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Abstract
Continuous real functions are an important tool in describing the evolution of phys-
ical processes through time. Using the theory of topology, this notion of continuity
may be generalised to arbitrary data types. This paper demonstrates that (topolo-
gical) continuity can be a useful tool in describing the evolution of digital processes
through time. Several examples are given of the use of continuous functions in
modeling and specifying system behaviour. A digital circuit is verified to demon-
strate the utility of proof techniques from real analysis.

1 Introduction
In studying the dynamics of physical processes it is usual to model quantities as con-
tinuous real-valued functions of time. This paper demonstrates that continuous func-
tions are also useful for studying the dynamics of digital systems. Our introduction to
topology is brief, but sufficient to demonstrate its usefulness in real-time specification.
The interested reader will find more extensive treatments of topology in [3, 4].
In Section 2 we overview the notion of topological continuity as a generalisation of
real continuity. We then consider the standard topologies for the reals (Section 2.2)
and for discrete spaces (Section 3), giving examples of the usefulness of functions that
are continuous under these topologies.
We do not attempt to promote any particular specification style. Our examples are
presented in an informal Z style since this is familiar to the authors. The purpose of the
paper is to display the usefulness of continuity regardless of the specification method
used. We restrict our definitions of notations to those that are directly related to the use
of continuous functions in specifications. Other notations used are conventional either
to the study of real numbers or to the Z specification language [5]. Informal definitions
of these can be found in the glossary at the end of the paper.



2 Topology
Consider the definition of real continuity presented in elementary applied mathematics
texts.

A function, f : R → R, is continuous at a point, x : R, if

lim
a→x

f (a) = f (x ).

The notion of limit is left vague, relying on the reader’s intuition for the reals, and the
fact that limits for many functions may be found by algebraic means.
A more rigorous definition appears in pure maths calculus texts.

A function, f : R→ R is continuous at a point, x : R, if for every ε : R > 0
there is a δ : R > 0 such that

∀ y : R • |x − y | < δ⇒ |f (x ) − f (y)| < ε

Here the notion of limit has been formalised, but still the definition remains funda-
mentally bound to the real space. A generalisable definition may be given in terms of
intervals around the continuity point.

A function, f : R → R is continuous at a point, x : R, if for every ε : R
there is a δ : R such that

{y : R | |x − y | < δ} ⊆ f −1�{z : R | |f (x ) − z | < ε}�

or
6x − δ ... x + δ7 ⊆ f −1�6f (x ) − ε ... f (x ) + ε7�

The notion of intervals can be generalised to arbitrary spaces. The study of such gen-
eralisations is called topology.

2.1 Open Sets
Topology uses the concept of open set to generalise real neighbourhoods to arbitrary
spaces. Open sets are an expression of the contiguousness of elements of the space.
Any open set containing a particular element must also contain some neighbourhood
around that element. The granularity of these neighbourhoods determine the degree
of contiguousness within the space, ranging from discrete (single element neighbour-
hoods) to analog (uncountable neighbourhoods).
A complete collection of open sets on a space is called a topology. Since any neigh-
bourhood around a point in a space X is contained in the entire space, a topology on X

must contain X itself. The union of two neighbourhoods should remain a neighbour-
hood, as should the intersection. A topology must be closed under arbitrary unions, but



only under finite intersections [3]. This allows new open sets to be constructed from
known ones whilst ensuring that each point of the space carries some neighbourhood
with it in each open set. Finally to ensure the topology is closed under intersection the
null set must be included.

Definition 2.1

Topologies[X ] ==






T : P PX

{ },X ∈ T

∀O : FT •
⋂

O ∈ T

∀O : PT •
⋃

O ∈ T






The topologies on a space can be used to generalise our definition of real continuity. A
continuous function maps neighbouring points in its domain to neighbouring points in
its range.

Definition 2.2 For sets X and Y , with topologies TX : Topologies[X ] and TY :
Topologies[Y ], the continuous total functions and continuous partial functions are

X 1 Y == {f : X → Y | (∀O : TY • f −1�O� ∈ TX )}
X / Y == {f : X � Y | (∀O : TY • f −1�O� ∈ TX )}

Under a continuous function the preimage of an open set is always open. The preim-
age is used because of the many-to-one nature of functions would make a direct image
definition too restrictive. For example the range of sine is the closed interval :−1 ... 1;.
Definition 2.2 requires neighbouring points in the domain to be mapped to neighbour-
ing points in the range, but does not require that all neighbouring points in the range be
mapped to.
The continuous functions between two spaces depend on the topologies being used, but
we do not make explicit reference to them since the topology being used is generally
apparent from context.
We include the notion of partial functions, which is perhaps unusual for continuous
functions, so as to avoid the necessity of knowing the precise domain of a function
when typing it. The continuity criteria of respecting open sets readily admits the notion
of partial functions.

2.2 The Real Topology
The real topology is constructed using the open intervals as a basis.

Definition 2.3



6 ... 7 : R × R � PR
6−∞ ... 7, 6 ...∞7 : R→ PR
6−∞ ...∞7 : PR

∀ x , y : R •
6x ... y7 = {z : R | x < z < y}

6−∞ ... x 7 = {z : R | z < x }

6x ...∞7 = {z : R | x < z }

6−∞ ...∞7 = R

An open set on the reals is constructed from arbitrary unions and finite intersections of
open intervals.

Definition 2.4

=R ==

{6x ... y7 | x , y : R} ∪
{6−∞ ... x 7 | x : R} ∪
{6x ...∞7 | x : R} ∪
{6−∞ ...∞7}

TR == {
⋃

O | O : P=R} ∪ {
⋂

O | O : F=R}

2.3 Covering Open Sets of Reals
This topology has the following useful property.

Theorem 2.5 [4, Prop 8, page 39] Every open set of real numbers is the union of a
countable collection† of disjoint open intervals.

Corollary 2.6 The function

cov : TR → Pω =R

∀O : TR •
{ } < cov(O)
O =

⋃

cov(O)
∀A,B : cov(O) • A , B ⇒ A ∩ B = { }

is uniquely defined.

It is this property of the real topology that allows real continuity to be defined in terms
of open intervals only. It also allows many propositions about continuous functions to
be stated in terms of open intervals.
For example consider a control system that must ensure that the temperature,

θ : TIME 1 TEMP

†We write PωX for the set of countable subsets of X .



(where both TIME and TEMP are the positive reals, R+) of a computer machine
room, does not remain above a certain threshold, θmax : TEMP , for too long, say not
longer than δ : TIME . This condition on the temperature function may be stated easily
by considering the duration of the time intervals for which the temperature is too high.
Since θ is a continuous function, the preimage of the interval 6θmax ...∞7, the danger-
ous temperatures, is an open set. This means that the times at which the temperature is
dangerous can be expressed as the set of maximal open intervals, cov(θ−1�6θmax ...∞7�).
Each of these intervals must be of short duration.

∀∆ : cov(θ−1�6θmax ...∞7�) • ‖∆‖ < δ

An example of the behaviour allowed by this specification is shown in Figure 1. Each
interval for which the temperature rises above the threshold θmax must have duration
less than δ.
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Figure 1: An example behaviour of the temperature control system.

3 Discrete Topologies
When the space under consideration is countable, it is usual to give a topology in which
each individual point is an open set. This is called a discrete topology. Since topologies
must be closed under unions the discrete topology is just the space’s power set.

Definition 3.1 For a space, X , the discrete topology is the collection of all subsets of
X .

DX == PX

The interesting aspect of the discrete topology is that continuous functions from the
reals (time) into a discrete space are step functions (see Figure 2). The preimage of a
point in the discrete space must be an open set of reals, that is a set of open intervals.
This means that when such a function has a value at a particular point it must have the
same value for the entirety of some interval around that point. In order to change value
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Figure 2: An example of a continuous partial function into a discrete space.

it must become undefined for some interval. This is a good way to model the history
of a digital quantity that remains constant, unless acted on by an event.
For example the behaviour of a digital wire may be represented as a continuous partial
function of time.

WIRE : TIME / {hi , lo}

By defining the behaviour to be continuous we remove pathological behaviour, such as
the wire being hi on the rationals and lo on the irrationals. Continuity forces a discrete
nature on the behaviours.
Having continuous behaviours also means that we can associate events with “discon-
tinuities” in the behaviour. We can characterise important events such as

GoesHi ==WIRE (t0) = lo ∧WIRE (t1) = hi ∧ t0 < t1

and identify the periods during which these events occur.
A state change occurs when there is an interval of time, ∆, when the WIRE is un-
defined. The WIRE GoesHi during ∆ if

∆ ⊆ TIME \ domWIRE

∃∆lo ,∆hi : cov(dom WIRE ) •
sup∆lo = inf ∆ ∧ inf ∆hi = sup∆
∀ t0 : ∆lo ; t1 : ∆hi • GoesHi

Figure 3 shows an example of an interval over which the GoesHi event is occurring.
The wire is low for times immediately preceding the event and high for those immedi-
ately following it.
In this way we are able to give a formal correspondence between event-based views of
process behaviour and state-based views.
Our ideal digital wire also has direct correspondence to real-world analog wires. An
analog wire can be described by a real-valued continuous total function of time (we
may be representing either voltage or current).

AWIRE : TIME 1 R
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Figure 3: A GoesHi event occurs at ∆.

The digital information is derived from the analog wire by defining a high threshold,
α : R, above which the signal is considered high, and low threshold, β : R, β ≤ α,
below which the signal is considered low. Between these two values the signal is
undetermined. The correspondence between the analog wire and the digital wire is
simple.

WIRE (t) = hi ⇔ AWIRE (t) > α ∧
WIRE (t) = lo ⇔ AWIRE (t) < β

If AWIRE is continuous then WIRE will also be continuous.

{t : R | AWIRE (t) > α} = AWIRE−1�6α ...∞7�

is open by the continuity of AWIRE . This set is the preimage of hi under WIRE .
Similarly the preimage of lo under WIRE is open, and hence WIRE is continuous.
It is also possible to move to a sampled bitstream view of WIRE . Suppose a sampling
device monitors WIRE over periods of duration, δ : TIME , returning 1 if WIRE is
hi over the entire period, 0 if it is was lo, and ⊥ otherwise. The sampled bitstream,
BITS : seq{⊥, 0, 1}, has simple relationship to the digital WIRE .

BITS (i) = 1 ∧ 6(i − 1).δ ... i .δ7 ⊆WIRE −1�{hi}�

∨ BITS (i) = 0 ∧ 6(i − 1).δ ... i .δ7 ⊆WIRE −1�{lo}�)

∨ BITS (i) = ⊥ ∧ ¬
(

6(i − 1).δ ... i .δ7 ⊆WIRE−1�{hi}�
∨
6(i − 1).δ ... i .δ7 ⊆WIRE−1�{lo}�

)

By using continuous functions we are able to switch between different levels of ab-
straction, whilst retaining complete rigor.

4 The ‘on’ Operator
The preimage notation used to define BITS above is cumbersome, especially as it is
common to discuss behaviour over entire time intervals. To abbreviate the expression



of such properties we introduce the on operator. If P (t) is a predicate in which a time
variable t occurs free, we write P on O , dropping all references to t , to express that
P is defined and true for all times in O . For example the definition of BITS might be
more conveniently expressed using the on notation.

BITS (i) = 1 ∧ (WIRE = hi) on 6(i − 1).δ ... i .δ7
∨ BITS (i) = 0 ∧ (WIRE = lo) on 6(i − 1).δ ... i .δ7

∨ BITS (i) = ⊥ ∧ ¬
(

WIRE = hi on 6(i − 1).δ ... i .δ7
∨WIRE = lo on 6(i − 1).δ ... i .δ7

)

5 Example: A Nor Gate
A nor gate calculates the negation of the logical disjunction of two digital wires. This
process cannot be achieved without some delay in the signal. The best that is possible
is that the delay be within some time interval, 6δ2 ... δ17. The upper bound δ1 : TIME

ensures that the nor gate is sufficiently responsive, whilst the lower bound δ2 : TIME

ensures that the delayed signal is not cut too short. If the input signals are carried by
wires a and b, and the output by c then c should be set low if either a or b are high and
it should be set high if both are low.

NorGate

a, b, c : TIME / {hi , lo}

∀ x , y : TIME •

(a = hi ∨ b = hi) on 6x ... y7⇒ c = lo on 6x + δ1 ... y + δ27

(a = lo ∧ b = lo) on 6x ... y7⇒ c = hi on 6x + δ1 ... y + δ27

6 Example: Verifying a Flipflop
In using continuous real functions, not only are we able to use familar models for
physical processes, we are also able to bring to bear the large body of knowledge in the
field of real analysis. We show how one technique from real analysis can be used to
help verify the behaviour of a flipflop.

6.1 Real Induction
As with the natural numbers induction is an important way of showing that some prop-
erty holds over an interval of real numbers. The real version of induction relies on
being able to show the property is satisfied on a small interval (the initial case) and
then showing that the property holding for one real number implies it holds for some
slightly larger number (the inductive case). The intuition is that the inductive case al-
lows the interval of satisfaction to be extended from the small initial interval, one small
interval at a time to the required interval.



Definition 6.1 (Principle of Real Induction)
For δ : R > 0,

P on 6a ... a + δ;
∀ z : 6a ... c7 • P (z )⇒ P (z + δ)

P on 6a ... c + δ7

6.2 A Bit
A bit stores a single binary digit, constantly providing the value of the digit on a line
Q . The value of the bit is set to lo by sending a hi signal on a reset line R, while
maintaining a lo signal on a set line S . Once reset the value of the bit should remain
lo for as long as the set signal is lo. The value of the bit may be set hi via a similar
process, except with the hi signal on S and the lo on R.

Bit

R,S ,Q : TIME / {hi , lo}

∀ x , y , z : TIME •

x + δs < y < z ⇒

R = hi on 6x ... y7 ∧ S = lo on 6x ... z 7⇒
Q = lo on 6x + δ↑ ... z + δ↓7

S = hi on 6x ... y7 ∧ R = lo on 6x ... z 7⇒
Q = hi on 6x + δ↑ ... z + δ↓7

The bit need only respond to signals that are stable for δs : TIME . It is expected that
there will be some delay in the Bit responding to variations in the set and reset signals.
This delay should be no more than δ↑ : TIME and no less than δ↓ : TIME < δ↑.

6.3 A Flipflop Implements a Bit
A flipflop may be constructed using two nor gates, with maximum and minimum re-
sponse delays δ1 and δ2 < δ1, by connecting the output of each gate to one input of the
other as shown in Figure 4.

FlipFlop == NorGate[S
a
,
Q

b
,
Q

c
] ∧ NorGate[Q

a
,
R
b
,
Q

c
]

A possible behaviour for a FlipFlop is shown in Figure 5.
We begin verifying FlipFlop by showing that it is stable after set and reset.

Theorem 6.2 (Reset Stability)
For a FlipFlop, if S = lo on 6x ... y; for some x , y : R and (Q = lo ∧ (R = hi ∨ Q =

hi)) on 6x ... x + δ1; then

(Q = lo ∧ Q = hi) on 6x + δ1 ... y + δ2;.
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Figure 4: Circuit diagram for a nor gate flipflop.

S

R

Q

Q

δ1 δ1 δ1 δ1

Figure 5: An example behaviour of a flipflop.



Proof: We use the principle of real induction on the proposition,

P ==





λ z : TIME •

Q = lo on 6x ... z + δ1; ∧

(R = hi ∨ Q = hi) on 6x ... x + δ1; ∧

Q = hi on 6x + δ1 ... z + δ1;





If we show that P on 6x ... (y + δ2) − δ17 then we can deduce that

(Q = lo ∧ Q = hi) on 6x + δ1 ... (y + δ2) − δ1 + δ1;

≡ (Q = lo ∧ Q = hi) on 6x + δ1 ... y + δ2;

We will prove the proposition using the inductive constant δ2. We find it convenient to
prove the inductive step and derive the initial step from it.
Case (Inductive Step)
Since we wish to show the proposition on 6x ... (y − δ1) + δ27, we choose an arbitrary
z : 6x ... y − δ17 and assume that P (z ) holds, i.e.,

Q = lo on 6x ... z + δ1; ∧

(R = hi ∨ Q = hi) on 6x ... x + δ1; ∧

Q = hi on 6x + δ1 ... z + δ1;

V Q = lo on 6x ... z + δ1; ∧

(R = hi ∨ Q = hi) on 6x ... z + δ1;

By assumption we know also that

S = lo on 6x ... z + δ1;.

By the definition of FlipFlop† ,

(R = hi ∨ Q = hi) on 6x ... z + δ1;⇒

Q = lo on 6x + δ1 ... (z + δ1) + δ2;

so that

Q = lo on (6x ... x + δ1; ∪ 6x + δ1 ... z + δ1 + δ2;)
≡ Q = lo on 6x ... (z + δ2) + δ1;.

Also by FlipFlop we know that

(Q = lo ∧ S = lo) on 6x ... z + δ1;⇒ Q = hi on 6x + δ1 ... (z + δ1) + δ2;

so that

Q = hi on (6x + δ1 ... z + δ1; ∪ 6z + δ1 ... z + δ1 + δ2;)
V Q = hi on 6x + δ1 ... (z + δ2) + δ1;

Thus it follows that P (z + δ2) holds.
†Note that for f : TIME / A, c : A, a, b : TIME , A discrete, since f −1�{c}� is open, then f = c on

6a ... b; iff there is some ∆ : cov(f −1�{c}�), such that 6a ... b; ⊆ ∆, that is iff there exists some ε : TIME > 0
such that f = c on 6a ... b + ε7.



Case (Initial Step)
It is easy to show that P (z ) ⇒ P on 6x ... z ;. Now P (x ) holds by assumption. From
the above argument we know that P (x +δ2) must also hold, so that P on 6x ... x + δ2;.

So by the principle of real induction we may deduce that P on 6x ... (y + δ2) − δ17, and
hence that proposition holds.

Corollary 6.3 (Reset Validity)
For a FlipFlop, if for some x + 2δ1 < y < z : R,
R = hi on 6x ... y7 ∧ S = lo on 6x ... z 7 then

(Q = lo ∧ Q = hi) on 6x + 2δ1 ... z + δ27.

Proof: Since R = hi on 6x ... x + 2δ1; the definition of FlipFlop ensures that (R =
hi ∧ Q = lo) on 6x + δ1 ... x + 2δ1; and the results follows from the stability theorem.

Theorem 6.4 (Set Stability)
In a FlipFlop system, if R = lo on 6x ... y; for some x , y : R and (Q = lo ∧ (S =
hi ∨ Q = hi)) on 6x ... x + δ1; then

(Q = hi ∧ Q = lo) on 6x + δ1 ... y + δ2;.

Proof: The proof is similar to that for reset stability.

Corollary 6.5 (Set Validity)
For a FlipFlop, if for some x + 2δ1 < y < z : R,
S = hi on 6x ... y7 ∧ R = lo on 6x ... z 7 then

(Q = hi ∧ Q = lo) on 6x + 2δ1 ... z + δ27.

From Corollaries 6.3 and 6.5 we may deduce that FlipFlop produces a valid refinement
of Bit .

Theorem 6.6 If δ↓ < δ2, 2.δ1 < δ↑, and 2.δ1 < δs , then

FlipFlop ⇒ Bit



7 Conclusions
A small working knowledge of topology can prove a powerful tool in the specification
and design of real-time systems. Topologically continuous functions offer a convenient
model for the history of observable quantities, both analog and digital. They allow one
a high degree of confidence that the specified behaviour will indeed correlate to the
physical behaviour of the system described. Yet, continuous functions have sufficient
structure to allow complex specifications to be written clearly and succinctly. There
is little difference in expressive power between using discrete continuous functions
and say sequences to model histories of digital behaviour. Further, formal analysis
techniques for real continuous functions are both powerful and well understood so that
this model is also comparable when deriving properties from specifications.
The use of continuous history functions allows the transparent integration of both ana-
log and digital quantities in a real-time specification. Analog quantities are modelled
in the conventional engineering manner, by continuous real-valued functions of time.
By representing digital quantities as (topologically) continuous functions of time, all
quantities are thus put into the single framework of continuous history functions.
This has been exploited in [1] to produce a high-level specification of the thermody-
namic behaviour of a central heating system and then to verify the correct behaviour of
a digital control mechanism. The specification technique used in [1] is a generalisation
of the specification statements of Morgan [2], but continuous history functions should
prove equally useful with other specification methods.
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Glossary
Let x and y be real numbers,∆ a real interval, A and B sets, f a function,A a collection
of sets, and P and Q are predicates.



R the set of real numbers
R+ the set of non-negative real numbers
6x ... y7 open interval from x to y

6x ... y; half open interval from x to y , including y

|x | magnitude of x

‖∆‖ the length of ∆
inf ∆ the greatest lower bound of ∆
sup∆ the least upper bound of ∆
A→ B total functions from A to B

A� B partial functions from A to B

A1 B continuous total functions from A to B

A/ B continuous partial functions from A to B

f �A� the image of A under the function f

P on O P is true at all times in O

PA the subsets of A

FA the finite subsets of A

PωA the countable subsets of A
⋃

A the union of all the sets in the collectionA
⋂

A the intersection of all the sets in the collectionA
P V Q P ⇒ Q is valid


