
A case-study in timed refinement:
A mine pump

Brendan P Mahony
Ian J Hayes

Department of Computer Science
University of Queensland

June 1992

Abstract

A specification and top-level refinement of a simple mine pump control system,
as well as a proof of correctness of the refinement, are presented as an example
of the application of a formal method for the development of time-based systems.
The overall approach makes use of a refinement calculus for timed systems, similar
to the refinement calculi for sequential programs.

The specification makes use of topologically continuous functions of time
to describe both analogue and discrete properties of both the system and its
refinements. The basic building block of specifications is a specification statement,
similar to Morgan’s specification statement for sequential programs. It gives a
clear separation between the specification of the assumptions that the system may
make about the environment in which it is to be placed, and the effect the system
is guaranteed to achieve if placed in such an environment.

The top-level refinement of the system is developed by application of refine-
ment laws that allow design decisions to be made, local state to be introduced,
and the decomposition of systems into pipe-lined and/or parallel processes.

Index Terms — Real-time specification, refinement calculus, Z, continuous
functions, modal operators.

1 Introduction

Formal methods for the development of sequential programs have been available for
some time, and more recently we have seen the development of refinement calculi for
sequential programs [1, 14, 15]. An important feature of refinement calculi is the inte-
gration of specification and programming constructs into the same framework, so that

1

a smooth transition can be made from a top-level specification down to implementation
detail.

The objective of this paper is to present a simple but realistic example of the
use of a refinement calculus for time-based systems. We present a case study of the
specification, analysis and top-level design of a mine monitoring and control system.
In specifying such a system, we need to be able to discuss both continuous quantities,
such as the water level in the mine, and discrete properties, such as whether or not the
water pump is on. The approach taken models both continuous and discrete properties
as functions of time within the same framework, and provides for the expression of
relationships between these — usually separate — aspects of a system. The approach
taken to specification is novel from a computer science viewpoint, but is, however, not
completely new: it follows the approach to modelling systems that has been used by
physicists and engineers for quite some time.

Another important aspect of the approach is that a clear distinction is made between
the assumptions made about the environment of a system (or a component of a design)
and the effect the system (or component) is expected to achieve. This separation allows
for the use of a timed refinement methodology for the development and verification
of successive design steps. This separation has the same advantages for timed spec-
ifications as the separation of pre-condition and post-condition in the specification of
sequential programs.

Our example of a mine monitoring and control system is adapted from [2]. In
that paper Burns and Lister elucidate an architectural framework for timely and reliable
distributed information systems (TARDIS). The present paper is our attempt to formalise
the specification and top-level design components of that architecture in a way which
includes the timing properties of the system.

1.1 Specification

We have attempted to develop as general a specification of the mine monitoring and
control system as possible, without biasing the system towards a particular form of
implementation. Further we have developed a whole-system specification, rather than
just a specification of the software components of the system. We consider the division
of the implementation into hardware and software components to be part of the top-level
design of the system, and that the top-level design process should be supported by our
methodology.

For example, an implementation may use either a software monitor to regularly
sample the water level in the mine, or it may use hardware to trigger an interrupt when
the water level in the mine exceeds a critical level. A top-level specification of the
whole system should allow both of these implementation strategies, and the design
process should make it possible to calculate design parameters such as the maximum
time between successive samplings of the water level.

2

In our specifications we make use of the Z mathematical and schema notations. A
glossary of terminology used in this paper is provided in Appendix A. The reader is
referred to [19, 5] for more detail on Z. We extend the Z notation with three (orthogonal)
notational devices to facilitate the specification of real time systems:

� units (including dimensionality) of (physical) quantities,

� (topologically) continuous functions of both analogue and discrete quantities, and

� specification statements which specify the assumptions a process makes about its
environment and the effect it is guaranteed to achieve.

We give an introduction to these techniques in Sections 1.2, 1.3, and 1.4.

1.2 Units

In specifying variables we follow the approach, commonly used in physics and engi-
neering, of giving the (physical) units of the quantity. For example, the depth of the
water in the mine is given in metres, so we introduce a type DEPTH which is a real
number (R is the set of reals) with units of metres:

DEPTH b� R�Metre��

Similarly, we introduce a type TIME which is a real number with units of seconds:

TIME b� R�Seconds��

A variable giving the depth at which the water level becomes dangerous can be
declared using type DEPTH:

DangerH2O : DEPTH �

As another example, the maximum rate of increase of water level could also be given
by a variable:

MaxH2Oin : DEPTH �TIME �

This variable is a real number with units of metres per second.
As our treatment of units is based on the familiar approach used in physics and

engineering, we do not give all the details of our approach here. The interested reader
is referred to [6, 12] for more details.

3

1.3 Continuous functions

To model time-varying quantities we take the simple approach of using a continuous
function from TIME to the type of the quantity. For example, the water level in the
mine can be modelled by:

H2O : TIME QDEPTH �

We use the symbol ‘Q’ to indicate a total continuous function. The water level at time
t is given by H2O�t�. In this case as the domain and range of the function are both
real-valued, we have the normal continuous function of real analysis.

In mathematics, the notion of continuity has been generalised to topological conti-
nuity. For analogue functions, such as H2O above, topological continuity corresponds
to the usual real continuity, but one advantage of the topological generalisation is that
we can discuss continuous functions with discrete ranges. For example, the water pump
may be on or off. We can model the status of the pump by a continuous function from
time to Boolean:

Pumping : TIME P B �

In this case the function is partial: it is not defined for all elements in its domain. In fact,
the times at which it is not defined are the times at which the pump status is changing
(or undefined).

The times when Pumping is defined form into contiguous intervals of time, each
of which comprises all the times between two instants of time, excluding the two
endpoints. We call such intervals of time open intervals, since their endpoints are not
contained within them. We write

X� ��� �Y � f� : TIME j � � � � �g

for the open interval with endpoints � and � and �TIME for the collection of all
open, time intervals. Sets of time, such as the domain of Pumping , which consist of a
collection of open intervals are called open sets. The collection of all open sets of time
forms a topology on the time domain, which we call TTIME .

The usefulness of topologies lies in the fact that continuity may be defined solely in
terms of the topology of the domain and range of a function and that topologies may be
defined on any set. For example, we give the booleans the discrete topology, in which
every subset is an open set.

Continuous functions are useful because, for every open set in the range of a function,
the set of times at which the value of the function lies in that open set is an open set of
times; i.e. the inverse image of an open set is open. For example, Pumping�1�ftrueg�
is an open set. Recall that an open set of times comprises a collection of open intervals
of time. Thus Pumping is continuous in the sense that when it attains the value true

4

it continues to have the value true for some contiguous interval of time. In order to
gain access to such time intervals we defined a function cov�� which constructs the set
of (maximal, disjoint) open intervals which comprise an open set of times. Thus in
declaring a variable

∆ : cov�Pumping�1�ftrueg��

we may be sure that Pumping is true over all of ∆, and that it is undefined at the
endpoints of ∆. ∆ forms the entirety of some interval of time during which Pumping is
true.

In using topologically, continuous functions we are able, for the most part, to
consider the behaviour of any system at the level of intervals of time, rather than being
forced to consider its behaviour in terms of individual instants of time. In this way the
complexity involved in using the real numbers to model analogue quantities is held in
check.

Timed history predicates When dealing with process state described as a function of
time, it is convenient to introduce shorthand notations that allow commonly occurring
forms of predicates to be expressed more succinctly. For example, to state that the water
is below the danger level for the duration of CriticalPeriod, we can use the following
timed history predicate:

H2O � DangerH2O on CriticalPeriod �

It has the same meaning as the following:

� t : CriticalPeriod � H2O�t� � DangerH2O �

1.4 The specification statement

To specify a system (or component process of a system) we need to define both the
assumptions that the system makes of its environment and the effect it guarantees to
achieve if placed in such an environment. As well, we enumerate the system variables
that are constructed by the process. We use a specification statement to group these
aspects of a specification together. It takes the form:

ConstructedVariables : �Assumption�E�ect ��

where ConstructedVariables is a list of variable declarations, and Assumption and Effect
are (essentially) predicates.

The idea of a specification statement comes from [14], however, it has been adapted
to the current context of timed histories rather than sequential programs.

5

For realistic specifications the predicates defining the assumptions and effects can
become quite large. To help manage these predicates we make use of the Z schemas
[19] to group together a list of variables with declared types and a predicate, and we
use these schemas to define the assumption and effect predicates. This approach has
the advantage that the assumption and effect schemas also make explicit the variables
over which they are defined.

Z schemas can be used to group together variables defining the state of a process.
For the mine monitoring system the state consists of the water level and the rates of
flow of water into and out of the mine. These can be grouped together in a schema
called Water:

Water

H2O : TIME QDEPTH

H2Oin�H2Oout : TIME Q �DEPTH �TIME �

� t � t � : TIME � t � t � �

H2O�t �� � H2O�t� �
R
t
�

t
H2Oin � H2Oout

The mine monitoring system assumes that the rate of flow of water into the mine is
bounded by MaxH2Oin . We can write a Z schema to capture this condition:

WaterRateLimited

Water

H2Oin � MaxH2Oin onTIME

We have included the schema Water in the schema WaterRateLimited rather than rewrit-
ing the declarations and predicate of Water. The above definition of WaterRateLimited
is equivalent to the following:

WaterRateLimited

H2O : TIME QDEPTH

H2Oin�H2Oout : TIME Q �DEPTH �TIME �

� t � t � : TIME � t � t � �

H2O�t �� � H2O�t� �
R
t
�

t
H2Oin � H2Oout

H2Oin � MaxH2Oin onTIME

To specify that if the depth of water in the mine exceeds the danger level then the
water alarm flag, H2OFlag , must be raised, we can write:

6

WaterAlarm

Water

H2OFlag : TIME P B

H2O � DangerH2O � H2OFlag on TIME

These schemas define properties of systems or processes. To specify a process that
has the effect of setting the flag if the water level exceeds the danger level, assuming
that the rate of flow of water into the mine is below the given maximum rate, we can
use the following specification statement:

WaterMonitor b� H2OFlag : �WaterRateLimited �WaterAlarm��

In this case H2OFlag is a variable completely constructed by the process.

2 Case study: specification

As an example of the use of our techniques for the specification of real-time processes,
we consider the case of a mine-shaft pump system. This real-time case study has been
treated by several authors [2, 3, 17, 18] and thus provides the opportunity to contrast
our approach with that of others. In particular, we are able to attack the problem at a
higher level of abstraction than is common, presenting a top-level specification rather
than the design-oriented presentations in [2, 3, 17, 18].

The case study considered seeks to address the problem of water seepage in a mining
shaft. The intention is to construct a process to monitor and control the water levels, so
as to minimise the risk that the mine will need to be evacuated due to dangerously high
water levels. Since activity within the mine is considered dangerous when high levels
of methane gas are present, the process must also monitor the level of methane so that
operations may be stopped during such danger periods.

Our purpose is to construct a formal description of the mine system and then use
this system model to describe the process which will help guard against interruptions
to mining operations caused by water seepage.

2.1 Monitoring the mine

Working conditions in the mine are monitored by various sensors which measure
important safety parameters. We are primarily interested in those which affect the
control of water levels in the mine, but others may exist (such as the air flow and carbon
monoxide sensors discussed in [2]).

7

Water

Water tends to seep into the mine shafts from the surrounding water table. The depth
of water in the mine is measured in metres.

DEPTH b� R�Metre�

We model the water system in the mine as a sink into which and out of which water
may flow.

Water

H2O : TIME QDEPTH

H2Oin�H2Oout : TIME Q �DEPTH �TIME �

� t � t � : TIME � t � t � �

H2O�t �� � H2O�t� �
R
t
�

t
H2Oin � H2Oout

The mine is capable of continuing operation with a certain amount of water in the shaft,
but if the water level exceeds

DangerH2O : DEPTH �

it will be necessary to take emergency action to ensure the safety of the workers
in the mine. The monitor system is required to set a flag to indicate the existence
of dangerous water levels. We represent this flag as a continuous, boolean history.
Continuous histories with values in a discrete space, like the booleans, change value by
becoming undefined for some period of time. In the case of flags we require that such
state changes occur over a single instant of time.

Flag b� �
b : TIME P B

� t : TIME � t �� dom b �
�∆ : �TIME � t � ∆ � ∆ n ftg 	 dom b

�

The set Flag is closed under the pointwise application of (finite numbers of) boolean
operators, provided we handle the instants of undefinedness appropriately. Thus for
f � g : Flag , if we define
 f , f � g , f � g , f � g , and f � g by applying the operators
pointwise, with the result being undefined whenever an operand is undefined, then each
of these functions is also in Flag .

The water alarm flag must be set whenever the water is above the dangerous level.

WaterAlarm

Water

H2OFlag : Flag

H2O � DangerH2O � H2OFlag on TIME

8

Since any alarm system will take some time to react to the water level approaching its
critical level, we require that there be some bound,

MaxH2Oin : DEPTH �TIME �

on the rate at which the water level rises over all time.

WaterRateLimited

Water

H2Oin � MaxH2Oin onTIME

The water monitoring process is then required to raise the water danger flag whenever the
water level is critical, provided that the rate at which the water level rises is sufficiently
steady. We write this formally using a specification statement.

WaterMonitor b� H2OFlag : �WaterRateLimited �WaterAlarm�

The water alarm flag is a construction of WaterMonitor , which must act to ensure that
the effect WaterAlarm is achieved, provided that the assumption WaterRateLimited

is satisfied.

Methane

Mining operations tend to cause the occasional release of trapped methane gas. High
partial pressures of methane in the mine atmosphere can make the use of mining
equipment hazardous so methane levels are also monitored. Pressures are measured in
Pascals.

PRESSURE b� R�Pascal �

As with the water level, we represent the methane level in the mine as a methane sink
with inflows and outflows of methane.

Methane

CH4 : TIME Q PRESSURE

CH4in�CH4out : TIME Q �PRESSURE�TIME �

� t � t � : TIME � t � t � �

CH4�t
�� � CH4�t� �

R
t
�

t
CH4in �CH4out

Atmospheric levels of methane above

DangerCH4 : PRESSURE

9

are considered dangerous, so the monitor should raise a flag to warn of such levels.

MethaneAlarm

Methane

CH4Flag : Flag

CH4 � DangerCH4 � CH4Flag on TIME

As in the case of the water monitor we require that methane buildups are bounded.

MaxCH4in : PRESSURE�TIME

MethaneRateLimited

Methane

CH4in � MaxCH4in onTIME

The formal specification of the methane monitor is then

MethaneMonitor b� CH4Flag : �MethaneRateLimited �MethaneAlarm��

The final requirement of the mine monitoring system is that an alarm be raised when
any of the mine parameters become safety critical.

RaiseAlarm

Alarm�H2OFlag�CH4Flag : Flag

Alarm � H2OFlag � CH4Flag on TIME

Note that the RaiseAlarm schema may be modified to allow the introduction of other
safety critical flags simply by factoring them into the above disjunction.

The action of the full monitoring system is then to detect safety critical levels of
water or methane and when this occurs to sound an alarm.

The water and methane monitors act in parallel, which we write

Monitors b� WaterMonitor kMethaneMonitor �

The parallel composition of two specifications forms a process which achieves the
effects of both processes, provided the assumptions of both processes are satisfied.
Note that extra monitoring functions may be added to the alarm system by simply
redefining Monitors so as to include them in parallel with the existing water and
methane monitors.

The job of the alarm system is then to monitor the water and methane flags con-
structed by these monitors and to sound the alarm when they are set. Thus the alarm
system operates in the environment created by the monitor systems. We express this
using the piping operator, “ ”.

MineMonitor b� Monitors �Alarm : �true�RaiseAlarm��

10

2.2 Controlling water levels

In order to reduce the number of disruptions to the mine’s operation due to high water
levels it is considered desirable to implement a process for controlling the water level.
The desired efficiency of the water level control process is that it should ensure that
dangerous water levels occur less than once in every one thousand mining shifts. We
represent the collection of all shifts as a time-ordered sequence of disjoint time-periods.

MineWork

Shift : seq�TTIME �

�m�n : domShift �
m � n � �� t : Shiftm ; t � : Shiftn � t � t ��

We formalise the efficiency requirement as: in any thousand consecutive shifts, at most
one will be disrupted by dangerous water levels.

ControlWater

WaterAlarm

MineWork

�m�n : domShift � #�m��n� � 1000 �
#fk : m��n j H2O � DangerH2O in Shiftkg � 1

We are presented with the question of under what conditions would it be feasible to
achieve this effect.

As any equipment used to achieve this effect will take time to react to rising water
levels, we must require that there be a bound on the rate at which the water flows into
the mine. This is the assumption WaterRateLimited introduced above.

Further, we know that the presence of high levels of methane makes the use of
equipment in the mine dangerous. It is reasonable to assume that long or frequent
periods of dangerous methane levels will make the goal of controlling water levels
difficult. Let

TooMuchCH4 : TIME

represent the maximum duration of dangerous methane levels over a single shift and let

TooManyCH4 : �

represent the maximum number of occurrences of periods of dangerous methane levels
over a single shift, which would be compatible with the effective operation of the water
level control process. That is, it is not possible to guarantee effective control of the water

11

level when these bounds are exceeded during a shift. We require that such sustained
high levels of methane occur no more than once in every one thousand shifts.

SafeMethane

MethaneAlarm

MineWork

let HighMethane b� CH �1
4 �XDangerCH4 ����Y�

BadMethane b� �P : TTIME �
kHighMethane � Pk � TooMuchCH4 �
#cov�HighMethane � P� � TooManyCH4

�m�n : domShift � #�m��n� � 1000 �
fk : m��n j BadMethane�Shiftk �g � 1

The notation k k measures the length of a period of time.
Our final requirement is more subtle. The water level control system will most likely

act by removing water from the mine shaft. We must therefore require that there is no
impediment to the removal of water from the mine shaft. This condition corresponds
to the system observable H2Oout being free to assume any value from its type domain.

WaterRemovable

Water

free�H2Oout �TIME Q �DEPTH �TIME ��

The predicate free is a modal logic operator which states that it is possible for its first
argument to attain any value in the set determined by the second argument. Using the
modal logic operator� (read possibly [8]) the above condition may be expressed by

� f : TIME Q �DEPTH �TIME � � ��H2Oout � f ��

The action of the water level control process is then specified by

WaterSystem b�
��� WaterRateLimited �

SafeMethane �
WaterRemovable

�ControlWater

���

3 Refinement

Refinement calculi have been developed for sequential systems by Back [1], Morgan
[14] and Morris [15]. These calculi all make use of a programming notation that allows
program code and (sequential) specification statements to be intermixed in programs

12

during their development. The calculi make use of a well-defined notion of refinement
between programs and, in particular, between an abstract specification and another,
more concrete, specification.

To develop an implementation that satisfies the specification of the mine control
system we make use of a refinement calculus for time-based processes [10, 11]. The
basic philosophy behind the timed calculus is the same as for the sequential refinement
calculi, however, because the basic model of the system is different, the timed refinement
calculus differs.

As we are only concerned with the top-level design, we do not get down to the
level of detailed program code, rather we produce a design consisting of a collection
of processes which, in combination, satisfy the top-level specification. The design
puts together the processes using operators such as piping and parallel combination,
and gives a precise specification of each process in the form of a (timed) specification
statement.

As examples of (timed) refinement laws we give two basic laws for refining one
specification statement by another.

Weaken assumption A specification statement z : �A1�E � is refined by z : �A2�E �,
written

z : �A1�E � v z : �A2�E ��

provided

A1V A2�

Strengthen effect A specification statement z : �A�E1� is refined by z : �A�E2�,
provided

AV �� z � E2 � E1�

The timed refinement calculus provides laws to allow refinement to various combi-
nations of processes including piping, parallelism, etc. We introduce these laws below,
where they are required, and summarise them in Appendix B.

3.1 A water pump

We propose to implement the water level control process with the use of an electric
pump to remove water from the mine shaft. The process will continuously monitor
the water level in the mine shaft, so that it may commence pumping water from the
mine before the water level becomes dangerous. Since methane is an explosive gas, the
pump must not be operated in its presence.

13

The minimum ability of the pump to remove water from the mine shaft is represented
by

PumpRating : DEPTH �TIME

MaxH2Oin � PumpRating�

We model the pump by the times at which the pump is operating.

Pump

Pumping : Flag

When the pump is installed in the mine and pumping, it should remove water at a rate
at least equal to its rating, provided there is any water present.

PumpAction

Water

Pump

Pumping � H2O � 0 � H2Oout � PumpRating on TIME

Clearly the pump can be installed only if there is no impediment to water removal.

InstalledPump b� �WaterRemovable�PumpAction�

Once installed the pump must be controlled in such a way as to ensure the goals of
WaterSystem . In order to ensure that water levels do not rise above DangerH2O we
set a slightly lower water level,

HighH2O : DEPTH

HighH2O � DangerH2O �

which the pump control system will react to by turning on the pump. Once the
water level reaches HighH2O the minimum time that the water can conceivably reach
DangerH2O is

DangerH2O � HighH2O

MaxH2OIn
�

We assume that the reaction time of the control system,

React : TIME

React �
DangerH2O �HighH2O

MaxH2OIn
�

is fast enough to ensure that the pump is turned on before the water level becomes
dangerous.

14

Methane

Remember that we have assumed that high levels of methane make the use of machinery
in the mine hazardous. It may not be safe to have the pump running during periods of
high methane levels, so the controller should ensure that this does not occur. This may
lead to lost pumping time of up toTooMuchCH4, as well as delays in turning the pump
back on after each shutdown. Thus we must make even stronger assumptions about the
reaction time. We require that the time lost due to methane interuptions is not sufficient
to allow the water level to rise to dangerous levels

LostTime : TIME

LostTime � �TooManyCH4 � 1� � React � TooMuchCH4

LostTime �
DangerH2O � HighH2O

MaxH2OIn
EQ 3.1

and that it be short enough that the pump can be turned off before any of the hazards of
high methane levels are manifested.

Controlling the pump

The control mechanism for the pump turns the pump on when the water level gets high,
except when the methane level is too high.

PumpControl

Pump

Water

Methane

let HighWater b� H2O
�1�XHighH2O ����Y�

HighMethane b� CH�1
4 �XDangerCH4 ����Y�

LowMethane b� CH�1
4 �X�� ���DangerCH4Y�

�∆ : cov�HighWater � LowMethane� �
Pumping on Xinf ∆ � React ��� sup∆Y

�∆ : cov�HighMethane� �
�
 Pumping� on Xinf ∆ � React ��� sup∆Y

The full specification of the pump system is then

PumpSystem b�
j� �Pumping : �true�PumpControl �� InstalledPump n Pumping �j�

The operator j� n Pumping �j hides the construction Pumping from interaction with
other processes, ensuring that only PumpSystem has control over it.

15

Theorem 3.1 The pump system forms an adequate implementation of the desired water
control system.

WaterSystem v PumpSystem

Proof: We proceed by applying several small refinement transformations.
Any specification may be refined by adding a new constructed variable that is local

to the specification.

WaterSystem v j�Pumping : WaterSystem n Pumping �j [RL6]

The piping operator may be introduced by splitting a specification statement at an
appropriate intermediate condition. We decompose our specification into a piped
composition by introducing the intermediate condition

WaterRateLimited � SafeMethane �WaterRemovable � PumpControl �

For the sake of brevity we give a name to the assumptions made by the WaterSystem

process, WSass b� WaterRateLimited � SafeMethane �WaterRemovable .

j�Pumping : WaterSystem n Pumping �j

v j� �Pumping : �WSass�WSass � PumpControl ��
�WSass � PumpControl �ControlWater � n Pumping �j

[RL4]

Timed specification statements preserve assumed invariants of a system.

�Pumping : �WSass�WSass � PumpControl ��

v �Pumping : �WSass�PumpControl �� [RL2]

A specification statement may be refined by relaxing the assumptions it makes.

�Pumping : �WSass�PumpControl ��

v �Pumping : �true�PumpControl �� [RL1]

Any specification statement may by refined by strengthening its effect in the context of
its assumptions. Thus in order to deduce that

�WSass � PumpControl �ControlWater �

v �WSass � PumpControl �PumpAction�� [RL3]

we need only show that for any system which satisfies

WaterRateLimited � SafeMethane �WaterRemovable � PumpControl �

16

PumpAction implies ControlWater . This follows from the assumptions we have
made about the rate at which water may flow into the mine and about the duration
and frequency of dangerous levels of methane. We postpone the formal details of this
argument to the proof of Lemma 3.2.

A specification may be refined by relaxing the assumptions it makes.

�WSass � PumpControl �PumpAction� [RL3]

v �WaterRemovable�PumpAction� [RL1]

Finally since all of the specification operators are compositional with respect to
refinement we may deduce that

j�Pumping : WaterSystem n Pumping �j
v j� �Pumping : �true�PumpControl ��

�WaterRemovable�ControlWater � n Pumping �j
� PumpSystem�

Lemma 3.2

WSass � PumpControlV �PumpAction � ControlWater�

Proof: AssumeWaterRateLimited , SafeMethane , PumpControl , andPumpAction .
Choose m�n � domShift such that #�m��n� � 1000 and k � m��n .

Suppose that during Shiftk the methane levels remain within acceptable operating
parameters; that is, the intervals during which methane levels are dangerous are less
than TooMuchCH4 in duration and fewer than TooManyCH4 in number and that ∆
is an interval of time during which the water level is above HighH2O (that is ∆ �
cov�H2O

�1�XHighH2O ����Y��).
From PumpControl we know that the longest time during ∆ for which the pump

may not be operating is LostTime (the maximum number of times the pump might
have to be switched on times the reaction time, plus the maximum time it must be left
off due to methane presence). Thus from Water we know that for any t : TIME in ∆,

H2O�t� � H2O�inf ∆� �
R
t

inf ∆H2Oin � H2Oout �

Since H2O is continuous and total, H2O�inf ∆� � HighH2O . Since

PumpRating � MaxH2Oin�

WaterRateLimited and PumpAction tell us that the water level is falling when the
pump is on. The maximum depth of the water level over ∆ is thus bounded by its initial
depth (HighH2O) and the amount it can rise whilst the pump is not operating; that is

H2O � HighH2O � LostTime �MaxH2Oin on ∆ [WaterRateLimited]

V H2O � DangerH2O on ∆� [By EQ 3.1]

17

From this we may deduce that whenever the methane levels remain within safe toler-
ances over a shift the water level never rises above DangerH2O .

Since, in SafeMethane , we have assumed that methane levels rise above safe
tolerances only once in every one thousand shifts, we may deduce that water levels
become dangerous no more frequently than this and ControlWater is thus satisfied.

4 Conclusions

A primary requirement for the specification of real-time systems is the ability to specify
the timing aspects of such systems. In addition, real-time control systems typically have
both discrete and analogue inputs and outputs. Hence any whole-system specification
must be able to address both discrete and analogue properties of the system.

The approach taken in this paper is to make use of topological continuous functions
of time, as they both capture the timing aspects of the behaviour of a system and
allow discrete and analogue signals to be discussed within a single framework. This
approach, while perhaps novel in a computing science context, has strong precedents
within physics and engineering. An additional useful notational device, also adapted
from the phyical sciences, is the use of (physical) units to aid in the understanding and
type compatibility checking of specifications.

The use of continuous observables, as opposed to the simple adoption of analogue
time models, helps direct the specifier away from detailed considerations of the method
by which a system must evolve through time. Instead, the specifier is encouraged to
consider the desired properties of a system throughout all time or during critical periods
of time, with minimal attention to the activities required to achieve these properties.
That is, to state what must be true of the system, rather than what the system must
do. This may be contrasted with recent work based on timed transition systems and
automata, such as Real-Time Logic [9], (Really) Temporal Logic [7], Timed CSP [16]
and CCS [20], in which preoccupation with the actions which must occur inevitably
leads to an algorithmic and evolutionary description of a system not always appropriate
to the highest levels of the development process.

In a similar vein to the specification vocabulary presented in this paper is the
Calculus of Durations [4] which also aims to describe the observable properties of real-
time systems in terms of an interval based calculus of real-valued functions of time.
The notation of the calculus of durations offers a higher level of abstraction, at the
expense of some expressive power, but would benefit from using continuous functions
as we do.

The sequential refinement calculus has been a significant breakthrough in providing
a coherent framework for the systematic development of programs from specifications
to code. The same overall philosophy has been adopted for the development of systems
of processes that combine together to satisfy a specification. Central to the refine-

18

ment calculus is the concept of a specification statement that describes the allowable
behaviours of a system (or component process), and an important aspect of the speci-
fication statement is a clear separation between the assumptions that the system makes
about its environment and the effect that it guarantees to achieve provided that the
environment satisfies the assumptions.

The objective of the present paper has been to assess these techniques on a small but
realistic case study of a mine control system. By making use of timed history predicates
we have been able to develop a detailed specification of the desired behaviours of the
mine control system. In addition, we have been forced to formalise a number of concepts
that were not clear in the informal specification on which our work is based [2]. Our
specification is also at a higher level of abstraction: it makes fewer assumptions about
the design of an implementation, and concentrates on specifying those properties of a
mine control system that all implementations must satisfy.

The development of a top-level design has been performed and a proof of cor-
rectness of the refinement presented. The refinement technique allows a system to
be decomposed into components that may be implemented in hardware or software,
or a combination of both, and allows for further decomposition of components into
subcomponents, etc. The end product is a system of processes combined together with
piping and parallel operators, and making use of hidden variables.

The application of the timed refinement calculus techniques to the refinement of a
mine control system has been successful at high-lighting the top-level design decisions,
and verifying their validity before further development of the component processes is
undertaken.

Acknowledgements

We would like to thank Andrew Lister for the motivation to apply these techniques
to the mine pump example and his feedback on an early draft of this paper. The
work reported in this paper has been supported by the Software Verification Research
Centre, University of Queensland, and by Australian Research Council grant number
A4913006: Formal methods for the specification and refinement of time-based systems
and processes.

References

[1] R. J. R. Back. A calculus of program derivations. Acta Informatica, 25:593–624,
1988.

[2] A. Burns and A. M. Lister. A framework for building dependable systems. The
Computer Journal, 34(2):173–182, April 1991.

19

[3] A. Burns and A. Wellings. Real-time Systems and their Programming Languages,
chapter 16: A Case Study in Ada, pages 497–528. Addison-Wesley, 1990.

[4] Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations.
Technical Report ProCoS Rep. OU ZCC2, Programming Research Group, Oxford
University, 1991.

[5] I. J. Hayes, editor. Specification Case Studies. Prentice Hall International, 1987.

[6] I. J. Hayes. A generalisation of bags in Z. In J. E. Nicholls, editor, Proceedings of
the Z User Meeting, Workshops in Computing, pages 113–127. Springer-Verlag,
December 1989.

[7] T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for
real-time systems. In Proceedings of the 18th ACM Symposium on the Principles
of Programming Languages, pages 353–363, 1991.

[8] G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen and
Co Ltd, 1968.

[9] F. Jahanian and A. K. Mok. Safety analyis of timing properties in real-time
systems. IEEE Transactions on Software Engineering, 12(9):890–904, 1986.

[10] B. P. Mahony. The Specification and Refinement of Timed Processes. PhD thesis,
University of Queensland, 1992.

[11] B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A central
heater. In J. M. Morris and R. C. Shaw, editors, Proceedings of the 4th Refinement
Workshop, Workshops in Computing, pages 138–149. Springer-Verlag, 1991.

[12] B. P. Mahony and I. J. Hayes. Using continuous real functions to model timed
histories. In Proceedings of the 6th Australian Software Engineering Conference
(ASWEC91), 1991.

[13] C. C. Morgan, K. A. Robinson, and P. Gardiner. On the refinement calculus. Tech-
nical Monograph PRG-70, Oxford University Programming Research Laboratory,
1988.

[14] C.C. Morgan. The specification statement. ACM Trans. Prog. Lang. and Sys.,
10(3), July 1988. Reprinted in [13, pp. 7–30].

[15] J. M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming, 9:287–306, 1987.

[16] G. M. Reed. A Uniform Theory for Real-Time Distributed Computing. PhD thesis,
St. Edmund Hall, Oxford University, Hilary 1988.

20

[17] S. K. Shrivastava, L. V. Mancini, and B. Randell. On the duality of fault tolerant
system structures. In Experiences with Distributed Systems, volume 309 of Lecture
Notes in Computer Science, pages 19–37. Springer-Verlag, 1987.

[18] M. Sloman and J. Kramer. Distributed Systems and Computer Networks. Prentice-
Hall International Series in Computer Science. Prentice-Hall Intenational, 1987.

[19] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International,
1989.

[20] C. Stirling. An introduction to modal and temporal logics for CCS. In A. Yonezawa
and T. Ito, editors, Concurrency: Theory, Language, and Architecture, LNCS 491,
pages 2–20. Springer-Verlag, 1991.

A Glossary

AQ B – The continuous, total functions from A to B .

AP B – The continuous, partial functions from A to B .

X� ��� �Y – The open set of times between � and �, exclusive.

�TIME – The collection of open intervals of time.

TTIME – Periods of time which are comprised of a collection of disjoint, open intervals.
The time topology.

cov�PERIOD� – The collection of disjoint, open intervals which comprise the open set
of time PERIOD .

PRED on PERIOD – The statement that PRED is true for all times in PERIOD .

PRED in PERIOD – The statement that PRED is true for some times in PERIOD .

PRED at t – The statement that PRED is true at the time t .

�PRED – The statement that a system must be able to exhibit the behaviour described
by PRED .

	z : �A�E� – The process which adds the observables	z to its environment and causes the
composite system to satisfy E , provided that its environment satisfies A.

S1 S2 – The process S1 acts to create the environment in which the process S2 acts.

S1 k S2 – The processes S1 and S2 acting in parallel.

j� S n 	w �j – The constructions 	w are local; protected from external influences.

21

B Refinement laws

RL1 Weaken assumption.

	z : �A1�E �
� A1 V A2 �

	z : �A2�E �

RL2 Drop invariants.

	z : �A�E � A�

	z : �A�E �

RL3 Strengthen effect.

	z : �A�E1�
� AV �	z � E2 � E1 �

	z : �A�E2�

RL4 Introduce piping.

	z : �A�E �
� 	z1 � 	z2 � f g�	z1 � 	z2 � 	z �

�	z1 : �A�Mid �� �	z2 : �Mid �E ��

RL5 Introduce parallelism.

	z : �A1 � A2�E1 � E2�
� 	z1 � 	z2 � f g�	z1 � 	z2 � 	z �

�	z1 : �A1�E1�� k �	z2 : �A2�E2��

RL6 Introduce hiding.

	z : �A�E �
� 	w new variables �

j�	z ; 	w : �A�E � n 	w �j

22

