Composing grammar transformations to construct
a specification of a parser

Luke Wildman

lan Hayes

Software Verification Research Centre

Department of Computer Science
University of Queensland
Brisbane, 4072

email:

Abstract

As part of a project with the aim of scaling up
formal methods, we have developed a library con-
struct for the specification language Z. This paper
reports on the result of using libraries to structure
a specification of a relatively complicated parser for
a language-based editor. The parser is complicated
by the need to cope with multiple languages as well
as tolerate errors in the input.

Our goal in producing the specification of the
parser has been to separate each of the major con-
cepts on which the specification is based (eg, multi-
ple languages and error-tolerance) into a separate
library.

To achieve the separation of concerns we have
applied the novel technique of specifying each of the
magor concepts of the parser as grammar transfor-
mations. The full parser can then be specified by
composing the separate transformations to give a
grammar incorporating all the desired features.

1 Introduction

In working towards a suitable framework for writ-
ing large specifications we have developed a library
construct [2] that allows a Z [8, 3] specification to
be presented in a structured form. In this paper we
examine the application of libraries to the specifica-
tion of an extended parser for a structured editor.

The editor A generic language-based editor [1]
has been developed to provide support for software
development. Two major features of the editor are
the support of multiple languages in a single doc-
ument (eg, a programming language plus a specifi-
cation language) and the incorporation of an in-
cremental parser [5, 4] that is tolerant of errors
introduced into a document via edit operations in
the course of modifying the document.

wild@cs.uq.oz.au

The parser For the specification of a parser for
a simple language-based editor it is appropriate
to use the well-known concepts of formal language
theory. This theory allows one to relate a grammar
for the language being edited to strings of symbols
(language recognition) and to define parse trees for
those strings (parsing). The language-based editor
incorporates three major extensions:

e it is tolerant of errors in the input string during
the editing process;

e it supports multiple languages within a single
document; and

e it supports contexts which correspond to the
block or module structure of the language be-
ing edited.

There are two approaches that we have consid-
ered to incorporate each of these extensions into
the parser specification:

1. develop a specialised formal language theory
to support the extension directly, or

2. reuse the basic formal language theory by en-
coding the extensions in the grammars.

As an example of the first approach, the special
theory we developed for an error-tolerant parser
used a more complex parse tree representation with
special nodes to cope with both missing and ex-
traneous symbols in the input string, and a more
complex parsing relationship between the grammar
and the extended parse tree. The second approach
is to transform the grammar for the language into
an extended grammar with additional symbols and
productions that are used to encode the error tol-
erance.

Having considered both these approaches, we
prefer the grammar transformation approach be-
cause

e it is simpler to define the transformation of the
grammar than to define a specialised language
theory,

e the basic formal language theory developed for
a simple grammar can be reused directly on
the extended grammar, and

e most importantly, as our application extends
the parser in three different ways, using the
grammar transformation approach allows us
to apply three separate transformations to our
grammars to achieve the desired net result.
This is only possible because all the extensions
share the same basic formal language theory.

With the specialised theory approach life is more
complicated. Although it is reasonably straightfor-
ward to develop a specialised formal language the-
ory for each of the three extensions, there is no sim-
ple way to combine the extended theories. Instead
one is forced to develop a monolithic, very compli-
cated, language theory that incorporates all three
extensions. Discarding this approach in favour of
grammar transformations allows a clearer separa-
tion of the multiple extensions and, overall, a sim-
pler specification.

A brief introduction to the library mechanism is
presented in Section 2. Some examples of the trans-
formations specified in each library are given in
Section 3. In Section 4 we discuss the composition
of the transformations to form the specification,
and in Section 5 we justify the approach taken
with some examples of the improvements made over
previous specifications.

2 Libraries: an introduction

The addition of a library facility to Z was motivated
by a desire to support a modular approach to spec-
ification. The objectives were to be able to build
a specification from components each describing a
single aspect of the specification, as well as to allow
for component reuse. To support reuse some form
of parameterisation was desirable.

In Z one considers a specification to be a doc-
ument; therefore it is quite natural to consider a
library to be a new section (or subsection), of such
a document.

At its simplest a library is a named collection
of type and variable definitions. An example is the
Grammar_types library (Section 3.1). A library is

similar to a specification document or a Z chap-
ter [6] except that the definitions of a Z chapter
are visible to all of the following chapters of the
specification. Normally, libraries must be explic-
itly instantiated to gain access to the definitions
contained within. However, Global libraries (Sec-
tion 2.2) are similar to the Z chapter mechanism
in that their definitions are visible to the entire
specification.

A normal library heading contains its name and
any formal type parameters (see Section 2.1). The
body of a library contains definitions (of types and
variables) which may be dependent on the library’s
type parameters. One instantiates a library thus

instantiate libraryl

The effect is to provide access to the definitions
contained therein as if they had been written at the
point of instantiation. The scope of the instantia-
tion extends to the end of the library or document
in which it is instantiated.

2.1 Generic Libraries

Libraries may have parameters. The parameters
allowed are unstructured sets similar to those cur-
rently allowed in Z for generic definitions. This
allows one to group together a collection of re-
lated definitions generic as a whole in the parame-
ter sets. That is, when the library is instantiated,
all of the component definitions are instantiated
with the same parameter sets. An example is the
library Multiple_grammars (Section 3.2). When it
is instantiated, its generic sets (L and SY) must
be provided. The instantiation of the library pro-
vides all the definitions within the library, each
instantiated with the actual parameter sets. This
separates the instantiation of a library from the
use of that instantiation’s definitions and therefore
removes the need for the uniqueness constraint put
on Z generic definitions [7, p.85]; once an instan-
tiation is made, each use of a definition from that
instantiation refers to the same definition.

Note that this does not preclude the use of the
usual generic Z definitions where each definition is
individually dependent on a generic set. Libraries
provide an additional mechanism for introducing a
group of related definitions generic as a whole in
the parameter sets.

2.2 Global libraries

It is impractical to explicitly instantiate the defi-
nitions for the standard Z toolkit in every library
written. We use a set of global libraries which are

given global scope over the entire specification. The
global libraries include the Z toolkit but may also
be extended with any non-generic library. The set
of global libraries for a given specification may be
extended by using the keywords Global library to
introduce a new library rather than just Library.
The library Grammar_types (Section 3.1) is an ex-
ample of a global library.

2.3 Schemas vs libraries

A library is a generalisation of a Z schema. The
main differences between them are that

e a library allows new types to be created in
its body, whereas this can not be done in a
schema, and

e a schema can be used as a type, whereas a
library can not.

The library extension to Z is discussed in greater
detail in [2].

A typechecker for the library extension to Z has
been developed by extending the hippo typechecker
for Z developed by Sufrin et al [9]. The specifica-
tion presented in this paper has been mechanically
checked with the typechecker.

3 Grammar transformations

In this section we introduce some of the libraries
that define the grammar transformations that are
used within the specification of the parser for the
language-based editor. Because of space limita-
tions we cannot give all the libraries used in the
specification of the parser. In particular we do not
cover the transformations that support contexts
within the editor (see [10] for more detail).

The global library Grammar_types (Section 3.1)
introduces the basic grammar type used in the spec-
ification. The library Multiple_grammars (Section
3.2) specifies a transformation from a set of mono-
lingual grammars into a single multi-lingual gram-
mar. The library Error_grammars (Section 3.3)
specifies a transformation from a single normal gram-
mar into the corresponding error-tolerant gram-
mar.

3.1 Global library: Grammar_types

The set of productions is represented by a relation
between a symbol on the left side of a production
and a sequence of symbols on the right side that it
may produce. The type Productions is generic in
the set of symbols SY.

Productions[SY] == SY < seqSY

A context-free grammar consists of sets of pro-
ductions, P, terminal symbols, T, nonterminal sym-
bols, NT, and starter symbols, SS. The nonter-
minal symbols may have productions defined for
them and may be used in the productions of other
nonterminals and so may appear on both left and
right sides. Terminal symbols do not produce any
other symbols and therefore may only appear on
the right side of a production. The starter sym-
bols are special nonterminals that may be used
as the root of a derivation sequence. Usually a
grammar has only one starter symbol however the
editor allows multiple starter symbols so we have
accommodated this generalisation.

— Grammar[SY]
P : Productions[SY]
SS.NT, T :PSY

SSCNTANTNNT={}
dom P C NT
Vrhs :ranP eranrhs C NTU T

In the full specification [10] there are several
additional libraries that develop formal language
and parsing theory. The Derivations library further
develops formal language theory. It describes how
one sequence of symbols may directly or indirectly
derive another sequence of symbols, as well as con-
cepts like starter sets and languages. A general Tree
library provides useful definitions to do with multi-
way trees and a more specific ParseTree library
describes how a parse tree is related to a grammar.
These libraries have been omitted here as they are
not necessary for the presentation of the following
grammar transformations.

3.2 Library:
Multiple_grammars[SY,L]

The parser has the capability to process many
different languages simultaneously. We deal with
this by combining all the language grammars into
a single grammar. This library is parameterised
by the base symbol set for all the grammars, SY,
and by the set of language identifiers, L. The set
of grammars to be merged is of type MultiGram,
which maps a language to the grammar for that
language.

MultiGram == L -+ Grammar[SY]

The grammars may share common symbols and we
have to be careful to maintain the distinction be-
tween them. We also wish to be able to determine

the source language of each symbol. We construct
a new symbol type, MLS, which incorporates both
the language and the original symbol.

MLS ==L x SY

By constructing our merged multi-lingual grammar
with these language-symbol pairs as symbols we
ensure that the symbols used in the grammar for
one language do not overlap with the symbols of
the grammars for any other language. The function
addl converts a symbol to such a language-symbol
pair.

‘ addl : L — (SY — MLS)
(V1L s:SY e addi(l)(s) = (I, 5)

It is defined in curried form so that we may
transform a set of symbols ps to a set of language-
symbol pairs of language [by taking the relational
image of ps through the function addi(l), i.e.,
addl(l)(ps).

The function combine transforms a set of gram-
mars to produce a single grammar of MLS symbol
type. The terminal symbols of the combined
grammar are the union over all the languages of
each language’s terminal symbols, each of which
has been augmented with its language identifier.
The nonterminals and starters are treated similarly.
The same treatment is also applied to the produc-
tions: both the nonterminal (n) on the left and all
the symbols in the sequence of symbols (rs) on the
right side of a production must be augmented with
the language identifier.

As an example consider the multiple grammar
mg which contains the grammars for two languages
based on the symbol set

SY ui=a|b]c]|d.

The construct (u Grammar[SY] | P) creates a
unique element of the schema type Grammar with
fields satisfying the predicate P.

mg ==
{11 = (1 Grammar[SY] |
T={a,b} ANT ={c} A
SS = {c} AP ={c > (a), ¢ (a,0)}),
12— (u Grammar[SY] |
T={a,c} NNT ={d} A
SS={d} ANP={d— (a,d),d— (c)})}

The result of the combination is

combine(mg) = (u Grammar[MLS] |
T ={(I11,a),(I11,b),(12,a), (12, ¢)} A
NT ={(11,¢),(I2,d)} A
SS ={(I11,¢),(12,d)} A
P ={(1,¢)— {(I1,a)),
(11, ¢) = {(I1, a), (11, b)),
((12, d)),
(1)

The specification of combine follows.

) = (12, a

12,d),
12,d) — (12, ¢))

combine : MultiGram — Grammar[MLS)

Vmg : MultiGram e
let lg == dom mg e
combine(mg) = (p Grammar[MLS] |
T =U{l:lgeaddl(l)| mg(). T D} A
NT =UJ{l: lg e addl(l)(] mg(1).NT)} A
SS = U{l:lg e addl(l)(| mg(l).SS)} A
P=U{l:lge{n:8Y; rs:seqSY |
(n,rs) € mg(l).P e
addl(l)(n) — map(addl(1))(rs)}})

The function map applies a given function to
each element of a sequence yielding the sequence
of results. In this case it yields a sequence of
language-symbol pairs.

3.3 Library: Error_grammars[SY]

In this library we specify a function which trans-
forms a normal grammar into an error-tolerant
grammar.

A feature of the editor is the ability of the parser
to tolerate errors in the document at edit points.
The editor copes with both missing and extraneous
symbols in the input while editing the parse tree.
It copes with missing symbols by leaving a hole
symbol in the vacant position and with extraneous
symbols by placing them in an error node which
is grafted into the parse tree at the position where
the errors occurred in the input.

Our approach is to transform a grammar for
a language into an error-tolerant grammar, which
includes productions involving hole and error sym-
bols. First we extend the symbol set with the error
symbols.

The type parameter to this library, SY, rep-
resents the normal symbols in the unextended
grammar. This set needs to be extended with the
error symbol F, and the hole symbol H. As part
of the transformation, the terminal symbols of the
original grammar are promoted so that they may
produce a hole and an error. To accommodate
this we also need to extend the symbol set with

a set of replacement terminal symbols: ET({(SY)).
The following disjoint union defines the complete
extended symbol set.

ES = ESnorm{(SY)) | ET(SY) | E | H

The normal symbols are embedded in the alterna-
tive ESnorm.

As an example, if the parameter set is SY =
{a, b, c}, then the extended set is

ES = {ESnorm(a), ESNorm(b), ESNorm(c),
ET(a), ET(b), ET(c), E, H}

That is the elements formed by the constructor
functions ESnorm and ET and the constants F and
H.

We specify a transformation function errgram
which takes as input a grammar which is not error
tolerant and gives as output that grammar with its
symbols and productions extended to make it error
tolerant. To aid in constructing the transformation
we first introduce a number of auxiliary functions
that are to be used in its definition.

In order to allow extraneous material to be
stored wherever it occurs, error symbols are placed
on the end of every production. This means that
every parse tree will have an error tree as its last
child. If an error tree has no subtrees then there is
no error.

The function adderrors adds error symbols onto
the end of productions and promotes the normal
symbols in the productions to the extended symbol
set ES by using the embedding function ESnorm.
The error symbol must be added to the nontermi-
nal symbols.

adderrors :
Productions[SY] — Productions|ES]

V P : Productions[SY] e
adderrors(P) = {s : SY; ss :seqSY |
srrss5cPe
ESnorm(s) — (map(ESnorm)(ss) ™ (E))}

Error symbols can derive any sequence of sym-
bols including the empty sequence. The empty case
corresponds to there being no error. We define
productions for the error symbol which generate
any sequence of non-error symbols.

‘ errorprod : Productions|ES]
‘ errorprod = {o0s : seq(ES \ {E}) e E +— o0s}

The holeprod productions are added so that
every symbol may optionally be replaced by a hole

symbol. In addition, we add an error node to the
end of the right side of the production. This allows,
for example, an incorrect symbol to be treated by
leaving a hole and then placing the symbol in the
following error node subtree. The hole symbol must
be added to the set of terminal symbols to facilitate
this.

‘ holeprod : Productions[ES]
‘ holeprod = {s : SY e ESnorm(s) — (H,E)}

The ETprod productions are added so that
each original terminal symbol produces a new
ET terminal symbol as an alternative to a hole
symbol. All the original terminal symbols become
nonterminal symbols and the new ET terminal
symbols replace the original terminal symbols. As
before an error node is also added to the right side
of the productions. The set of terminal symbols is
a parameter to ETprod.

‘ ETprod : PSY — Productions|ES]

Y terminals : PSY e
ETprod(terminals) = {t : terminals o
ESnorm(t) — (ET(t), E)}

The grammar transformation We are now in
a position to describe the complete transformation
of a grammar, g, to an error-tolerant grammar.
The terminal symbols of the new grammar are the
hole symbol plus the new ET symbols introduced
to replace the old terminals. The new non-
terminals are the error symbol plus the promoted
old non-terminals and terminals. The new starters
symbols are the promoted old starters. All of
the original productions must be both promoted
to the new symbol type and extended with an
error symbol to allow an error production to be
used when needed. The new productions consist
of the promoted old productions, adderrors(g.P),
plus productions allowing every symbol to produce
a hole, holeprod, plus productions allowing the
promoted old terminal symbols to produce the new
terminal symbols, ETprod(g.T), plus productions
allowing the error symbol to produce any string of
symbols, errorprod.

errgram : Grammar[SY] — Grammar[ES]

Vg : Grammar[SY] e
errgram(g) = (u Grammar|[ES] |
T=ET(g.T)U{H}
NT = ESnorm(g NTUg.T JU{E}
SS = ESnorm(g.55)
P = adderrors(g.P) U holeprod U
ETprod(g.T) U errorprod)

4 Composing the transformations

This section is part of the top-level specification
which uses the libraries defined previously to build
a multi-lingual, error-tolerant grammar.

The global library Grammar_types contains the
generic definition of Grammar which is used by
both of the other libraries. A parser is generated
from a set of grammars, one for each language. The
symbol type, SY, and language identifiers, L are
given types defined at the top level.

| grammars : L + Grammar[SY]

Our first task is to transform each of these gram-
mars into an error-tolerant grammar. We instanti-
ate the library Error_grammars which defines the
extended symbol set ES and provides the function
errgram to transform a grammar into an error-
tolerant grammar.

instantiate Error_grammars[SY|

To combine the error-tolerant grammars of a set
of languages into a single multi-lingual grammar,
we instantiate the library Multiple_grammars. The
instantiated symbol type is ES because the gram-
mars to be combined are error-tolerant and hence
based on the extended symbol set. This instan-
tiation provides us with the grammar combining
transformation combine.

instantiate Multiple_grammars|ES, L]

The composition The transformation functions
defined in the libraries can be composed because
they match on their grammar types. The errgram
transformation is composed with the function
grammars, which denotes the set of mono-lingual
grammars, to form a set of mono-lingual, error-
tolerant grammars. The combined multi-lingual,
error-tolerant grammar combinedgram is defined by
applying the combine transformation to the result.

‘ combinedgram : Grammar|[MLS]

combinedgram =
combine(errgram o grammars)

The composition could be done in the other
order, ie, combine the set of mono-lingual gram-
mars and extend the result with error-tolerance.
To do this we must instantiate the libraries
Error_grammars and Multiple_grammars in the
reverse order.

instantiate Multiple_grammars[SY, L]
instantiate Error_grammars[MLS)|

We can then define a combined grammar of
the type ES introduced by the instantiation of
Error_grammars[MLS].

‘ combinedgram : Grammar|ES]

combinedgram =
errgram(combine(grammars))

This produces a different result. Instead of having
many different error and hole symbols, one of each
for each language, it has only one error and one hole
symbol, each of which is independent of language.
This is not suitable for our application because we
want the symbols produced from an error symbol
to come from one language only. However, if
one wanted to allow error symbols to produce
symbols from any language then the alternative
combination could be used. That we have the
ability to combine the extensions in either way pays
credit to the power of a specification constructed
using transformations.

5 Conclusion

Grammar transformations The specification
presented in this paper is the result of several
iterations. The earliest version of the specification
(not presented here) used a specialised theory
of parsing that incorporated error-tolerance and
multiple languages via the use of many special
node types within the parse tree. The ‘specifi-
cation’ was monolithic, complex and difficult to
understand. In fact, it was close to an algorithmic
implementation of the parser. Furthermore, there
were virtually no components of the specification
that could be reused for another purpose; the
components were all specialised to the particular
application at hand. Without reproducing the
original specification here, something we would not
want to foist upon our reader, we hope that we
have given you an impression of the inadequacies
of the original specification. Dissatisfaction with
the result of this approach led us to look for better
ways of building the specification.

Our first discovery was that we could avoid
developing a specialised parsing theory by trans-
forming a set of grammars into a single, multi-
lingual, error-tolerant grammar and then using
standard parsing theory on the result. That was
perhaps the most important discovery. Not only
did it allow us to reuse existing parsing theory, it
also made it possible to decompose the grammar
transformation into separate component transfor-
mations corresponding to the different facets of the

parser. That was our second discovery. Only after
having made both these discoveries was it possible
to modularise the specification into separate coher-
ent components each of which deals with only a
single facet of the parser, and each of which may
be understood in isolation.

The reason the transformation style works for
this application is that each transformation pre-
serves the basic structure of the parameter: a
grammar. The input to a transformation is a
grammar, or a set of grammars, and the output
is also a grammar. Although the grammars may
be based on different symbol sets they share the
same structure. This makes it possible to compose
several such transformations to achieve a complex
overall transformation.

The individual transformations can be thought
of as building blocks. No transformation depends
on the presence of a previous transformation and
so the transformations can be performed in any
combination. However, each combination gives a
different result. This gives us the flexibility to
produce a range of different specifications each
corresponding to a different combination of the
primitive building blocks.

In the full specification, not only are transfor-
mations used to add multiple languages and error-
tolerance to the parser, an additional transforma-
tion is used to add contexts to the parser (see
[10] for more detail). Contexts allow the multiple
languages to be used together.

Libraries The earlier versions of the specification
were presented in standard (flat) Z. As part of our
work on a simple modularisation facility for Z [2]
we decided to produce a version of the specification
using libraries. Our aim in modularising the spec-
ification was to split it into a number of libraries,
each describing a single aspect of the specification.
In revising the specification we have developed
a set of libraries for dealing with grammars. Some
libraries are more widely applicable than others.
For instance, the library Grammar_types, would
be useful in any specification requiring language
productions. The library Multiple_grammars (Sec-
tion 3.2) is also quite general and could be in-
corporated into other specifications. The library
Error_grammars (Section 3.3) is specific to the
particular application. However having it as a
library helps structure the specification.
Modularising the specification forced us to think
about the overall structure of the specification
more than we had done in producing the flat Z
specification. In the earlier specifications concepts

that have now been separated were entangled.
For example, the treatments of errors and multi-
lingual grammars are conceptually quite distinct
and, given the grammar transformation technique
described above, it was not difficult to disentangle
them to produce separate libraries that can be used
independently.

In this paper we have presented the final prod-
uct of several iterations of specification. Although
the specification is still complex, we feel that
this is due to the underlying complexity of the
parser itself, rather than the inadequacies of the
specification techniques used.

Some valuable lessons relevant to building large
specifications in general are the separation of con-
cerns and the construction of coherent components.
Each library develops a single concept which makes
it easier to follow and reusable in more situations.
The reader can concentrate on the single concept
in isolation and is more likely to understand its
purpose. When the library is used it is only the
top-level concept developed within the library that
the reader need be aware of, not all the details used
to define it. This makes the top-level specification
easier to follow.

As an exercise to test the capabilities of a
simple modularisation facility for Z this case study
has been a success. The full capabilities of the
library mechanism are not used in this paper
because we only use one instantiation of each
library, however, the example does demonstrate
the use of libraries for structuring a specification.
The simple library construct has aided us to pro-
duce a better-structured specification and has been
flexible enough that it has not forced artificial
constraints on the structure.

Acknowledgments

Luke Wildman was supported by an Australian
Postgraduate Research Award. We would like
to acknowledge our collaboration with Jim Welsh
and David Carrington on an Australian Research
Council supported grant entitled Modularity in the
Derivation of Verified Software (A48931426).

References

[1] B. Broom, J. Welsh and L. Wildman. UQ2: a
multilingual document editor. In Proceedings

of the 5th Australian Software Engineering
Conference, May 1990.

[2] I. Hayes and L. Wildman. Towards Libraries
for Z. In John E. Nicholls (editor), Proceedings

of the Seventh Annual Z User Meeting, Lon-
don, December 1992, Workshops in Comput-
ing, pages 37-51. Springer-Verlag, December
1993.

1.J. Hayes (editor). Specification Case Stud-
ies. International Series in Computer Science.
Prentice Hall, Hemel Hempstead, Hertford-
shire, UK, 2nd edition, 1993.

D. Kiong. Program Analysis in Language-
based FEditors. Ph.D. thesis, University of
Queensland, 1987.

D. Kiong and J. Welsh. An incremental
parser for language-based editors. In Proc.

9th Australian Computer Science Conference,
pages 107-118, Canberra, 29-31 January 1986.

I.H. Sgrensen. A specification language. In
J. Staunstrup (editor), Program Specification:
Proceedings of a Workshop, Volume 134 of
Lecture Notes in Computer Science, pages
381-401. Springer-Verlag, 1981.

J.M. Spivey. Understanding Z: A Specification
Language and its Formal Semantics, Volume 3
of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, UK,
January 1988.

J.M. Spivey. The Z Notation: A Reference
Manual. International Series in Computer
Science. Prentice Hall, Hemel Hempstead,
Hertfordshire, UK, 2nd edition, 1992.

J.M. Spivey and B.A. Sufrin. Type infer-
ence in Z. In D. Bjgrner, C.A.R. Hoare
and H. Langmaack (editors), VDM and Z
— Formal Methods in Software Development,
Volume 428 of Lecture Notes in Computer Sci-
ence, pages 426-438. VDM-Europe, Springer-
Verlag, 1990.

L. Wildman and I. Hayes. A specification
of a parser for UQ2: an error-tolerant multi-
lingual language-based editor. Department of
Computer Science, University of Queensland,
1993.

