
Applying formal specification to the development of

software in industry

Ian Hayes

February 1985

Abstract This chapter reports experience gained in applying formal speci-
fication techniques to an existing transaction processing system. The system
is the IBM Customer Information Control System (CICS) and the work has
concentrated on specifying a number of modules of the CICS application
programmer’s interface.

The uses of formal specification techniques are outlined, with particular
reference to their application to an existing piece of software. The specifi-
cation process itself is described and a sample specification presented.

One of the main benefits of applying specification techniques to existing
software is that questions are raised about the system design and documen-
tation during the specification process. Some problems that were identified
by these questions are discussed.

Problems with the specification techniques themselves, which arose in
applying the techniques to a commercial transaction processing system, are
outlined.

1 Introduction

Oxford University and IBM (UK) Laboratories Limited are engaged in a
joint project to evaluate the applicability of formal specification techniques
to industrial scale software. The project is attempting to scale up formal
mathematical methods, used so far within a research environment, to large-
scale software in an industrial environment. This chapter reports the expe-
rience gained so far in applying these techniques to describe the application
programmer’s interface of the IBM Customer Information Control System
(CICS).

CICS is widely used to support online transaction processing applications
such as airline reservations, stock control and banking. It can support ap-

Copyright c© 1985 IEEE. Reprinted, with permission, from IEEE Transactions on Software
Engineering, SE-11(2), pp. 169–178, February 1985.

1

plications involving large numbers of terminals (thousands) and very large
data bases (requiring gigabytes). The CICS General Information manual
[IBM80b] gives the following description.

CICS/VS provides (1) most of the standard functions required by
application programs for communication with remote and local
terminals and subsystems; (2) control for concurrently running
user application programs serving many online users; and (3)
data base capabilities . . .

CICS is general purpose in the sense that it provides the primitives of
transaction processing. An individual application is implemented by writing
a program invoking these primitives. The primitives are similar to operating
system calls, but are at a higher level; they also provide such facilities as
security checking, transaction logging, and error recovery.

CICS has been in use since 1968, and has undergone continuous develop-
ment during its lifetime. In the original implementation, the application pro-
grammer’s interface was at the level of control blocks and assembly language
macro calls. This is referred to as the macro-level application programmer’s
interface. In 1976 a new interface, the command-level application program-
mer’s interface, was introduced. It provides a cleaner interface which does
not require the application programmer to have knowledge of the control
blocks used in the implementation of the system. The command-level inter-
face is the subject of our work on specification.

CICS is supported on a number of IBM operating systems in such a way
that application programs written using the application programmer’s inter-
face may be transferred from one environment to another without recoding.
In addition, the command-level interface supports a number of programming
languages: PL/I, Cobol, Assembly language and RPG II. This is achieved
by the use of a preprocessor that translates programs containing CICS com-
mands into the appropriate statements in the language being used (usually
a call on a CICS module). Hence the application programmer’s interface
provides a level of abstraction that hides a number of significantly different
implementations.

The command level interface is split up into a number of relatively inde-
pendent modules responsible for controlling various resources of the system.
The formal specification work has so far concentrated on specifying indi-
vidual modules in relative isolation. Of the sixteen modules comprising the
command-level interface, three — temporary storage, exceptional condition
handling and interval control — have been specified. Temporary storage
provides facilities for setting up named temporary storage queues that may
be used to communicate information between transactions or as temporary
storage by a single transaction. Exceptional condition handling provides fa-
cilities to handle exceptions raised by calls on CICS commands in a manner
similar to PL/I condition handling. Interval control provides facilities to set

2

up time-outs and delays, as well as to start a new transaction at a given
time and to pass data to it.

With the large number of CICS systems around the world, the usage
of the CICS command level application programmer’s interface is on a par
with many programming languages. As with programming languages, it is
important that the interface be clearly specified in a manner independent of
a particular implementation.

2 Uses of formal specification

The work reported in this chapter deals with the specification of parts of
an existing system. Before considering the benefits of specification when
applied to existing software we will briefly review the benefits of specifica-
tion in general. (For a more detailed discussion see [Sta82].) In software
development a formal specification can be used by

designers to formulate and experiment with the design of the system,

implementors as a precise description of the system being built, partic-
ularly if there is more than one implementation,

documentors as an unambiguous starting point for user manuals, and

quality control for the development of suitable validation strategies.

Using a specification, the designer of a system can reason about prop-
erties of the system before development starts; and during development,
formal verification that an implementation meets its specification can be
carried out.

When an existing system is being specified there are both short- and
long-term benefits. In the short term, performing the specification

• uncovers those parts of the existing manuals that are either incomplete
or inconsistent; and

• gives insights into anomalies in the existing system and can suggest
ways in which the system could be improved.

In the longer term the specification can be used

• for reimplementation of all or part of the system;

• as a basis for discussing and developing specifications for changes or
additions to the system; and

• to provide a model of the functional behaviour of the system suitable
for educating new staff.

3

Reimplementation may involve a new machine architecture, program-
ming language or operating system, or a restructuring to take advantage of
multiprocessor or distributed systems. As the specification is implementa-
tion independent, it provides a suitable starting point for each of the above
alternatives.

When changes or additions to the system are to be made, new specifica-
tions can be developed with reference to the previous specification. These
developments will give insights into the effect of the changes and their in-
teraction with existing parts of the system.

As the specification is a formal document it provides a more precise de-
scription for communication between the designers than natural language
descriptions. This should help to reduce misunderstandings among the peo-
ple involved.

Experimentation with specification provides a quicker and cheaper method
of investigating a number of alternative changes to the system than imple-
menting the changes. On the other hand, because the specification is im-
plementation independent, it cannot provide direct answers to questions of
how difficult the changes will be to implement, or their impact on the per-
formance of the system. However, as it is at a high level of abstraction it
can give a better insight into the interaction of changes with other compo-
nents of the system; it is just these high-level interactions which get lost in
informal specifications and in the detail of implementation.

While working predominantly at a more abstract level the specifiers must
be experienced in implementation and should be aware of the implementa-
tion consequences of their decisions. Those parts of the specification for
which the implementation consequences are unclear should be further inves-
tigated before detailed implementation is begun.

3 The specification process

The starting point for our specification work was the CICS command-level
application programmer’s reference manual [IBM80a]. The style of this man-
ual is a combination of formal notation describing the syntax of commands
and informal English explanations of the operation of the commands. We
developed our initial specification of a module of the system by reference to
the corresponding section of the manual. The main goal was to come up with
a mathematical model of the module that is consistent with its description
in the manual. This involves forming a crude initial model of the module
and extending it to cover operations (or facets of operations) not initially
dealt with, or refining or redesigning the specification as inconsistencies are
discovered between it and the manual.

In attempting the initial specification, questions arose that were not
satisfactorily answered by the manual. At this stage, a list of questions was

4

prepared, and an expert on that module of the system (along with the source
code) was consulted. Questions can arise for the following reasons:

• the manual is incomplete or vague;

• the manual is not explicit as to whether possible special cases are
treated normally or not;

• the manual is itself inconsistent; or

• the chosen mathematical model is inconsistent with the manual in
some small way: either the model or the manual is incorrect.

As the system has been in use for some time the answers to the more
straightforward questions about its operation have already found their way
into the manual. Hence most questions that arose in the specification process
were rather subtle and required reference to the source code of the module
to be satisfactorily answered. Some of the questions led to inconsistencies
being discovered between the manual and the implementation. These incon-
sistencies were either errors in the manual or bugs in the implementation.
Which way they should be classified depends on the original intent of the
designer.

The specification was also given to people experienced in formal speci-
fication who gave comments on its internal consistency and style, and who
suggested ways in which the specification could be simplified or improved.
They were also given a copy of the relevant section of the manual to read
after they had understood the specification, and were asked to point out any
inconsistencies they discovered between it and the specification.

The answers to questions and the review of the specification led to a re-
vision of the specification, which led to further questions and further review,
and so on.

3.1 Notation

The style of the specification document is a mixture of formal Z and in-
formal explanatory English. The formal parts of the specification, given in
Z, are surrounded in the text by boxes so that they stand apart from the
explanatory surrounds and may be more easily found for reference purposes.
To make a specification readable, both formal and informal parts are neces-
sary; the formal text can be too terse for easy reading and often its purpose
needs to be explained, while the informal natural language explanation can
more easily be vague or ambiguous and needs the precision of a formal lan-
guage to make the intent clear. The informal text provides the link between
formality and reality without which the formal text would just be a piece of
mathematics. To create a good specification the structuring of the specifi-
cation and the composition and style of the informal prose are as important
as the formal text.

5

The aim is to provide a specification at a high level of abstraction and
thus avoid implementation details. The specification should reveal the op-
eration of the system a small portion at a time. These portions can be
progressively combined to give a specification of the whole. This style of
presentation is preferred to giving a monolithic specification and trying to
explain it; the latter can be rather overwhelming and incomprehensible be-
cause there are too many different facets to understand at once. It is hoped
that by giving the specification in small portions each piece can be under-
stood, and when the pieces are put together the understanding of the parts
that has already been gained can lead more easily to an understanding of
the whole.

For more complex specifications that are developed via numerous small
steps, understanding the whole can be quite difficult, because one needs to
remember the function of all the parts and understand the way in which they
are combined. In such cases it can be useful to provide both a portion by
portion development of the specification and an expanded monolithic spec-
ification as well. The latter is more assailable after one has been through a
piece-by-piece development and has an understanding of its various compo-
nents.

4 A sample specification

As a sample of the type of specification produced we will look in detail at
the specification of exceptional condition handling within CICS. The ex-
ception check mechanisms of CICS are similar to those provided by PL/I
[IBM76]. This module was chosen for exposition because it is one of the
smaller modules in the system. The manual entry on which the specifica-
tion was initially based is given in Appendix 8. The specification given here
is the final product of the specification process described in the previous
section.

The syntax of the CICS commands depends, of course, on the envi-
ronment in which they are written. Our notation below is intended to be
uncommitted, but explicit enough to indicate exactly which command is
meant.

4.1 Exceptional conditions specification

Exceptional conditions may arise during the execution of a CICS command.
A transaction may either set up an action to be taken on a condition by
using a Handle Condition command, or it may specify that the condition is
to be ignored by using an Ignore Condition command. If a condition has
been neither handled nor ignored, then the default action for that condition

6

is used. For example, to handle condition x with action y we can use

Handle Condition(c = x , a = y)

where the keyword parameter ‘c =’ gives the condition and ‘a =’ gives the
action. To ignore condition z we use

Ignore Condition(c = z)

We introduce the set CONDITION , which contains all the exceptional
conditions that may occur, and also contains two special conditions:

success the condition that indicates that a command completed normally,
and

error this is not a condition that can arise from the execution of a com-
mand; rather, it provides a mechanism for providing a catchall error
handler for conditions that are not explicitly handled.

We do not list all the possible exceptional conditions here.

CONDITION ::= success | error | . . .

We also introduce the set ACTION , which contains all actions that
could be taken in response to some exceptional condition. The exact nature
of ACTION is not discussed in detail here. For each programming language
supported by CICS it has a slightly different meaning, but for all of the
languages an action is represented by a label which is given control. There
are four special actions used in this specification:

nil indicating a normal return (i.e. no action);

abort the action that abnormally terminates a transaction;

wait indicating that the transaction is to wait until the operation can be
completed normally (e.g. wait until space becomes available); and

system used to simplify the specification of the Handle Condition com-
mand.

ACTION ::= nil | abort | wait | system | . . .

7

4.2 The state

The state of the exception controlling system can be defined by the following
schema:

Exceptions
Handler : CONDITION 7→ ACTION

Handler(success) = nil

The mapping Handler gives the action to be taken for those conditions
that have been set up by either an Ignore Condition or Handle Condition
command. The handling action for condition success is always nil (i.e.
return normally). The action for other conditions is determined by some
fixed function

Default : CONDITION → ACTION

Default(error) = abort ∧
ran(Default) = {nil , abort ,wait}

The default action for the special condition error is to abort and the only
default actions are nil , abort , and wait .

The initial state of the exception handling system for a transaction is
given by the following schema:

Initial
Exceptions

Handler = {success 7→ nil}

The initial state of the handler is to return normally if the operation com-
pletes successfully. As an example, if starting in the initial state the com-
mands

Handle Condition(c = x , a = y)
Ignore Condition(c = z)

are executed, then the final state will satisfy

Handler = {x 7→ y , z 7→ nil , success 7→ nil}

The Handle Condition command sets up a mapping from condition x to
action y and the Ignore Condition command maps condition z onto the nil
action.

8

4.3 The operations

The two operations, Handle Condition and Ignore Condition, work directly
on the above state. We describe a state change using the following schema,
which is called ‘∆Exceptions’:

∆Exceptions
Exceptions
Exceptions ′

Exceptions represents the state of the exception handling system before an
operation and Exceptions ′ the state after.

The operation Handle Condition is used to set up the action, a?, to be
performed on a particular exceptional condition, c?. It is defined by the
following schema:

HandleCondition
∆Exceptions
c? : CONDITION
a? : ACTION

c? 6= success ∧ a? 6∈ {nil , abort ,wait} ∧
Handler ′ = Handler ⊕

{c? 7→ (if a? = system then Default(c?) else a?)}

The first predicate gives the precondition for the operation: the special
condition success cannot be handled, and the special actions nil , abort and
wait cannot be given as handling actions. The second predicate describes
the effect of the operation: if the action to be set up is specified as system,
then, instead, the default action for the given condition will be set up as the
handler for that condition; otherwise the supplied action, a?, will be set up.
For example, if the command

Handle Condition(c = x , a = system)

is executed in the initial state and Default(x) = wait , the resulting state
will satisfy

Handler = {x 7→ wait , success 7→ nil}

The actual Handle Condition command accepts a set of condition–action
pairs, rather than just a single pair as shown above. However, the effect of
the command for each pair is as described above, so we will not bother to
show the full command. Similarly, the Ignore Condition command accepts a
set of conditions, but we only bother to show its effect for a single condition
here.

9

The operation to specify that an exceptional condition is to be ignored
is given by the following schema:

IgnoreCondition
∆Exceptions
c? : CONDITION

c? 6= success
Handler ′ = Handler ⊕ {c? 7→ nil}

The special condition success cannot be specified in an IgnoreCondition com-
mand. The action to be taken on an ignored condition is to return normally
(i.e. nil).

4.4 Exception checking

Exception handling can take place on any CICS command except Handle-
Condition and IgnoreCondition themselves. We need to describe the ex-
ception checking that takes place on all other commands. The exception
checking process determines the action, a!, to be taken on completion of a
command. The value of a! is dependent on the condition, c?, returned by
the command, and the current state of the exception handling mechanism.
In addition, any command may specify whether or not all exceptions are
to be handled for the execution of just that command. In describing the
checking process we include the Boolean variable handle? to indicate this.
The following defines the (complex) exception checking mechanism that is
included in the definition of each operation (other than Handle Condition
and Ignore Condition):

ExceptionCheck
Exceptions
handle? : Boolean
c? : CONDITION
a! : ACTION

a! = if handle? = False then nil
else if c? ∈ domHandler then Handler(c?)
else if Default(c?) 6= abort then Default(c?)
else if error ∈ domHandler then Handler(error)
else abort

If exceptions are not being handled for the command (handle? = False)
the action is to return normally; otherwise the action is determined from
the exception handler. If the condition, c?, has been ignored or handled
(including the case where the handle action was specified as system) then

10

the corresponding handler action is used. Otherwise, if the default action
for the condition is not abort the default is used, else if the special condition
error is handled its handler action is used, otherwise the action is abort .

5 Questions raised

The questions raised about the system during the specification process are
an important benefit of the process. They indicate problems either in the
documentation of the system or in its logical design, and provide those
responsible for maintaining the system with immediate feedback on problem
areas.

In writing a formal specification one is creating a mathematical model of
what is being specified, and in creating such a model one is encouraged to be
more precise than if one were writing in a natural language. Because of the
precision required, questions are raised during the specification process that
are not answered by referring to the less formal manual. In fact, the task
of formal specification is demanding enough to raise most of the questions
about the functional behaviour of the system that would be raised by an
attempt to implement it. The effort required for a specification, however, is
considerably less than that required for an implementation.

We now discuss some of the questions that were raised during the spec-
ification work on CICS modules. It is interesting to note that most of the
questions raised required the expert on the module to refer to the source
code to give a conclusive answer. We begin with the questions about ex-
ceptional conditions, then a question about interval control, and finally a
question about the interaction between temporary storage and exceptional
conditions.

5.1 Exceptional conditions

We first list some questions that were raised during the specification of
exceptional condition handling and then examine one of the more interesting
questions in detail. All of these questions were resolved in producing the
specification given in the previous section.

1. What is the range of possible default actions?

2. Is the default action for a particular condition the same for all com-
mands that can raise that condition?

3. Can the special condition error be ignored?

4. Is the action for condition error only used if the default system action
on a condition is abort?

11

5. If executed from the initial state, does the sequence

Handle Condition(c = x , a = y)
...

Handle Condition(c = x , a = system)

return the handler to the initial state?

The reader is invited to try to answer these questions from the manual entry
given in Appendix 8 and then from the specification given in Section 4.1.
We now look in detail at question 5 above. It shows a subtle operation of
the exceptional conditions mechanism that is counter-intuitive.

In an earlier model of the Handle Condition command the new value for
the Handler ′ in the case when a? = system was

Handler ′ = {c?} −C Handler

That is, if the action specified as an input is system then the entry for the
condition c? is removed from the handler (c? 6∈ domHandler ′). In the final
model the new value of the Handler ′ in this case is

Handler ′ = Handler ⊕ {c? 7→ Default(c?)}

In this version, if the action is system the entry in the handler for condition
c? is set up to be Default(c?) (therefore c? ∈ domHandler ′).

To see the effect of the difference we need to look at the Exception Check
mechanism given in Section 4.1. If we use the second line above, then the
action when the exception c? occurs is Default(c?) (assuming handle? is
true). In the earlier model, however, the action also depends on whether
a handler has been set up for the special condition error : the action is
Default(c?) unless Default(c?) is abort and error ∈ domHandler , in which
case the action is Handler(error). The difference between the two versions
is subtle and the reader is encouraged to study the definitions of Handle
Condition and Exception Check in order to understand the difference.

The exception check mechanism is quite complex. None of the people
experienced with CICS who were questioned about exceptional condition
handling was aware of the problem detailed above. It is interesting to con-
jecture why this is so. The most plausible explanation is that the operation
of the exception check mechanism is counter-intuitive. For example, the
sequence given in question 5, i.e.

Handle Condition(c = x , a = y)
...

Handle Condition(c = x , a = system)

12

does not leave the exceptional condition handler in its initial state if the
default action for condition x is abort and a handler has been set up for the
special condition error ; before the above sequence the error handler is used
on an occurrence of condition x , but after, the action Default(x) (i.e. abort)
is used on an occurrence of x .

If the above sequence did restore the exception condition handler to its
initial state, then it could be used to handle condition x temporarily for
the duration of the statements between the Handle Condition commands.
This form of operation is more what those using the exceptional conditions
module expect.

The Exception Check mechanism is so complex that most readers of
either the manual or the specification given in the previous section do not
pick up the above subtle operation unless it is explicitly pointed out in some
form of warning. This is probably a good argument in favour of revising
exception handling so that it becomes more intuitive.

The discussion about question 5 above also raises the point that a speci-
fication can be incorrect. This case shows one advantage of getting a second
opinion on the specification and how it compares with the manual, from a
person experienced in formal specification. It is important that the reviewer
should read the specification before reading the manual. The reviewer’s
mental model of the system is thus based on the mathematical model in
the specification. When the reviewer reads the manual looking for incon-
sistencies with the specification, any questions that arise can be answered
by consulting the precise model given in the specification. This contrasts
with the person writing the specification who forms a model from the man-
ual and often has to consult other sources to answer questions that arise.
Getting a second opinion on the specification and how it compares to the
manual is an important ingredient for increasing confidence in the accuracy
and readability of the specification.

5.2 Interval control

As another example we consider one of the problems raised during the spec-
ification of the CICS interval control module. Interval control is responsible
for operations that deal with the interval timer. The operations provided
by interval control can be split logically into two groups: those concerned
with starting new transactions at specified times, and those concerned with
time-outs and delays.

In specifying a module of the system we define the state components of
the module (in the case of exceptional conditions there was only one state
component, Handler). The state components of interval control can be split
into two groups that are concerned respectively with the two groups of inter-
val control operations. For the most part, operations only refer to or change
components of the corresponding state. One exception is the command

13

Start (to start a new transaction) which in some circumstances changes the
time-out state components. This can be considered to be a carefully docu-
mented anomaly of the current implementation. Both the implementation
and documentation could be simplified if the Start command did not destroy
the current time-out. More importantly, removal of this interaction would
lead to a more useful time-out mechanism, because time-outs would not be
affected by a transaction start.

This anomaly is interesting because it points out an unwanted interaction
between different parts of a module. In attempting to write the specification
this interaction stood out because it involved the Start operation using the
time-out state. This form of interaction between parts of modules tends
to be pinpointed in the formal specification process because the offending
operations require access to state information other than that of the part to
which they belong.

Two further facts reinforce the view that the current operation of the
Start command is not the most desirable: if the new transaction is to be
started on a different computer system to the one issuing the Start com-
mand, or if the start is protected (from the point of view of recovery on
system failure), then the start does not destroy the current time-out. Ide-
ally we do not want to have to specify distributed system and recovery
effects individually with each operation. We would like to add extra levels
of abstraction to describe these effects for the whole system.

5.3 Interaction between modules

As an example of an interaction between two CICS modules we consider an
interaction between exceptional conditions and temporary storage. When
temporary storage is exhausted it can raise the exceptional condition nospace.
This is processed in the normal way if it has been explicitly handled; the
default action, however, is to wait until space becomes available.

Thus the specification of the temporary storage operations that can lead
to a nospace exception require access to the exceptional conditions state to
determine whether or not the nospace exception is handled; if it is handled
it can occur, but if it is not, it cannot. These operations would more simply
be specified (and implemented) if they had an extra parameter indicating
whether or not to wait. It is interesting to note that, in the implementa-
tion, such temporary storage commands are transformed into a call with an
additional parameter after the exception handling state has been consulted.
It is also interesting that these commands were not correctly implemented
if the nospace exception was ignored.

Interactions between modules of the system are pinpointed during the
formal specification process (just as they would be in an implementation)
because an operation from one module needs access to the state components
of another. Any such interactions discovered during the specification process

14

should be examined closely as they may indicate a breakdown in the modular
structure of the system.

6 Problems with specification

In this section we examine the problems encountered in applying the formal
specification techniques. This is in contrast to the previous section, in which
we concentrated on the system being specified. The problems encountered in
applying specification techniques can be split into the following categories:

• communication problems between the people involved;

• the general problem of achieving the ‘right’ level of abstraction in the
specification; and

• more technical problems related to the particular specification tech-
nique.

6.1 Communication problems

As a specification group from a university working with a commercial de-
velopment laboratory we faced a communications problem. Each party has
its own language: the specifiers use the language of mathematics based on
set theory, while the developers use terminology and concepts specific to the
system which they are developing. The communication problem is in both
directions. This requires that each party learn the language of the other.

In performing a formal specification the specifier needs to understand
what is being specified in order to be able to develop a mathematical model
of it. To understand the system it is necessary to read manuals and consult
experts, both of which use IBM and CICS terminology. Once a specification
is written, the specifier would like to get feedback on its suitability from these
same experts. This requires that they need to be educated in mathematics
to a level at which they can understand a specification. At the current stage
of the project the educational benefit has been more to the advantage of the
specifiers learning about the system. In performing a specification of part
of a system the specifier, of necessity, becomes an expert on the functional
behaviour of that part (but not on the implementation of the part).

6.2 The right level of abstraction

In this context ‘right’ means that a piece of specification conveys the primary
function of the part of the system it specifies and is not unduly cluttered
with details. It is most important that a specification should not be biased
towards a particular implementation. However, getting the right specifica-
tion also involves choosing the most appropriate model and structuring the

15

specification so that the minute details of the specified object do not obscure
the primary function.

We can use hierarchical structuring to achieve this. Details of some facet
of a component can be specified separately and then that specification can be
referred to by the higher level specification. Different cases of an operation
(e.g. the normal case and the erroneous case) can be specified independently
and combined to give a specification of the whole.

The structure of a good specification may not correspond to the struc-
ture one may use to provide an efficient implementation. In specification
one is trying to provide a clear logical separation of concerns, while in im-
plementation one may take advantage of the relationships between logically
separate parts to provide an efficient implementation of the combined entity.
The intellectual ability required of a good specifier is roughly equivalent to
that of a good programmer; however, the view taken of the system must be
different.

6.3 Technical problems

The following technical specification problems were discovered in applying
formal specification techniques to CICS:

• putting the module specifications together to provide a specification
of the system as a whole;

• specifying parallelism;

• specifying recovery on system failures; and

• specifying distributed systems.

We shall briefly discuss each of these in turn.

Putting modules together Currently, three modules out of the sixteen
modules that form the application programmer’s interface have been spec-
ified and we now feel we have enough insight into the system to consider
the problem of putting the module specifications together. Each module
has state components and a set of operations that work on those state com-
ponents. Putting the modules together amounts to combining the states
together to form the state of the system, and extending the operations of
the modules to operations on the whole system. The problems encountered
in putting modules together were as follows:

• avoiding name clashes when the modules were combined;

• specifying the effect on the whole system state of an operation defined
within a module of the system; and

16

• coping with situations in which an operation of one module refers to
state components of another module.

Parallelism In our current specifications the operations are assumed to
be atomic operations acting on the state of the system. We have a sufficient
underlying theory to allow one to reason formally about a single sequential
transaction. An area for future research is to extend the theory to allow
reasoning about the interactions between parallel processes. The current
specifications will still be used but they will need to be augmented with
additional specifications which constrain the way in which the parallel pro-
cesses interact.

Recovery An important part of a transaction processing system is the
mechanism for recovery on failure of the system. The current specifications
do not address the problem of recovery. Again we would like to augment the
current specifications so that recovery can be incorporated without requiring
the existing part of the specification to be rewritten.

Distributed systems A number of CICS systems may cooperate to pro-
vide services to users. The main facility provided within CICS to achieve
this is the ability to execute certain operations or whole transactions on a
remote system. While the individual operation specifications could be aug-
mented to reflect remote system execution, it was thought better to wait
until we had a specification of the system and extend that to a distributed
system. To reason effectively about a distributed system we need to be able
to reason about parallelism.

7 Conclusions

Formal specification techniques have been successfully applied to modules
of an existing system and as an immediate benefit have uncovered a number
of problems in the current documentation as well as flaws in the current
interface design. In the longer term the formal specifications should provide
a good starting point for specifying proposed changes to the system, a more
precise description for educating new personnel, and a basis for improved
documentation.

In part the reason we have been successful in applying our specification
techniques is that the modular structure of CICS is quite good, and we have
been able to take advantage of this by concentrating on individual modules
in relative isolation.

The main short-term benefits that are obtained by applying formal spec-
ification techniques to existing software are the questions that are raised
during the specification process. They highlight aspects of the system that

17

are incompletely or ambiguously described in the manual, as well as fo-
cusing attention on problems with its structure, for example, undesirable
interactions between modules.

In the longer term a formal specification provides a precise description
which can be used to communicate between people involved with the system.
The specification is less prone to misunderstanding than less formal means
of communication, such as natural language or diagrams. It can be used as a
basis for a new specification which incorporates modifications to the original
design, and it provides an excellent starting point for people responsible
for improving the documentation. (In another group at Oxford work on
incorporating formal specifications into user manuals is being done by Roger
Gimson and Carroll Morgan [Mor83].)

The time required to specify a module of the system varied from about 4
weeks for Exceptional Conditions to 12 weeks for Interval Control. The time
required was related to the size of the module (the number of operations,
etc.) and also to the number and severity of problems raised about the
behaviour of the module. The size of a module specification (in pages)
turned out to be roughly comparable to the size of the manual entry for
the module. The specification sizes ranged from 4 pages (handwritten) for
Exceptional Conditions to 16 pages for Interval Control.

The difficulties encountered with the specification process itself were the
language gap between university and industry, and the problem of achieving
the right level of abstraction. There were also a number of more technical
specification problems that arose when applying the techniques: the problem
of putting together module specifications to provide a specification of the
system as a whole, specifying parallelism, specifying recovery on system
failure, and specifying distributed systems. These problems are areas for
further research.

Acknowledgements I would like to thank IBM for their permission to
publish this chapter and reproduce part of one of their manuals as an ap-
pendix. Several members of the IBM Development Laboratory at Hursley,
England assisted the author to understand some parts of CICS; of special
note are Peter Alderson, Peter Collins and Peter Lupton.

This work has benefited from consultations with Tony Hoare, Cliff Jones
and Rod Burstall. Tim Clement was responsible for the initial specifica-
tion of temporary storage and exceptional conditions. Paul Fertig, Roger
Gimson, John Nicholls and Bernard Sufrin gave useful comments on this
chapter. Finally, I would like to express my gratitude to Carroll Morgan
and Ib Holm Sørensen for their help as reviewers of the specifications, and
for their instruction in specification techniques.

18

8 Appendix: exceptional conditions manual

The following is an extract of the manual entry for exceptional conditions
taken from [IBM80a].

Exceptional conditions may occur during the execution of a CICS/VS
command and, unless specified otherwise in the application program by
an IGNORE CONDITION or HANDLE CONDITION command or by the
NOHANDLE option, a default action for each condition will be taken by it.
Usually, this default action is to terminate the task abnormally.

However, to prevent abnormal termination, an exceptional condition can
be dealt with in the application program by a HANDLE CONDITION com-
mand. The command must include the name of the condition and, option-
ally, a label to which control is to be passed if the condition occurs. The
HANDLE CONDITION command must be executed before the command
which may give rise to the associated condition.

The HANDLE CONDITION command for a given condition applies only
to the program in which it is specified, remaining active until the associated
task is terminated, or until another HANDLE CONDITION command for
the same condition is encountered, in which case the new command overrides
the previous one.

When control returns to a program from a program at a lower level,
the HANDLE CONDITION commands that were active in the higher-level
program before control was transferred from it are reactivated, and those in
the lower-level program are deactivated.

Some exceptional conditions can occur during the execution of any one
of a number of unrelated commands. For example, IOERR can occur dur-
ing file-control operations, interval-control operations, and others. If the
same action is required for all occurrences, a single HANDLE CONDITION
IOERR command will suffice.

If different actions are required, HANDLE CONDITION commands spec-
ifying different labels, at appropriate points in the program will suffice. The
same label can be specified for all commands, and fields EIBFN and EIBR-
CODE (in the EIB) can be tested to find out which exceptional condition
has occurred, and in which command.

The IGNORE CONDITION command specifies that no action is to be
taken if an exceptional condition occurs. Execution of a command could
result in several conditions being raised. CICS/VS checks these in a prede-
termined order and only the first one that is not ignored (by an IGNORE
CONDITION command) will be passed to the application program.

The NOHANDLE option may be used with any command to specify
that no action is to be taken for any condition resulting from the execu-
tion of that command. In this way the scope of the IGNORE CONDITION
command covers specified conditions for all commands (until a HANDLE
CONDITION for the condition is executed) and the scope of the NOHAN-

19

DLE option covers all conditions for specified commands.

The ERROR exceptional condition

Apart from the exceptional conditions associated with individual commands,
there is a general exceptional condition named ERROR whose default action
also is to terminate the task abnormally. If no HANDLE CONDITION
command is active for a condition, but one is active for ERROR, control
will be passed to the label specified for ERROR. A HANDLE CONDITION
command (with or without a label) for a condition overrides the HANDLE
CONDITION ERROR command for that condition.

Commands should not be included in an error routine that may give rise
to the same condition that caused the branch to the routine; special care
should be taken not to cause a loop on the ERROR condition. A loop can
be avoided by including a HANDLE CONDITION ERROR command as
the first command in the error routine. The original error action should be
reinstated at the end of the error routine by including a second HANDLE
CONDITION ERROR command.

Handle exceptional conditions

HANDLE CONDITION

HANDLE CONDITION condition [(label)]
[condition [(label)]]

...

This command is used to specify the label to which control is to be passed
if an exceptional condition occurs. It remains in effect until a subsequent
IGNORE CONDITION command for the condition encountered. No more
than 12 conditions are allowed in the same command; additional conditions
must be specified in further HANDLE CONDITION commands. The ER-
ROR condition can also be used to specify that other conditions are to cause
control to be passed to the same label. If ‘label ’ is omitted, the default action
for the condition will be taken.

The following example shows the handling of exceptional conditions,
such as DUPREC, LENGERR, and so on, that can occur when a WRITE
command is used to add a record to a data set. DUPREC is to be handled
as a special case; system default action (that is, to terminate the task ab-
normally) is to be taken for LENGERR; and all other conditions are to be
handled by the generalized error routine ERRHANDL.

EXEC CICS HANDLE CONDITION
ERROR(ERRHANDL)
DUPREC(DUPRIN)
LENGERR

20

If the generalized error routine can handle all exceptions except IOERR,
for which the default action (that is, to terminate the task abnormally) is
required, IOERR (without a label) would be added to the above command.

In an assembler-language application program, a branch to a label caused
by an exceptional condition will restore the registers in the application pro-
gram to their values at the point where the EXEC interface program is
invoked.

In a PL/I application program, a branch to a label in an inactive proce-
dure or in an inactive begin block, caused by an exceptional condition, will
produce unpredictable results.

Handle condition command option

condition [(label)] ‘condition’ specifies the name of the exceptional
condition, and ‘label ’ specifies the location within the program to be
branched to if the condition occurs. If this option is not specified, the
default action for the condition is taken, unless the default action is to
terminate the task abnormally, in which case the ERROR condition
occurs. If the option is specified without a label, any HANDLE CON-
DITION command for the condition is deactivated, and the default
action taken if the condition occurs.

Ignore exceptional conditions

IGNORE CONDITION

IGNORE CONDITION condition
[condition]

...

This command is used to specify that no action is to be taken if an ex-
ceptional condition occurs. It remains in effect until a subsequent HAN-
DLE CONDITION command for the condition is encountered. No more
than 12 conditions are allowed in the same command; additional conditions
must be specified in further IGNORE CONDITION commands. The op-
tion ‘condition’ specifies the name of the exceptional condition that is to be
ignored.

References

[IBM76] IBM Corporation. OS PL/I Checkout and Optimising Compilers:
Language reference manual, 1976.

[IBM80a] IBM Corporation. CICS/OS/VS Version 1 Release 5, Application
Programmer’s Reference Manual (Command level), 1980.

21

[IBM80b] IBM Corporation. CICS/VS General Information, 1980.

[Mor83] C.C. Morgan. Using mathematics in user manuals. Dis-
tributed Computing Project technical report, Programming Re-
search Group, Oxford University, 1983.

[Sta82] J. Staunstrup, editor. Program Specification: Proceedings of a
Workshop, Aarhus, Denmark (August 1981), volume 134 of Lec-
ture Notes in Computer Science. Springer-Verlag, 1982.

22

