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Abstract

Many program verification, testing and
performance prediction techniques rely on
analysis of statically-identified control-flow
paths. However, some such paths may be
‘dead’ because they can never be followed
at run time, and should therefore be ex-
cluded from analysis. It is shown how the
formal semantics of those statements com-
prising a path provides a sound theoretical
foundation for identification of dead paths.
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1 Introduction

Many techniques in program analysis, test-
ing and timing prediction work by stati-
cally identifying all of the possible control-
flow paths through a program and then
studying each one in isolation. How-
ever, due to the boolean expressions guard-
ing entry to conditional and iterative con-
structs, and limits on the ranges of in-
put values, many statically-valid paths can
never be followed at run time. Including
these ‘dead’ control-flow paths in program
analysis may lead to inaccurate results and
wasted effort. Program timing prediction,
for example, will produce overly pessimistic
estimates if the execution times for paths
that can never be followed are included.
There is thus a strong incentive to identify
dead paths, so that they can be excluded
from program analysis [1, 2].

The role of Dijkstra’s weakest precondi-

tions [3] in defining the semantics of pro-
gramming language statements is widely
appreciated. Here we explain that weak-
est (liberal) precondition semantics can
also serve as a formal basis for identify-
ing dead control-flow paths. To achieve
this, the component parts of compound
statements, such as conditional and itera-
tive constructs, must be treated as separate
primitive statements in their own right, be-
cause particular control-flow paths traverse
only part of the overall statement.

Some of the ideas presented below are
well known in the formal methods com-
munity, but are unfamiliar to practising
programmers. One aim here is to bring
this knowledge to a wider audience in a
stand-alone form. Section 2 briefly de-
scribes situations in which dead-path anal-
ysis is useful, and Section 3 reviews related
work. Section 4 introduces a small motiva-
tional example. Section 5 presents our for-
mal characterisation of what it means for
a path to be ‘dead’. Section 6 completes
the formalism by giving semantic defini-
tions for the programming language state-
ments found within paths. Sections 7 and 8
then return to the example and show how
various paths through the program can be
profitably analysed. Section 9 concludes by
briefly discussing practical issues.

2 Motivation

There are many situations in which we
want to statically extract control-flow
paths from imperative program code for
separate analysis.
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• In open-box testing we need to identify
control-flow paths in order to ensure,
for instance, that each path through
the program has been exercised at
least once [4, p. 309].

• To predict the worst-case execution
time (WCET) of a real-time program,
we typically need to take the maxi-
mum of the execution times over all
possible control-flow paths [5, 6].

• When analysing a real-time program
to identify the WCET constraints that
it places on the generated object code,
we must explore all possible paths
which end at critical timing points [7].

• To identify coding errors, such as
uninitialised variables appearing in ex-
pressions, or ineffective assignments,
we need to apply data-flow analysis to
each possible control-flow path [8].

In each of these applications it is impor-
tant that we can eliminate those paths
that will never be followed at run time.
In the literature, such paths are often re-
ferred to as false [5] or infeasible [9]. Here
we favour the term dead [6] which avoids
confusion with the (related but different)
predicate-transformer notion of infeasibil-
ity [10, p. 11].

Applying analysis techniques to dead
paths wastes time and effort. For example,
when selecting paths to be exercised during
program testing, we must ensure that dead
paths are excluded, to avoid futile attempts
to force the program to traverse them [1].
More seriously, apparent errors detected in
dead paths during, for instance, data-flow
analysis may cause correct programs to be
diagnosed as incorrect. Similarly, perfor-
mance analyses that incorporate the time
required to follow dead paths may over-
estimate the program’s execution time—
overly pessimistic results are a major prob-
lem for current methods of timing analy-
sis [2]. Many algorithms have been pro-
posed for identifying and eliminating dead
paths [11]. One of our goals is to provide
a semantic basis for the correctness of such
algorithms.

3 Previous work

Some analysis techniques place the burden
of identifying dead paths on the program-
mer. Based on their understanding of the
program’s intended control flow, the pro-
grammer is required to annotate the pro-
gram to explicitly indicate which paths are
dead or, conversely, which paths are possi-
ble. For instance, Park [12] defines a ‘path
language’ in which regular expressions over
statement labels can be used to explic-
itly describe possible control-flow paths.
Similarly, Li et al. [13] and Puschner and
Schedl [9] allow the programmer to provide
integer linear constraint equations based on
how many times each statement label is ex-
pected to be passed. A similar capability
is achieved by Chapman et al. [6] who al-
low ‘mode annotations’ in the source pro-
gram to explicitly state under what circum-
stances a conditional alternative is dead,
and the number of iterations expected for
loops starting in different states. Clearly,
however, approaches which rely on the pro-
grammer to decide which paths are dead
are labour-intensive and error-prone.

Dead path identification can also be
achieved automatically in some situations.
A number of techniques use symbolic exe-
cution to identify (some) dead paths [14,
15]. For instance, the SPADE program
analysis tool uses symbolic execution to
identify dead paths and, significantly, the
correctness of its algorithm for calculat-
ing ‘path traversal conditions’ is justified
in terms of weakest precondition seman-
tics [8, §8.4.1]. Following a path in which
conditional statements make contradictory
choices will cause the predicate represent-
ing the system state to become ‘false’ [6].
Similarly, some algorithms identify corre-
lations between alternatives in consecu-
tive branching statements, using the log-
ical relationships between the conditions
that choose which branches to follow [1].
Paths following mutually-exclusive alterna-
tives can be identified as dead, and thus
reduce the number of paths to be anal-
ysed [11]. It is, however, impossible in gen-
eral to eliminate all dead paths using these
approaches since the broad ranges of val-
ues associated with system variables during
symbolic execution may not be sufficiently
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declare(1)
d : Integer(2)

begin(3)
if 0 6 c then -- set d equal to magnitude of c(4)

d := c(5)
else(6)

d :=−c(7)
end if ;(8)
if 0 6 b then -- set a equal to magnitude of b(9)

a := b(10)
else(11)

a :=−b(12)
end if ;(13)
while d 6 a loop -- repeatedly subtract d from a(14)

a := a− d(15)
end loop(16)

end ;(17)
if b < 0 then -- retain sign of b(18)

a :=−a(19)
end if(20)

Figure 1: Program to implement ‘a := b rem c’.

discerning to accurately identify the actual
paths that will be followed [16]. Formal
verification techniques can be used to iden-
tify dead paths through backward substi-
tution or by solving fixed point equations
[11, 8, 17]. Most of these algorithms work
on high-level language code, although dead
path elimination algorithms for assembler
programs have also been proposed [18] and
implemented [11].

Our goal is not to develop another dead
path detection algorithm, but to define a
semantic characterisation of the dead paths
themselves. Such an outcome provides a
formal foundation for verifying the correct-
ness of existing and proposed dead path al-
gorithms.

4 Control flow paths

As a simple motivational example, consider
the program in Figure 1. For concrete-
ness, we use an Ada-like syntax (although

we reserve semi-colons for sequential com-
position, rather than as statement termi-
nators). The program aims to use simple
arithmetic operators and comparisons to
implement the assignment ‘a := b rem c’,
where a, b and c are integers and ‘rem’ is
the integer remainder operator. Variables b
and c are inputs to the code segment and a
is the output.

The block statement starting at line 1
declares a local variable d, which will be
used to hold the magnitude of the divisor c,
because variable c may not be changed by
this program. The scope of new variable d
is entered at line 3 and left at line 17.
Within the block, the conditional state-
ment at line 4 sets d equal to the magnitude
of c, and that at line 9 sets a equal to the
magnitude of b. This is done so that both
operands are non-negative. The iterative
construct at line 14 then calculates the in-
teger remainder by repeated subtraction of
the divisor from the dividend. The loop
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(15) a := a− d

(4) [0 6 c]

(3) dec d : Integer

(17) undec d : Integer

(4′) [c < 0]

(19) a :=−a

(18′) [0 6 b]

(18) [b < 0]

(12) a :=−b(10) a := b

(9) [0 6 b] (9′) [b < 0]

(14′) [a < d](14) [d 6 a]

(5) d := c (7) d :=−c

Figure 2: Flow graph for the program in Figure 1.

invariant is ‘0 6 d ∧ 0 6 a ∧ |b rem c| =
a rem d ∧ d = |c|’, where | · | denotes mag-
nitude. Finally, another conditional state-
ment at line 18 ensures that the final value
of a has the same sign as the dividend b.
This matches the semantics of Ada’s rem
operator [19, §4.5.5], for which the sign of
the result is independent of the sign of the
divisor. Although trivial, even this small
program contains a number of dead paths.
Some are paths that are never intended to
be followed, and others are due to a pro-
gramming oversight (revealed below).

Control-flow paths through program
code are best illustrated graphically. How-
ever traditional program flowcharts, with
their diamond-shaped symbol for choices,
are inappropriate for our purposes be-
cause this single node does not indicate
whether the boolean expression was true
or false [17]. Instead we use a graphical

notation in which control flow is shown
as a directed graph with arcs labelled by
programming language statements. (The
T-graph notation used by Puschner and
Schedl [9] for timing analysis is similar,
except that they label arcs with execu-
tion times.) To clearly describe control
flow through compound statements, we use
some additional language primitives (for-
mally defined in Section 6). Primitive
statements ‘dec’ and ‘undec’ denote entry
to and exit from the scope of a variable dec-
laration, respectively. Primitive statement
‘[G]’ denotes evaluation of the boolean ex-
pression G to ‘true’ in an if or while state-
ment.

Figure 2 shows the control-flow graph
associated with the remainder program.
Each arc is labelled with the associated
statement; line numbers refer to the pro-
gram in Figure 1, with primed numbers
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on if and while conditions indicating that
the boolean expression appearing in the
program text evaluated to ‘false’. Alter-
native routes through conditional and it-
erative statements are shown by diverging
paths, each beginning with an arc labelled
by the condition that must be true for this
path to be followed.

To find a potential control-flow path
through the program we merely need to
start at any node and follow the arcs,
recording each label passed along the way.
All the semantic information needed to
analyse the path is contained within the
accumulated labels. For instance, the path
below can be found by following arcs and
accumulating the sequence of labels, start-
ing from the second left-hand alternative in
Figure 2, bypassing the loop, and following
the third left-hand alternative.

Path 1

(9) [0 6 b]

(10) a := b

(14′) [a < d]

(17) undec d : Integer

(18) [b < 0]

(19) a :=−a

Notice how the boolean expressions in
square brackets explicitly document which
conditions must have been true at various
points for this path to have been followed.

Although Path 1 is statically a valid con-
trol flow path of the program, it is dynam-
ically ‘dead’ because it can never be fol-
lowed at run time, regardless of the ini-
tial values of b and c. For this path to be
taken it is necessary for condition 0 6 b
to hold initially, but this is followed later
by contradictory condition b < 0, even
though none of the intervening statements
changes variable b. Our goal below is to
show that the semantics of the statements
in the path formally identifies when such
paths are dead.

5 Dead paths

Ultimately, it is the semantics of the in-
dividual program statements comprising a

path that determines whether it is dead or
not. In this section we explore the relation-
ship between program semantics and dead
paths in depth.

Recall that Dijkstra introduced both
weakest and weakest liberal preconditions
as a way of characterising the semantics
of programs [3]. Given some statement S
and postcondition predicate R, then predi-
cate wp.S.R is the weakest precondition of
S with respect to R. It is a predicate char-
acterising those initial states from which
statement S is guaranteed to terminate in
a state satisfying predicate R [3, p. 16].
The full stops denote left-associative func-
tion application; ‘wp.S.R’ is equivalent to
‘(wp(S))(R)’ [20, p. 128]. Function wp.S
is a predicate transformer, i.e., a function
from predicates (postconditions) to predi-
cates (preconditions). The weakest liberal
precondition wlp.S.R is the weaker con-
straint characterising those initial states
from which S will achieve R provided that
S terminates [3, p. 21]. However there is no
guarantee that statement S will terminate
from a state satisfying wlp.S.R. Given two
predicates P and Q with free variables v,
let ‘P V Q’ mean that P implies Q for all
values of these variables, i.e., (∀v •P ⇒ Q)
[10, p. 23]. Similarly for predicate equiv-
alence, ‘P ≡ Q’. Then it is always the
case that wp.S.R V wlp.S.R for any state-
ment S and postcondition R.

Our aim is to represent a path as a state-
ment and reuse Dijkstra’s definitions to
characterise dead control-flow paths. We
must therefore decide what forms of state-
ment may appear in a path, and which se-
mantic definition is suitable for character-
ising ‘dead’ paths.

Originally, Dijkstra required that all
statements be non-miraculous [3, p. 18].
That is, there must be no initial state
from which a statement can achieve the
impossible postcondition ‘false’. Although
this is sufficient for conventional imperative
programming language statements, many
authors subsequently argued that this re-
striction should be relaxed so that compo-
nent parts of compound statements can be
considered in isolation [21]. This capabil-
ity is needed for our dead path analysis.
For example, Path 1 above contains brack-
eted expressions ‘[G]’ representing evalua-
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tion of the conditions that guard entry to if
and while statement alternatives [22], but
not the entire compound statements them-
selves. When analysed in isolation, such a
guard [G] is considered miraculous in those
states where predicate G is false.

A path, therefore, is a statement S
constructed from conventional program-
ming language statements, such as assign-
ments, and ‘partial’ statements [21], such
as guards. (Normally our paths do not con-
tain whole if and while statements, but
these can be accommodated as explained
in Section 8.) To define what it means for
such a path to be classed as ‘dead’, we note
that there are two ways in which a path
may fail to execute to completion: either
it contains ‘unfollowable’ statements, or it
never terminates.

For all practical purposes it is satisfac-
tory to consider either of these situations
as constituting a dead path. During pro-
gram testing, for instance, it is impossible
to generate a test case for an unfollowable
path, and we cannot test the outcome of
a non-terminating one. In worst-case exe-
cution time analysis, it is meaningless to
refer to the execution time of an unfol-
lowable path, and the execution time of
a non-terminating path is always infinity,
which never satisfies any reasonable execu-
tion time requirement. When extracting
program timing constraints, there are no
meaningful constraints associated with un-
followable paths or paths that never ter-
minate. Finally, when searching for sim-
ple coding errors, such as ineffective assign-
ments, there is no need to consider paths
that are never followed, and code following
a non-terminating path is unreachable, so
such analysis is useful for code preceded by
terminating paths only.

We can now use Dijkstra’s semantics to
formally characterise these two situations.
Firstly, if the path contains a statement, or
sequence of statement, that cannot be fol-
lowed at run time, then the whole path is
miraculous. For instance, Path 1 above is
miraculous because it contains contradic-
tory guards. Given a path S, the weakest
precondition wp.S.false characterises the
set of initial states from which execution
of S is impossible, i.e., from which S is
miraculous [3, p. 18]. If this precondition

set contains all states, i.e., wp.S.false ≡
true, then there are no initial states from
which execution of S is possible, so we con-
sider it dead.

Secondly, if the path cannot execute to
completion because it contains an infinite
loop, or some equivalent construct, then
the path is non-terminating. For non-
miraculous statements, Dijkstra identified
those initial states from which a state-
ment fails to terminate by the weakest
liberal precondition wlp.S.false [3, p. 21].
To extend this to allow miraculous state-
ments, we use the fact that wp.S.false V
wlp.S.false to note that wlp.S.false also
includes those initial states from which
path S is miraculous. Hence, wlp.S.false
is sufficient to characterise all states from
which path S is dead.

Definition 1 (Dead initial states)
An initial state from which statement (or
path) S is dead is one characterised by the
following weakest liberal precondition.

wlp.S.false

Using this definition we can say that a
statement, or control-flow path, is dead if
it is miraculous or fails to terminate from
any initial state.

Definition 2 (Dead statement) A pro-
gramming language statement (or path) S
is dead if and only if the following property
holds.

wlp.S.false ≡ true

6 Semantics

In this section we give weakest liberal
precondition definitions for the statements
that may appear in a path, suitable for use
in dead path analysis.

The weakest liberal precondition seman-
tics for typical programming language con-
structs are shown below. (Iteration is con-
sidered at the end of this section.) Let S
be a statement in our programming lan-
guage, v a variable, T a type, E an expres-
sion, B a boolean-valued expression, and
R a predicate. Let R[E/v] denote predi-
cate R with all free occurrences of ‘v’ re-
placed by ‘E’. Let ∀D • P denote univer-
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sal quantification of predicate P for all val-
ues of declaration D. Let predicate ‘def.X’
characterise those states in which expres-
sion X has a well-defined value, i.e., where
X does not involve ill-defined operations
such as division by zero, out-of-bounds ar-
ray indices, or other operations that may
not terminate [3, p. 28].

Definition 3 (Simple statements)

wlp.null.R ≡ R

wlp.(v := E).R ≡ def.E ⇒ R[E/v]

wlp.(S1 ; S2).R ≡ wlp.S1.(wlp.S2.R)

wlp.(ifB thenS end if).R
≡ def.B ⇒ ((B ⇒ wlp.S.R) ∧

(¬B ⇒ R))

wlp.(ifB thenS1 elseS2 end if).R
≡ def.B ⇒ ((B ⇒ wlp.S1.R) ∧

(¬B ⇒ wlp.S2.R))

wlp.(declare v : T beginS end).R
≡ ‘provided ‘v’ is not free in R’

∀v : T • wlp.S.R

These weakest liberal precondition defini-
tions differ from their weakest precondition
equivalents only in their treatment of unde-
fined expressions. For instance, the weak-
est precondition definition for assignment
requires that expression E is defined, i.e.,
wp.(v := E).R ≡ def.E ∧R[E/v].

The definition for ‘declare’ blocks above
does not allow references to variable v in
the postcondition R. However, such ref-
erences may be necessary if a global vari-
able ‘v’ is declared in the surrounding
scope. This can be accommodated, and the
proviso avoided, by appropriate renaming
of the locally scoped variable [10, p. 185].

Combined with Definition 1 from Sec-
tion 5, we can now determine the condi-
tions under which these individual state-
ments are dead. For instance, we can show
that an assignment statement is dead when
its expression is undefined.

wlp.(v := E).false
≡ ‘by Definition 3’

def.E ⇒ false
≡ ¬def.E

We also allow our language to include
assertions with which the programmer can
express properties of the system state that
are believed to hold at certain points in the
program [23, p. 4]. (Morgan uses the term
assumption [10, p. 65].) A typical applica-
tion is to express domain constraints con-
cerning the initial values of variables. If
predicate A holds when an assertion {A}
is reached then the statement has no ef-
fect, but if A does not hold then the asser-
tion’s behaviour cannot be guaranteed, and
it may never terminate [10, pp. 65–6]. We
also require that the assertion expression is
well defined.

Definition 4 (Assertions)

wlp.{A}.R ≡ def.A ⇒ (A ⇒ R)

The weakest liberal precondition of an as-
sertion thus requires R to hold only if A
already holds. The corresponding weakest
precondition definition requires that pred-
icate A must be true, i.e., wp.{A}.R ≡
def.A ∧A ∧R.

Definition 1 then tells us that an asser-
tion is considered dead if its predicate is
ill-defined or untrue.

wlp.{A}.false
≡ ‘by Definition 4’

def.A ⇒ (A ⇒ false)
≡ ¬def.A ∨ ¬A

As noted above, representing control-
flow paths presents us with the difficulty
that paths traverse distinct parts of com-
pound programming language statements.
For instance, Path 1 in Section 4 includes
evaluation of the boolean condition and ex-
ecution of the first alternative of the con-
ditional statement at line 9, but not execu-
tion of its second alternative. Also, since
the path starts on line 9 and passes the
keyword on line 17 which marks the end of
the declaration block, this path exits (but
did not enter) the scope of local variable d.

Our approach, therefore, is to define sep-
arate semantics for distinct components
of compound programming language state-
ments, so that each component can be con-
sidered in isolation [21]. To support analy-
sis of the program in Figure 1, we need to
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be able to separately reason about evalu-
ation of the boolean expressions guarding
conditional and iterative statements, and
entry to and exit from the variable block.

The first of these requirements can be
satisfied by adding guards [22], to our lan-
guage. (Morgan uses the term coercion [10,
p. 67]; Back and von Wright use the term
assumption [23, p. 5].) Guards are a re-
quirement to make some predicate true at
this point in the program. A guard [G] is
satisfied trivially if G is already true, oth-
erwise it is a miraculous statement because
it makes the predicate true but without
changing the program state [10, p. 67]. Its
weakest liberal precondition is as follows.

Definition 5 (Guards)

wlp.[G].R ≡ def.G ⇒ (G ⇒ R)

Although this weakest liberal precondition
is the same as Definition 4 above, the weak-
est precondition definition of coercions dif-
fers from that of assertions: wp.[G].R ≡
def.G ∧ (G ⇒ R).

In defining control-flow paths, a guard is
a suitable construct for representing eval-
uation of the boolean expressions on con-
ditional and iterative statements because it
records the fact that for the particular path
to be followed, the corresponding condition
must have been true. In Figure 1, for in-
stance, the condition on line 4 must be true
to follow a path containing the assignment
statement on line 5, so guard [0 6 c] can
be added to the path at the point where
the expression is evaluated. Similarly, to
follow a path containing the assignment on
line 7, the condition on line 4 must have
been false, so guard [c < 0] can be added
to the path.

To allow for paths that enter or exit the
scope of a declaration, we need separate
primitives for these two actions [23, §5.6].
When analysing isolated paths, rather than
whole statements, it is not always the case
that these primitives appear in pairs. For
a variable name v and type T , let primitive
statements ‘dec v : T ’ and ‘undec v : T ’
represent entry to and exit from the scope
of this variable declaration, respectively.
The dec statement can achieve postcondi-
tion R provided that R holds for any value
of the new variable v within its type T .

(The statement is miraculous if T is the
empty set.) We assume the language im-
plementation ensures that freshly declared
variables are initialised with an arbitrary
value from their type domain.

Definition 6 (Variable allocation)

wlp.(dec v : T ).R ≡ ∀v : T •R

After an undec statement has been exe-
cuted, variable v can no longer be accessed,
so its semantics is meaningful only if post-
condition R does not refer to v [23, p. 102].

Definition 7 (Variable deallocation)

wlp.(undec v : T ).R
≡ ‘provided ‘v’ is not free in R’

R

Again, we have excluded the possibility
that a global variable v may be refer-
enced in predicate R. Appropriate renam-
ing must be introduced if nested decla-
rations using the same name are desired
[10, p. 185].

Finally, we give a semantics for it-
erative statements that takes advantage
of the guard primitive introduced above
[20, p. 185]. For an iterative statement
with boolean condition B and body S, note
that each iteration involves first evaluat-
ing expression B and then executing state-
ment S. Thus each iteration of the loop can
be represented by the sequence of state-
ments ‘[B] ; S’. Furthermore, with respect
to some desired postcondition R, each iter-
ation will either leave boolean condition B
true, in which case the iterative construct
will loop again, or should make postcon-
dition R true, in which case the iterative
construct may terminate. Let N be the
set of natural numbers. For a predicate-
transformer function wlp.S and natural
number n, let (wlp.S)n denote functional
composition of n copies of wlp.S, with
(wlp.S)0 the identity function on predi-
cates.

Definition 8 (Iteration)

wlp.(whileB loopS end loop).R
≡ ∀n : N •

(wlp.([B] ; S))n.(def.B ⇒ (B ∨R))
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In other words, we require that after any
number of executions of guard [B] followed
by statement S then, provided the guard
expression is well defined, either B must
still be true (and hence iteration continues)
or R holds (and if B is false the loop will
terminate, satisfying R). See Appendix B
for the derivation of this expression.

7 Path analyses

We can now use the definitions from Sec-
tions 5 and 6 to perform dead path analysis
on our example program. Firstly, we deter-
mine whether Path 1 from Section 4 is dead
or not. Starting with our target postcondi-
tion R equal to ‘false’ we work backwards
up the path to compute the path’s weakest
liberal precondition.

R0 ≡ false
R1 ≡ wlp.(a :=−a).R0

≡ def.(−a) ⇒ false[−a/a]
≡ true ⇒ false
≡ false

R2 ≡ wlp.[b < 0].R1

≡ def.(b < 0) ⇒ (b < 0 ⇒ false)
≡ true ⇒ (b < 0 ⇒ false)
≡ 0 6 b

R3 ≡ wlp.(undec d : Integer).R2

≡ 0 6 b

R4 ≡ wlp.[a < d].R3

≡ a < d ⇒ 0 6 b

R5 ≡ wlp.(a := b).R4

≡ b < d ⇒ 0 6 b

R6 ≡ wlp.[0 6 b].R5

≡ 0 6 b ⇒ (b < d ⇒ 0 6 b)
≡ true

Thus, according to Definition 2, we have
formally proven that Path 1 is indeed dead.
(We assume that the type of variables a, b
and c is Integer. From this, we can con-
clude that def.X ≡ true for every expres-
sion X in Figure 1. For instance, in cal-
culating predicate R2, we needed to know
that expression ‘b < 0’ is defined. This
will be so provided that the program is well
typed, and we usually omit the ‘def’ tests
below.)

Proving that Path 1 is dead did not re-
quire us to extend the path all the way
back to the beginning of the program. If
we had done so, however, the result would
have been the same, thanks to the following
theorem which tells us that if any subpath
of a path is dead, then the whole path is
also dead (see Appendix A for its proof).

Theorem 1 (Dead subpaths) Let S1,
S2 and S3 be arbitrary program statements.
If statement S2 is dead, then sequence
S1 ; S2 ; S3 is also dead. Formally:

if wlp.S2.false ≡ true
then wlp.(S1 ; S2 ; S3).false ≡ true.

In practice, therefore, analysis can stop as
soon as predicate ‘true’ is reached. State-
ments S1 or S3 may be ‘null’, so this the-
orem also suffices for the cases where S2

begins or ends a path.
As well as proving general properties, we

can also introduce additional assertions to
a path to test particular situations of in-
terest. For instance, assume that we know
that the remainder program will only ever
be used with an initial value of dividend b
greater than zero. This additional domain
constraint can be added as an assertion to
the start of a path which begins by enter-
ing the scope of variable d, follows the first
alternative of the conditional statement at
line 4, and then follows the second alterna-
tive of the statement at line 9.

Path 2

{0 < b} -- new input constraint

(3) dec d : Integer

(4) [0 6 c]

(5) d := c

(9′) [b < 0]

(12) a :=−b

Analysis of Path 2 reveals that the new as-
sertion makes the assignment statement at
line 12 unreachable.

R0 ≡ false
R1 ≡ wlp.(a :=−b).R0

≡ false

9



R2 ≡ wlp.[b < 0].R1

≡ 0 6 b

R3 ≡ wlp.(d := c).R2

≡ 0 6 b

R4 ≡ wlp.[0 6 c].R3

≡ 0 6 c ⇒ 0 6 b

R5 ≡ wlp.(dec d : Integer).R4

≡ ∀d : Integer • 0 6 c ⇒ 0 6 b

≡ 0 6 c ⇒ 0 6 b

R6 ≡ wlp.{0 < b}.R5

≡ ‘since ‘0 < b’ is well defined’
0 < b ⇒ (0 6 c ⇒ 0 6 b)

≡ true

The ability to treat parts of compound
statements separately also allows us to ‘cut’
iterative statements into separate control-
flow paths for loop entry, loop exit, and one
or more iterations. For instance, having en-
tered the iterative statement at line 14 in
Figure 1, consider the question of whether
it is possible to exit with variable a nega-
tive. The following path performs one it-
eration of the loop and then exits, and we
append the condition of interest as an as-
sertion.

Path 3

(14) [d 6 a]

(15) a := a− d

(14′) [a < d]

{a < 0} -- desired exit state

Again, our analysis proves that this path is
dead.

R0 ≡ false
R1 ≡ wlp.{a < 0}.R0

≡ 0 6 a

R2 ≡ wlp.[a < d].R0

≡ a < d ⇒ 0 6 a

R3 ≡ wlp.(a := a− d).R2

≡ a− d < d ⇒ 0 6 a− d

≡ a < 2d ⇒ d 6 a

R4 ≡ wlp.[d 6 a].R3

≡ d 6 a ⇒ (a < 2d ⇒ d 6 a)
≡ true

This is an interesting outcome because it is
not obvious from inspection of Path 3 that
a cannot be negative at the end—the loop
exit condition is merely that a is less than
d, but the path contains no explicit infor-
mation about the value of d at all. The
key is the assignment statement at line 15.
Since it subtracts d from a, a negative value
of d would cause a to increase in value.
However, the guards in Path 3 require the
state to change from one where a is no less
than d to one where a is less than d. It
is thus implicit that d must be positive for
this path to followed. The knowledge that
a is initially at least as great as d then al-
lows us to conclude that Path 3 will leave
a non-negative.

Furthermore, since Path 3 is the suffix
of any path that exits the loop after one
or more iterations, we can use Theorem 1
to conclude that any path which enters the
loop cannot subsequently exit with a neg-
ative. (Of course, had it been documented
by the programmer, this result could have
been seen directly in the loop invariant
mentioned in Section 4.)

8 Compound statements

So far we have defined paths to be pro-
gram fragments constructed from ‘prim-
itive’ statements. However, the granu-
larity of a path can be coarsened to in-
clude whole compound statements, when
required. This is helpful when looking for
paths that are dead due to infinite itera-
tion. Statements that loop endlessly make
any subsequent subpaths unreachable.

To illustrate this, we use Definition 1
to answer the question of whether there
are any input values for b and c which
will make the iterative statement at line 14
dead in the context of our remainder pro-
gram. This capability is valuable since non-
termination cannot be checked via tradi-
tional testing methods. To do so, we need
to include the whole loop statement in the
path and, for illustration, treat the preced-
ing conditional statements similarly.

Path 4

(4–8) if 0 6 c then · · · end if
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(9–13) if 0 6 b then · · · end if

(14–16) while d 6 a loop · · · end loop

As before, we work backwards along the
path, using the semantic definitions of the
statements encountered. Since we are deal-
ing with compound statements, however,
the predicates to be manipulated are more
complex than those encountered so far.
As we are interested only in the situation
where the postcondition R is ‘false’, we
therefore begin by noting the following spe-
cial case of loop semantics for this situation
(see Appendix C for its proof).

Theorem 2 (Dead iteration)

wlp.(whileB loopS end loop).false
≡ ∀n : N •

(wlp.([def.B] ; S))n.(def.B ⇒ B)

Furthermore, if it is known that expression
B is well-defined, as is the case for all ex-
pressions in our example program, we ob-
tain a further simplification.

Corollary 3 (Defined loop guards)

wlp.(whileB loopS end loop).false
≡ ‘provided def.B ≡ true’

∀n : N • (wlp.S)n.B

The following calculation determines the
weakest liberal precondition which makes
Path 4 dead. Let N1 be the set of positive
natural numbers (excluding zero). For a
predicate R, variable v, expression E and
natural number n, let R[E/v]n denote n
repeated substitutions of ‘E’ for ‘v’ in R.

R0 ≡ false
R1 ≡ wlp.(while d 6 a loop

a := a− d
end loop).R0

≡ ‘by Corollary 3’
∀n : N •

(wlp.(a := a− d))n.(d 6 a)
≡ ∀n : N • (d 6 a)[a− d/a]n

≡ ∀n : N • d 6 a− n ∗ d

≡ ∀n : N1 • n ∗ d 6 a

≡ d 6 a ∧ d 6 0

R2 ≡ wlp.(if 0 6 b then
a := b

else
a :=−b

end if).R1

≡ def.(0 6 b) ⇒
((0 6 b ⇒ wlp.(a := b).R1) ∧
(b < 0 ⇒ wlp.(a :=−b).R1))

≡ (0 6 b ⇒ (d 6 b ∧ d 6 0)) ∧
(b < 0 ⇒ (d 6 −b ∧ d 6 0))

≡ d 6 0 ∧
(0 6 b ⇒ d 6 b) ∧
(b < 0 ⇒ d 6 −b)

≡ d 6 0 ∧ d 6 |b|
≡ d 6 0

R3 ≡ wlp.(if 0 6 c then
d := c

else
d :=−c

end if).R2

≡ (0 6 c ⇒ wlp.(d := c).R2) ∧
(c < 0 ⇒ wlp.(d :=−c).R2)

≡ (0 6 c ⇒ c 6 0) ∧
(c < 0 ⇒ −c 6 0)

≡ c 6 0 ∧ 0 6 c

≡ c = 0

Our formal analysis has thus revealed the
programmer’s oversight in the remainder
program in Figure 1. It will loop endlessly,
and hence the program is ‘dead’, if the divi-
sor c is zero. This weakness of the program
should have been documented by an initial
assertion stating the precondition that in-
put c is expected to be non-zero.

9 Approximations

In general dead path analysis is an incom-
putable problem because it includes deter-
mining whether or not a loop will terminate
(the halting problem). In practice, there-
fore, dead path algorithms can produce ap-
proximate results only.

To show the correctness of such a dead
path analysis algorithm, we must there-
fore show that it gives a satisfactory ap-
proximation to the calculation required by
Definition 2. The type of approximation
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that is acceptable depends on the applica-
tion. In most situations we require that
the approximation should correctly iden-
tify as many dead paths as possible, but
not mistakenly classify any followable path
as dead. In other words, if a dead path al-
gorithm identifies a path S as dead then it
must be the case that wlp.S.false ≡ true.
However, there may be a path U such that
wlp.U.false ≡ true, but the algorithm fails
to recognise that U is dead. This means
that the approximation may identify only
a subset of the dead paths as dead. Never-
theless this is acceptable in most situations.
During worst-case execution time analysis,
for instance, the failure to exclude some
dead paths from the analysis may produce
unnecessarily pessimistic timing estimates,
but this is safer than producing unrealis-
tically optimistic values. Similarly, when
searching for simple coding errors, it is bet-
ter to waste some effort analysing a dead
path, than to miss an error in a followable
one. This approach to approximations is
assumed in the discussion below.

However, the situation of program test-
ing is an exception. It is futile to try testing
dead paths, so a satisfactory approxima-
tion here is instead one which identifies a
superset of the dead paths as dead. It is ad-
equate during testing to use an approxima-
tion that identifies some, but hopefully not
too many, followable paths as dead, and
thus exclude them from testing, provided
that we still get sufficient code coverage.

In practice, proving the correctness of a
dead path analysis algorithm could be done
in either of two ways. One approach is to
show that the algorithm has the same ef-
fect as replacing the path S with a (pes-
simistic) approximation path S′ such that
the following property holds for any post-
condition R.

wlp.S′.R V wlp.S.R

If path S′ is shown to be dead then S is
also dead, so a subset of the dead paths
will be correctly identified as dead. For in-
stance, some specification languages allow
a generalised form of assignment statement
v :∈X where v is a variable and X is a set
of values of the same type as v [24]. Such a
statement selects a particular value x from

set X and assigns it to variable v, but we
cannot predict which. If we can show that
a path containing the assignment approxi-
mation v :∈X is dead, then we know that
the path with specific assignment v := x,
where x ∈ X, is also dead. The semantics
for generalised assignments is as follows.

Definition 9 (General assignment)

wlp.(v :∈X).R
≡ ‘provided ‘w’ is not free in X

or R and v is of type T ’
def.X ⇒

(∀w : T • w ∈ X ⇒ R[w/v])

As an example, consider the following al-
ternative to statement 15 in the remainder
program.

(15′) a :∈ {n : N1 | n ∗ d 6 a • a− n ∗ d}
The set comprehension on the right-hand
side returns all values a − n ∗ d where
n is a positive natural number such that
n ∗ d 6 a. In other words, rather than just
subtracting d from a, statement 15′ sub-
tracts some whole multiple of d, not ex-
ceeding a. (Statement 15′ is a specification
of, or a less ‘refined’ [10] version of, state-
ment 15.) If our programming language
allowed us to use this statement in place
of statement 15, the remainder program
would have exactly the same effect. The
only difference is that it may take fewer it-
erations of the while loop to complete the
calculation.

In Section 7 we proved that Path 3 con-
taining statement 15 was dead. Now con-
sider the same path, but with our gener-
alised assignment.

Path 5

(14) [d 6 a]

(15′) a :∈ {n : N1 | n ∗ d 6 a • a− n ∗ d}
(14′) [a < d]

{a < 0}
Using Definition 9, we can prove that
Path 5 is dead. Let Z be the set of integers.

R0 ≡ false
R1 ≡ 0 6 a
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R2 ≡ a < d ⇒ 0 6 a

R3 ≡ wlp.(a :∈ {n : N1 | n ∗ d 6 a •
a− n ∗ d}).R2

≡ ‘since the assignment expres-
sion is well defined’
∀e : Z •

e ∈ {n : N1 | n ∗ d 6 a •
a− n ∗ d} ⇒

(e < d ⇒ 0 6 e)
R4 ≡ wlp.[d 6 a].R3

≡ d 6 a ⇒
(∀e : Z •

e ∈ {n : N1 | n ∗ d 6 a •
a− n ∗ d} ⇒

(e < d ⇒ 0 6 e))
≡ d 6 a ⇒

(∀e : Z;n : N1 •
(n ∗ d 6 a ∧
e = a− n ∗ d) ⇒
(e < d ⇒ 0 6 e))

≡ d 6 a ⇒
(∀n : N1 •

n ∗ d 6 a ⇒
(a− n ∗ d < d ⇒

0 6 a− n ∗ d))
≡ d 6 a ⇒

(∀n : N1 •
n ∗ d 6 a ⇒

(a− n ∗ d < d ⇒
n ∗ d 6 a))

≡ true

Since Path 5 is an approximation of Path 3,
this proof that Path 5 is dead is also suffi-
cient to conclude that Path 3 is dead.

In particular, the ability of generalised
assignments to include an arbitrary set of
values on their right-hand side makes them
a suitable basis for checking the correctness
of path analysis algorithms that associate
ranges or sets [5] of values with variables
as a means of symbolic path execution.

An alternative, but equivalent, approach
to showing the correctness of dead path al-
gorithms is to show that the algorithm im-
plements an ‘approximate’ weakest liberal
precondition function ‘awlp’ which, for any
path S and postcondition R, has the follow-
ing property.

awlp.S.R V wlp.S.R

Thus, if awlp.S.false ≡ true holds then so
does wlp.S.false ≡ true, and it is safe to
conclude that path S is dead.

For example, consider a while statement
guarded by boolean expression B and with
a body S, where S updates the set of vari-
ables x. Recall that a predicate I is an in-
variant of such a loop if, when the guard B
is true, execution of the loop body S main-
tains I.

I V wlp.([B] ; S).I

Via Definitions 5 and 3, this can be reex-
pressed as follows.

I ∧ def.B ∧B V wlp.S.I

For a loop with an invariant I that holds
when the loop begins, then at each iter-
ation the invariant will be reestablished
and either the (well-defined) guard B will
still be true or the loop’s postcondition R
will be established. From this intuition,
we can define an approximate weakest lib-
eral precondition for loops that offers a way
of checking whether the loop is dead, but
that is easier to calculate than using Theo-
rem 2 above. (Formally, the following defi-
nition can be derived by induction via Def-
inition 8.)

Definition 10 (Loop approximation)

awlp.(whileB loopS end loop).R
≡ ‘for well-defined loop invari-

ant I and if S updates vari-
ables x only’
I ∧ (∀x • I ⇒ def.B ⇒ (B ∨R))

This definition can be used in path anal-
yses in exactly the same way as the wlp
definition for loops was used in Section 8.
Unlike Theorem 2, it does not require us
to reason over natural number n, or to ex-
amine in detail the loop body S. However,
the number of dead paths detectable us-
ing this definition depends on the choice
of invariant. The stronger the loop invari-
ant, the better the approximation, and the
more dead paths will be identified.

For example, when analysing Path 4 in
Section 8 we calculated the weakest lib-
eral precondition of the while statement,
with respect to postcondition ‘false’, to be
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d 6 a ∧ d 6 0. To show an approximate
analysis of this loop, consider the follow-
ing choice of invariant. (This is part of the
full invariant given in Section 4.)

J
def= 0 6 d ∧ 0 6 a

We can then apply the awlp definition
above to find an approximation to the pre-
condition that makes the loop dead as fol-
lows.

awlp.(while d 6 a loop
a := a− d

end loop).false
≡ ‘by Definition 10 using invariant J ’

(0 6 d ∧ 0 6 a) ∧
(∀a • (0 6 d ∧ 0 6 a) ⇒

def.(d 6 a) ⇒
(d 6 a ∨ false))

≡ ‘since d 6 a is well defined’
(0 6 d ∧ 0 6 a) ∧
(∀a • (0 6 d ∧ 0 6 a) ⇒ d 6 a)

≡ (0 6 d ∧ 0 6 a) ∧
¬(∃a • 0 6 d ∧ 0 6 a ∧ a < d)

≡ 0 6 a ∧ d = 0
≡ d 6 a ∧ d = 0

This new condition is stronger than the one
calculated in Section 8. It requires d = 0,
rather than just d 6 0, so this approxi-
mation identifies only a subset of the dead
paths found earlier.

10 Conclusion

We have shown that weakest liberal pre-
condition semantics offers a formal way of
characterising control-flow paths that can
never be followed to completion at run
time. This was done by treating primi-
tive parts of compound programming lan-
guage statements as distinct statements in
their own right and allowing domain con-
straints to be expressed as assertions. Ex-
isting or planned dead-path identification
algorithms can now be justified in terms of
this formalism by proving that they behave
conservatively and identify only genuinely
dead paths as ‘dead’ (although they may
still fail to identify some dead paths).

Formally verifying that paths are dead
using, for instance, an interactive theorem

prover would be unacceptably inefficient
in most practical situations. Nevertheless,
the formalism could be used in this way to
eliminate paths missed by the automatic
algorithms in those high-integrity applica-
tions that justify the additional effort. This
would be particularly important for elimi-
nating lengthy dead paths that were missed
by the automatic algorithms during timing
analysis of safety-critical programs.

In particular, this study was motivated
in part by research into formal methods
of deriving real-time programs from their
specifications [25]. In this situation, addi-
tional information about the program, such
as pre and post-conditions and loop invari-
ants, is already available and can be readily
exploited during formal dead-path analy-
sis.
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A Dead subpaths

In this appendix we prove Theorem 1 which
states that if any subpath of a path is dead,
then the whole path is dead. In prac-
tice this property can save a considerable
amount of effort since it allows proof that
a path is dead to stop as soon as some part
of the path is shown to be so.

We begin by noting two properties of
wlp.S for each statement S in our pro-
gramming language. Firstly, the predicate-
transformer functions for programming
language statements are monotonic with
respect to the entailment relation ‘V’.

Proposition 1 (Monotonicity)

If Q V R then wlp.S.Q V wlp.S.R .

This is so because if S terminates in a state
satisfying Q, then that state will also sat-
isfy R.

Secondly, the following property holds
for each statement S in our target program-
ming language, because any state satisfies
the predicate ‘true’ [3, p. 22].

Proposition 2 (Wlp true)

wlp.S.true ≡ true

Our goal is then to prove that if state-
ment S2 is dead then the sequence of state-
ments ‘S1 ; S2 ; S3’ is also dead. Assuming
that S2 is dead gives us the following prop-
erty.

wlp.S2.false
≡ ‘by Definition 2, since S2 is dead’

true

Observe that ‘false V wlp.S.false’ for any
statement S. Therefore the following prop-
erty must hold.

wlp.S2.false
V ‘by Proposition 1’

wlp.S2.(wlp.S3.false)

Hence from our assumption that
wlp.S2.false is ‘true’, the following
property holds.

wlp.S2.(wlp.S3.false) ≡ true

Finally, we use this property to complete
the proof that the whole path is dead.

wlp.(S1 ; S2 ; S3).false
≡ ‘by the semantics of ‘;’’

wlp.S1.(wlp.S2.(wlp.S3.false))
≡ wlp.S1.true
≡ ‘by Proposition 2’

true

B Semantics of iteration

For completeness, this appendix derives
the semantics of while loops introduced
in Section 6, and the special case used
in Section 8. Our approach is informed
by Dijkstra and Scholten’s extensive study
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F 0.true ≡ true
F 1.true ≡ wlp.([B] ; S).true ∧ (def.B ⇒ (B ∨R))

≡ ‘by Proposition 2’
def.B ⇒ (B ∨R)

≡ ‘since (wlp.([B] ; S))0 is the identity function’
(wlp.([B] ; S))0.(def.B ⇒ (B ∨R))

F 2.true ≡ wlp.([B] ; S).(F 1.true) ∧ (def.B ⇒ (B ∨R))
≡ wlp.([B] ; S).((wlp.([B] ; S))0.(def.B ⇒ (B ∨R))) ∧

(def.B ⇒ (B ∨R))
≡ (wlp.([B] ; S))1.(def.B ⇒ (B ∨R)) ∧

(wlp.([B] ; S))0.(def.B ⇒ (B ∨R))
F 3.true ≡ wlp.([B] ; S).(F 2.true) ∧ (def.B ⇒ (B ∨R))

≡ wlp.([B] ; S).((wlp.([B] ; S))1.(def.B ⇒ (B ∨R)) ∧
(wlp.([B] ; S))0.(def.B ⇒ (B ∨R))) ∧

(def.B ⇒ (B ∨R))
≡ ‘by Proposition 3’

wlp.([B] ; S).((wlp.([B] ; S))1.(def.B ⇒ (B ∨R))) ∧
wlp.([B] ; S).((wlp.([B] ; S))0.(def.B ⇒ (B ∨R))) ∧
(def.B ⇒ (B ∨R))

≡ (wlp.([B] ; S))2.(def.B ⇒ (B ∨R)) ∧
(wlp.([B] ; S))1.(def.B ⇒ (B ∨R)) ∧
(wlp.([B] ; S))0.(def.B ⇒ (B ∨R))

...
Fn.true ≡ ∀i : 0 . . . n− 1 • (wlp.([B] ; S))i.(def.B ⇒ (B ∨R))

Figure 3: Calculation for fixed point of iteration.

of weakest liberal preconditions for loops
[20, Ch. 9–10] and Back and von Wright’s
algebraic treatment [26].

Consider an iterative statement W with
condition B and body S defined as follows.

W
def= whileB loopS end loop

Informally, the behaviour of such a state-
ment is usually explained via a recursive
equation [10, §7.1].

W = ifB then (S ; W ) end if

Using this approach, we can derive a recur-
sive form of W ’s weakest liberal precondi-
tion with respect to an arbitrary postcon-
dition R.

wlp.W.R

≡ wlp.(ifB then (S ; W ) end if).R
≡ ‘by the semantics of ‘;’ and if’

def.B ⇒
((B ⇒ wlp.S.(wlp.W.R)) ∧
(¬B ⇒ R))

≡ (def.B ⇒
(B ⇒ wlp.S.(wlp.W.R))) ∧

(def.B ⇒ (¬B ⇒ R))
≡ ‘by the semantics of guard [B]’

(wlp.[B].(wlp.S.(wlp.W.R))) ∧
(def.B ⇒ (¬B ⇒ R))

≡ wlp.([B] ; S).(wlp.W.R) ∧
(def.B ⇒ (B ∨R))

We now have a recursive equation of the
form ‘X ≡ F.X’, where the weakest solu-
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(wlp.([B] ; S))n+1.(def.B ⇒ B)
≡ wlp.([B] ; S).((wlp.([B] ; S))n.(def.B ⇒ B))
≡ ‘by Definition 3’

wlp.[B].(wlp.S.((wlp.([B] ; S))n.(def.B ⇒ B)))
≡ ‘by Definition 5’

def.B ⇒ (B ⇒ (wlp.S.((wlp.([B] ; S))n.(def.B ⇒ B))))
≡ ‘since def.B ⇒ B from the base case’

def.B ⇒ (wlp.S.((wlp.([B] ; S))n.(def.B ⇒ B)))
≡ ‘by the inductive hypothesis’

def.B ⇒ (wlp.S.((wlp.([def.B] ; S))n.(def.B ⇒ B)))
≡ ‘since def.(def.X) is true for any X’

def.(def.B) ⇒ (def.B ⇒ (wlp.S.((wlp.([def.B] ; S))n.(def.B ⇒ B)))))
≡ ‘by Definition 5’

wlp.[def.B].(wlp.S.((wlp.([def.B] ; S))n.(def.B ⇒ B)))
≡ ‘by Definition 3’

wlp.([def.B] ; S).((wlp.([def.B] ; S))n.(def.B ⇒ B))
≡ (wlp.([def.B] ; S))n+1.(def.B ⇒ B)

Figure 4: Inductive step for dead iteration proof.

tion for ‘X’ is ‘wlp.W.R’ [20, p. 171], and F
is a monotonic predicate-transformer func-
tion.

F.X ≡ wlp.([B] ; S).X ∧
(def.B ⇒ (B ∨R))

Our goal is to find the weakest solu-
tion of this equation in the predicate lat-
tice defined by the entailment relation V,
with top ‘true’ and bottom ‘false’. To
do so, we first note that for each state-
ment S in our programming language,
predicate-transformer function wlp.S is
∧-continuous [20].

Proposition 3 (And-continuity) Let I
be an arbitrary indexing set, and for each i
in I let Ri be a predicate.

wlp.S.(
∧

i : I •Ri)
≡ (

∧
i : I • wlp.S.Ri)

Fixed point theory [27, 23] then allows
us to determine the weakest solution (i.e.,
the greatest fixed point) of equation X ≡
F.X as follows. Let Fn denote functional
composition of n copies of function F , with
F 0 being the identity function.

Proposition 4 (Weakest solution)
The weakest solution (greatest fixed point)
of recursive equation X ≡ F.X is given by
the following expression.

∀n : N • Fn.true

To evaluate the expression in Propo-
sition 4 for the recursive definition
of wlp.W.R above, we must determine
‘Fn.true’, for any natural number n. This
is most clearly demonstrated via cases as
shown in Figure 3. From this we then
obtain the weakest liberal precondition of
while statements given in Section 6.

wlp.(whileB loopS end loop).R
≡ ‘by Proposition 4’

∀n : N • Fn.true
≡ ‘from Figure 3’

∀n : N •
(∀i : 0 . . . n− 1 •

(wlp.([B] ; S))i.(def.B ⇒
(B ∨R)))

≡ ∀n : N •
(wlp.([B] ; S))n.(def.B ⇒ (B ∨R))
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C Dead iteration

Above we defined the weakest liberal pre-
condition for an iterative statement given
some arbitrary postcondition R. Here we
prove Theorem 2, which allows for the spe-
cial case where postcondition R is ‘false’,
as needed for detecting dead iterations.

The proof is by induction. Before start-
ing, we reexpress the right-hand side of
Theorem 2 to make the base case ex-
plicit (recalling that (wlp.S)0 is the iden-
tity function for any S).

∀n : N •
(wlp.([def.B] ; S))n.(def.B ⇒ B)

≡ ‘by conjoining case where n = 0’
(def.B ⇒ B) ∧
(∀n : N •

(wlp.([def.B] ; S))n.(def.B ⇒ B))

Proof of this restated theorem then be-
gins by reexpressing the left-hand side in
the same way.

wlp.(whileB loopS end loop).false
≡ ‘by Definition 8’

∀n : N •
(wlp.([B] ; S))n.(def.B ⇒ B)

≡ ‘by conjoining case where n = 0’
(def.B ⇒ B) ∧
(∀n : N •

(wlp.([B] ; S))n.(def.B ⇒ B))

The proof then proceeds by pointwise
equivalence on n. For the base case, where
n = 0, the two predicates derived above
are trivially equivalent. For the inductive
step, we assume that def.B ⇒ B holds and
that the universally quantified predicates
are equivalent for the nth case, and then
show that this is also true for n + 1, as in
Figure 4.
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