \(l = 4 \) or \(5 \), \(3D_4(q) \) with \(q \) odd or \(E_7(q) \). From [11, Corollary 2] it follows that \(S = \text{PSp}(4,3) \) and \(|VT| = 27 \), and so \(X \leq \text{AGL}(3,3) \). However it is trivial to see that \(\text{PSp}(4,3) \) is not isomorphic to a subgroup of \(\text{AGL}(3,3) \), which is a contradiction. So \(N \) is the unique intransitive minimal normal subgroup of \(X \) not centralized by \(S \).

\[\square \]

Proof of Theorem 1.2 We claim first that \(\text{Aut}\Gamma \) is not quasiprimitive. If this is not the case, by Theorem 1.1, \(\text{Aut}\Gamma \) contains a non-quasiprimitive subgroup \(Y \) such that \(C \cdot G \) is maximal in \(Y \). Let \(N \) be an intransitive minimal normal subgroup \(Y \). If \(N \not\leq C \), by Theorem 1.1, we conclude that \(N:S \) would be in Table 1, which is not the case. So \(N \leq C \) and hence \(N = C = Z_{p_1} \). Since \(G \cong (C \cdot G)/C < Y/C \) and \(Y/C \) is isomorphic to a subgroup of \(\text{Aut}\Gamma^* \), \(S \leq Y/C \leq \text{Aut}(S) \) (up to isomorphism). It follows that \(Y \cong C \cdot G_1 \), for some group \(G_1 \) with \(S \leq G_1 \leq \text{Aut}(S) \). On the other hand, from the definition of \(G \) we know that \(G \) is the maximal group among the groups \(H \) with the properties that \(S \leq H \leq \text{Aut}(S) \) and \(C \cdot H \leq \text{Aut}\Gamma \), which implies that \(G_1 \cong G \). Thus \(Y = C \cdot G \), which is a contradiction. So \(\text{Aut}\Gamma \) is non-quasiprimitive.

Let \(N \) be an intransitive minimal normal subgroup of \(\text{Aut}\Gamma \). If \(N \not\leq C \) then \(S \) acts nontrivially by conjugation on \(N \). Now \(N \) is semiregular on \(VT \) by Lemma 2.1. Then arguing as in the proof of Theorem 1.1, we conclude that \(N = Z_{p_1}^n \), for some prime \(p \) and integer \(n > 1 \), and \(N:S \) lies in Table 1, which is a contradiction. So \(N \leq C \), and hence \(N = C \). Now \(C \triangleleft \text{Aut}\Gamma \) and \(\text{Aut}\Gamma/C \) is a subgroup of \(\text{Aut}\Gamma^* \). Thus \(\text{Aut}\Gamma \cong C \cdot G_1^* \), for some subgroup \(G_1^* \) of \(\text{Aut}\Gamma^* \) with \(S \leq G_1^* \leq \text{Aut}(S) \) (up to isomorphism). From the definition of \(G \) it follows that \(G_1^* \cong G \) and hence \(\text{Aut}\Gamma = C \cdot G \).

\[\square \]

3 Some examples of quasiprimitive graphs

In this section we always assume that \(G \) is an almost simple group and \(\Gamma \) is a connected \(G \)-arc transitive graph with valency \(d\Gamma \). By [20] there exists a 2-element \(g \in G \) with the properties: \(g \notin N_G(H) \), \(g^2 \in H \) and \(\langle H, g \rangle = G \), such that
\[\Gamma \cong \Gamma^* := \Gamma(G, H, HgH) \] with \(d_\Gamma = |H : H \cap H^g| \), where \(\Gamma^* \) is defined by

\[V \Gamma^* = \{ Hx \mid x \in G \}, \quad E \Gamma^* = \{ \{ Hx, Hy \} \mid x, y \in G, xy^{-1} \in HgH \}. \tag{1} \]

All connected regular \(G \)-arc transitive graphs considered in this section will be defined in terms of a subgroup \(H \) and a 2-element \(g \) as in (1).

Now we give some examples of \(G \)-quasiprimitive graphs. The first example gives all \(G \)-quasiprimitive graphs with a prime power number of vertices, for \(G \) a nonabelian simple group. The proof of Example 3.1 follows immediately from [11, Corollary 2] and [6].

Example 3.1 Let \(\Gamma \) be a finite connected graph and suppose that \(G \) is a transitive subgroup of \(\text{Aut}\Gamma \) with \(G \) a nonabelian simple group. If \(|V\Gamma| \) is a prime power, then either \(\Gamma \) is a complete graph or \(G = PSU(4, 2) \) and \(|V\Gamma| = 27 \). Further, \(G \) and \(\text{soc}(\text{Aut}\Gamma) \) are given in Table 2.

| \(G \) | \(|V\Gamma| \) | \(\text{soc}(\text{Aut}\Gamma) \) | comments on \(G_\alpha \) |
|----------------|----------------|-------------------------------|--------------------------|
| \(A_{p^a} \) | \(p^a \) | \(A_{p^a} \) | \(G_\alpha \cong A_{p^a-1} \) |
| \(\text{PSL}(n, q) \) | \(\frac{q^n-1}{q-1} = p^a \) | \(A_{p^a} \) | the stabilizer of a line or hyperplane |
| \(\text{PSL}(2, 11) \) | 11 | \(A_{11} \) | \(G_\alpha \cong A_5 \) |
| \(M_{23} \) | 23 | \(A_{23} \) | \(G_\alpha \cong M_{22} \) |
| \(M_{11} \) | 11 | \(A_{11} \) | \(G_\alpha \cong M_{10} \) |
| \(\text{PSU}(4, 2) \) | 27 | \(\text{PSU}(4, 2) \) | \(G_\alpha \cong 2^4.A_5 \) |

Table 2

The graphs on the first five lines of Table 2 are all complete, but the graph for \(\text{PSU}(4, 2) \) is not. The graphs on lines two to five provide one infinite family and three particular graphs with the property that \(\text{soc}(G) \neq \text{soc}(\text{Aut}\Gamma) \).

Example 3.2 Let \(\Gamma \) be a connected \(G \)-arc transitive graph of valency \(d_\Gamma \), where \((G, |V\Gamma|) \) is one of \((\text{PGL}(2, 8), 36) \), \((A_9, 120) \) and \((M_{11}, 55) \). Then \(\text{Aut}\Gamma \) is an almost simple group. Moreover, the pair \((G, \text{soc}(\text{Aut}G)) \) is \((\text{PGL}(2, 8), A_9) \), \((A_9, \Omega_5^+(2)) \) or \((M_{11}, A_{11}) \), respectively.

Proof. For \(\alpha \in V\Gamma \) write \(H = G_\alpha \). For \((G, |V\Gamma|) \) given as above, by [6] we have the structure of \(H \) as given in Table 3 (see Column 4). Note that \(H \) is a maximal subgroup of \(G \), for \(G \) and \(G_\alpha \) given as in Table 3. So \(\langle H, g \rangle = G \), for any 2-element \(g \in G \setminus H \), and hence the graph \(\Gamma = \Gamma(G, H, HgH) \) is a connected \(G \)-arc transitive graph with valency \(d_\Gamma = |H : H \cap H^g| \). Look first at \(G = \text{PGL}(2, 8) \) and \(H = R:T \) with \(R \cong Z_7 \) and \(T \cong Z_6 \). Computation shows that \(T \) is self-normalized in \(G \). Thus \(|H \cap H^g| \) is either 2 or 3, and so \(d_\Gamma = 21 \) or 14. Moreover, since a Sylow 2-subgroup of \(G \) is elementary abelian all suitable 2-elements \(g \) have order 2. If \(d_\Gamma = 21 \) then \(H \cap H^g = 2 \). Using the MAGMA program (see Figure 1) we obtain both all connected \(\text{PGL}(2, 8) \)-arc transitive graphs with valency 21 and their
```plaintext
H := PGammaL(2,8);
A := SylowSubgroup(H, 7);
M := Normalizer(H, A);
for x in M do
  if Order(x) eq 3 then
    for y in M do
      if Order(y) eq 2 then
        M6 := sub< H | x, y >;
        if Order(M6) eq 6 then
          B := M6; break;
        end if;
      end if;
    end for;
  end if;
end for;
B3 := SylowSubgroup(B, 3);
B2 := SylowSubgroup(B, 2);
A21 := sub< H | A, B3 >;
N2 := Normalizer(H, B2);

phi, G := CosetAction(H, M);
T := Stabilizer(G, 1);
A21 := phi(A21);
B2 := phi(B2);
NB2 := Normalizer(G, B2);

Grphs := [];
for g in NB2 do
  if Order(g) eq 2 and sub< G | T, g > eq G then
    print "Success with", g;
    found := true;
    Nbs := { 1^x : x in A21 };
    Gr := Graph< Support(G) | <1, Nbs>^G >;
    print Gr;
    print (AutomorphismGroup(Gr));
    print Order(AutomorphismGroup(Gr));
    Append(~Grphs, Gr);
  end if;
end for;
```

Figure 1: MAGMA program for PTL(2,8)-arc transitive graphs of valency 21
full automorphism groups. Using a similar method we obtain Table 3, and the conclusion follows from Columns 4 and 5 of Table 3.

\[\square\]

Remark on Example 3.2 Recall the definition of 2-closure of a finite permutation group: if G is a finite permutation group on a set Ω the 2-closure $G^{(2)}$ of G is the largest subgroup of $\text{Sym}(\Omega)$ containing G which has the same orbits as G in the induced action on $\Omega \times \Omega$. For each group G in Example 3.2, Table 3 shows that $\text{Aut}\Gamma \cong G^{(2)}$, and all pairs of $(G, \text{Aut}\Gamma)$ in the example occur in [15, Table 1].

\[
\begin{array}{|c|c|c|c|c|}
\hline
G & d_\Gamma & |V_\Gamma| & G_\alpha & \text{soc}(G) & \text{Aut}\Gamma \\
\hline
\text{PGL}(2, 8) & 14 \text{ or } 21 & 36 & 7:6 & \text{PSL}(2, 8) & S_9 \\
A_9 & 56 \text{ or } 63 & 120 & \text{PSL}(2, 8).2 & A_9 & \Omega^+_8(2) \\
M_{11} & 18 \text{ or } 36 & 55 & 3^2.Q_8.2 & M_{11} & S_{11} \\
\hline
\end{array}
\]

Table 3

Acknowledgements

We are grateful to John Cannon for assistance in setting up the MAGMA programs for calculating general arc-transitive graphs. The second author was partially supported by the Australian Research Council.

References

