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Deadlines are termination

Ian J. Hayes∗ Mark Utting†

Abstract

We have recently extended the sequential refinement calculus to handle real-time
programs. A novel deadline command allows execution time limits to be expressed in a
high-level language. The calculus allows refinement steps that separate timing constraints
from non-timing requirements. Rules are provided for handling timing constraints, but
the refinement of components implementing non-timing requirements is essentially the
same as in the standard refinement calculus.

In this paper, we present a new refinement rule for loops that does not require a
variant for termination, but uses a deadline command instead. To illustrate the calculus
and the new loop introduction rule, we present an example refinement of a program that
calculates the size of a kiwifruit from the time it takes to pass through a light beam.

1 Introduction

Formal correctness techniques for real-time programs are less well-developed than those for
non-real-time programs, yet the need for them is certainly no less, given that many safety-
critical embedded systems involve real-time requirements.

Our goal is to provide a method for the stepwise refinement of sequential, real-time
programs from real-time specifications. We follow the refinement calculus approach (Back
1980, Morgan 1994) of devising a wide-spectrum language that encompasses both real-time
programs and real-time specifications, and the spectrum in between. To meet this goal, we
have found it desirable to:

• use a specification notation which represents variables as traces (functions over time
(real numbers)), so that timing requirements can be expressed, including properties of
variables whose values change over time.

∗Department of Computer Science and Electrical Engineering, and Software Verification Research Centre,
The University of Queensland, Brisbane, 4072, Australia (ianh@csee.uq.edu.au).

†Department of Computer Science, School of Computing and Mathematical Sciences, The University of
Waikato, Private Bag 3105, Hamilton, New Zealand (marku@cs.waikato.ac.nz).

1



• distinguish between external inputs, that are not under the direct control of the pro-
gram, and external outputs and local variables that are.

• add a deadline command to our high-level programming language to allow timing
requirements to be recorded during development.

• delay the discharging of timing requirements (e.g., deadline commands) until after
compilation, when the detailed properties of the target machine can be taken into
account.

In a previous paper (Hayes & Utting 1997a), we developed a calculus for refining an
individual real-time process to sequential code. That work was based on the foundations
developed by Utting & Fidge (1996), but extended them by introducing a deadline command,
which greatly simplifies the treatment of timing constraints. Section 2 gives an overview of
this calculus, its real-time, wide-spectrum language and the mechanism for dealing with real-
time constraints in the target code. The motivation for our work comes from the real-time
refinement calculus of Mahony (1992), which allows not only the specification of real-time
systems, but the refinement of a specification into a set of truly parallel processes. Our work
complements Mahony’s by allowing individual processes to be refined to sequential code.

In this paper, we use the calculus to develop a program that calculates the size of a
single kiwifruit from the time it takes to pass through a light beam. Section 3 specifies the
requirements, and Sections 4 and 5 show how they can be refined into a real-time program.
The timing analysis of the program is discussed in Section 6.

The example illustrates the main features and difficulties of the calculus. In order to
develop the obvious program for the task, we needed to develop a novel loop introduction
law, that does not require a variant for termination, but uses a fixed time deadline instead.

2 The sequential real-time refinement calculus

An obvious difference between our calculus and the standard refinement calculus is that our
calculus has a special variable, τ , that represents the current time. Each command advances
τ to reflect the passage of time.

We distinguish between three types of variables: external inputs, external outputs and
local variables. Input variables correspond to input device registers. They are not under
the control of the program, but may be read via a special command. Output variables
correspond to output device registers. They are under the control of the program, but differ
from local variables in that changes to output variables are externally visible. We write
real-time specification commands as ?~v :

[
A , E

]
, where

• ~v is a list of variables that may be modified by the command. These variables must be
a subset of the outputs and local variables of the program, (variables that correspond
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to external inputs are read-only). Since τ is modified by almost every command, it is
implicitly in the frame of every command and is not explicitly included in the frame.

• A is a predicate that gives the assumptions the command may make about the variables.
Within A, τ refers to the time that the command starts execution, but A may also
explicitly reference the value of variables at other times.

• E is a predicate that gives the effect that the command is to achieve by modifying the
variables in the frame. Within E , τ0 and τ refer to the time that the command starts
and finishes execution, respectively.

A key change from the standard refinement calculus is our treatment of variables; they
are modelled as functions from time to their value at that time. This allows a real-time
specification command to constrain not only the final value of variables, but also their values
at other times. Given a variable v , its value at time t is written as v(t). However, to
recover the look and feel of the standard refinement calculus, we follow the convention that
an unindexed variable v in a predicate means v(τ), and v0 means v(τ0). The semantics of
the specification command are given in Appendix A.

The basic refinement rules from the standard refinement calculus carry over into our
calculus (Hayes & Utting 1997b), although some have additional side-conditions to restrict
the times at which predicates refer to variables (these side-conditions are satisfied trivially for
untimed predicates that use the v and v0 convention described above). We use an extended
target language that includes several real-time commands, such as:

• gettime(x ) def= ? x :
[
true , x ∈ [τ0 ... τ ]

]
.

This puts a timestamp (an approximation to τ) into the variable x . The notation
[τ0 ... τ ] stands for the closed interval from the start time of the command, τ0, to the
finish time, τ .

• read(e, x ) def= ? x :
[
true , x ∈ e(| [τ0 ... τ ] |)

]
.

This copies a snapshot of an external input e into the local variable x . The notation
e(| [τ0 ... τ ] |) stands for the set of values of the input variable e over the time interval
[τ0 ... τ ].

• delay until D def= ? :
[
true , τ ≥ D

]
.

This is similar to the delay-until command in many programming languages. The delay
command finishes execution at or after the (absolute) time D .

• deadline D def= ? :
[
true , τ0 = τ ∧ τ ≤ D

]
.

The deadline command is novel to our approach and allows timing constraints to be
expressed abstractly in the extended programming language (Hayes & Utting 1997a).
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The deadline command takes no time and must terminate at or before time D . Hence,
it requires the preceding portion of the program to be complete by time D .

• idle def= ? :
[
true , τ0 ≤ τ

]
.

The idle command may take time but does not change any variables. Note that
external inputs may change during the time it takes to execute.

The presence of deadline commands means that a separate program analysis is required to
guarantee that the deadlines will be met by the machine code generated for the program by a
compiler. If the program analysis cannot guarantee that a deadline will be met, the program
is rejected. Note that it is important to analyse timing after compilation, because no analysis
of the higher-level program can take into account low-level aspects such as register allocation
and code optimisation within a compiler, or instruction pipelining and cache memories within
processors, which together can significantly affect the timing characteristics of a program.

3 On measuring the size of a kiwifruit

Imagine that a single kiwifruit is moving along on a conveyor belt and goes through a
light beam sensor that is connected into an embedded microcomputer. A program on the
microcomputer polls the boolean sensor status and uses a real-time clock to determine the
approximate start and end times of when the light beam is broken. When the kiwifruit
breaks the light beam the sensor rises (to true) and after the kiwifruit passes the light beam
is re-established and the sensor falls (to false). From those times, and the known speed of
the conveyor belt, the size of the kiwifruit can be computed.

The following declarations define the environment in which our program will be used. As
well as documenting the type of variables representing physical quantities, we also document
their units (Hayes & Mahony 1995). Variables of type time are in units of nanoseconds.

const speed def= 10 m/s -- The speed of the conveyor belt
const react def= 100 µ s -- Desired reaction time after the kiwifruit passes

The sensor is an external input to the program. It is derived from the light beam detecting
hardware. Its value over time is not under the control of the program, but the program does
make assumptions about the behaviour of the input sensor.

input sensor : B
var size : N nm -- Returned size of the kiwifruit in nanometres

The logical constants rises and falls are introduced solely for specification purposes. They
denote, respectively, the exact time at which the sensor rises and falls. Logical constants
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may not be used in the final program, except in assertions and deadlines.

con rises, falls : time
constminsep def= 1 ms -- Minimum separation between rises and falls

-- Corresponds to length of 10 mm

The program may assume that the rise time precedes the fall time by a period of minsep.

?
{
rises + minsep ≤ falls

}
(1)

Because (1) does not refer to any variables modified by the program, it may be assumed
to hold throughout the program. To avoid cluttering the specification and the refinement
below, we state (1) once here and assume it where needed. Logically it could be conjoined to
the assumption of the specification (2) below and passed through the refinement as necessary.
The sensor detects (is true) when the light beam is interrupted by the passing kiwifruit.

SENSOR(τ) def= (∀ t : [τ ... falls + react ] • sensor(t) = true ⇔ t ∈ [rises ... falls])

The top level specification is:

? size:

[
τ ≤ rises
SENSOR(τ)

,
τ ≤ falls + react
size ∈ speed ∗ (falls − rises)± 1 mm

]
(2)

4 Refinement of the kiwifruit sizer

Appendix A provides a summary of refinement laws used within this paper.
As a first refinement step, it is useful to separate out the initial time assumption, τ ≤

rises, and the final deadline requirement, τ ≤ falls + react , so that we may concentrate on
implementing the remaining functionality.

(2)
v Law 6 (separate assumption); Law 10 (separate deadline)

?
{
τ ≤ rises

}
;

? size:
[
SENSOR(τ) , size ∈ speed ∗ (falls − rises)± 1 mm

]
; (3)

deadline falls + react

The assertion and deadline become part of the final program, and we are left to refine the
specification command (3).

The next main refinement step is obvious – we want to split the program into three parts:
the first two will determine the rise and fall times as accurately as possible and the third
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part computes the size output. We introduce a constant err as an error bound on the time
to detect the change in the sensor. We leave the actual value of err to be determined later,
but at this stage we require that it is less than both minsep and react , so that the sensor is
stable for at least a period of err after it changes.

const err ∈ {t : time | t ≤ minsep ∧ t ≤ react} (4)

Local variables riset and fallt are used to communicate the approximations to the rise
and fall times between the parts. When introducing a local variable one cannot assume that
the allocation and deallocation of the local variable take no time. Hence, an assumption that
held immediately before the allocation of a local variable, may not hold immediately after
the allocation. However, during the allocation of a new variable the other program variables
(not including the external inputs) are stable and time can only increase. A predicate that
remains true under these circumstances is referred to as being idle-stable. It is invariant over
the execution of an idle command. The predicate SENSOR(τ) is idle-stable. It states a
property that holds at every instant of time from τ up to falls + react . Hence, SENSOR(x )
also holds for all values of x later than τ .

The time taken for the allocation and deallocation of variables also affects the effect of
the specification command. In this case the effect only refers to constants and the program
variable size. Because size is stable during the deallocation of the variables, the effect will
still be true after the deallocation.

Note that we follow Morgan’s (1994) convention of using a � symbol to mark the speci-
fication statement that is refined next – the context of that statement becomes the context
of the next refinement.

(3)
v Law 11 (introduce variable)

|[var riset , fallt : time;

? size, riset , fallt :
[
SENSOR(τ) , size ∈ speed ∗ (falls − rises)± 1 mm

]
�

]|
v Law 9 (simple sequential composition) × 2; Law 5 (remove from frame) × 3

? riset :

[
SENSOR(τ) ,

SENSOR(τ)
riset ∈ [rises ... rises + err ]

]
; (5)

? fallt :

[
SENSOR(τ)
riset ∈ [rises ... rises + err ]

,
riset ∈ [rises ... rises + err ]
fallt ∈ [falls ... falls + err ]

]
; (6)

? size:

[
riset ∈ [rises ... rises + err ]
fallt ∈ [falls ... falls + err ]

, size ∈ speed ∗ (falls − rises)± 1 mm

]
(7)
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The refinement of (5) is more interesting. The goal is to determine the time at which
the light beam sensor rises. Our first step is to massage the specification to reflect this
more specific goal. Firstly, the effect SENSOR(τ) is immediate from the assumption because
SENSOR(τ) is an idle-stable predicate that does not refer to the variable in the frame, riset .
Secondly, we weaken the assumption so that we only consider the rising phase of the signal.

(5)
v Law 4 (strengthen effect); Law 3 (weaken assumption)

? riset :

[
∀ t : [τ ... rises + err ] •

sensor(t) = true ⇔ rises ≤ t
, riset ∈ [rises ... rises + err ]

]
(8)

We make use of the following definition which is written to allow detection of either a rising
edge (the new sensor value we are required to detect, srqd , is true), or a falling edge change
(srqd = false).

CHNG(chngs, srqd) def= ∀ t : [τ ... chngs + err ] • sensor(t) = srqd ⇔ chngs ≤ t

To refine the detection of the rise of the sensor, we make use of a procedure, detect chng .
The first step is a refinement equivalence (vw).

(8)

vw ? riset :
[
CHNG(rises, true) , riset ∈ [rises ... rises + err ]

]
v parametrized procedure

detect chng(rises, true, riset)

The procedure detect chng can be used to detect either a rising or falling edge of the sensor
value depending on the parameter srqd , which is the required new value of the sensor.

proc detect chng(con chngs : time; value srqd : B; result chngt : time) def=

? chngt :
[
CHNG(chngs, srqd) , chngt ∈ [chngs ... chngs + err ]

]
(9)

Before giving a refinement of detect chng (see the next section) we complete the refinement
of the program. Detecting the falling edge also makes use of the procedure detect chng .

(6)
v Law 4 (strengthen effect); Law 3 (weaken assumption)

? fallt :
[
CHNG(falls, false) , fallt ∈ [falls ... falls + err ]

]
v parametrized procedure

detect chng(falls, false, fallt)
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Once both the rise time and the fall time have been determined, the size of the kiwifruit can
be calculated.

(7)
v Law 7 (assignment)

size := speed ∗ (fallt − riset)

The units of the right side expression are (m / s) ∗ ns = nm, which matches the units of size.
The proof obligation for the last step is

speed ∗ (fallt − riset) ∈ speed ∗ (falls − rises)± 1 mm
≡ fallt − riset ∈ (falls − rises)± (1 mm /speed)
W from the assumptions on riset and fallt

[falls − (rises + err) ... (falls + err)− rises] ⊆ (falls − rises)± (1 mm /speed)
≡ (falls − rises)± err ⊆ (falls − rises)± (1 mm /speed)
≡ err ≤ (1 mm /speed)
≡ err ≤ 100 µ s

That gives the final constraint on err .

5 Refinement of detection of a sensor change

The following code is the implementation of detect chng (the refinement to this code follows
shortly). Note that this code is similar to what a programmer would write for this task,
except that deadline commands have been added to make the timing requirements of the
program explicit.

proc detect chng(con chngs : time; value srqd : B; result chngt : time) v
|[var sens : B ;

read(sensor , sens) ;
deadline chngs + err ;
?do sens 6= srqd →

read(sensor , sens) ;
deadline chngs + err

od ;
gettime(chngt) ;
deadline chngs + err

]|
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Aside: The above code corresponds to what is usually referred to as busy waiting. In
the current context we are assuming a single sequential process, and hence busy waiting is
acceptable. It would also be acceptable to include a (sampling) delay in the above code,
provided the delay time is sufficiently short to allow the program to meet its deadlines. We
have not done so here.

The final deadline ensures that the captured change time is within its allowable error
bounds. Given the last deadline, the first two deadlines seem redundant, but they are
essential for the correct operation of the program. The final deadline command will not be
reached by the program if the loop does not terminate, and if the deadline is not reached, it
does not have to be met. Consider the case where we want to detect the rise of the sensor.
Without the first deadline the initial code could take so long that the first read command
completely misses the period when the sensor is true. (This is unlikely in practice, but
not excluded by the meanings we have given to the programming constructs.) If the first
read completely misses the sensor when it is raised, then the loop will not be guaranteed
to terminate, because our assumptions only guarantee one period when the sensor is raised.
Hence the final deadline may never be reached. The deadline within the loop has a similar
purpose. It guarantees that the body of the loop will not take so long that the read of the
sensor misses the raised period of the sensor. Again, if the raised period were missed the
loop would not be guaranteed to terminate, and the final deadline would not be reached.
As we shall see shortly, the refinement process needs to introduce the deadlines in order to
guarantee that the specification will be met. In addition, the deadline within the loop is also
used to guarantee its termination.

Before continuing, we invite the reader to informally analyse this code (e.g., unroll the
loop once or twice) to determine the longest path through the code that can be executed
from time chngs to the gettime command. Note how the analysis depends on consequences
of CHNG(chngs, srqd), such as the shape of the sensor waveform. Our real-time calculus
enables us to make these implicit timing assumptions and invariants explicit, so that we can
provide an invariant for the loop and so that the timing analysis phase has a manageable
task. With these goals in mind, it turns out (after several attempts!) that a suitable loop
invariant is:

INV def= CHNG(chngs, srqd) ∧ (sens = srqd ⇒ chngs ≤ τ)

The first step is to introduce a local variable, sens, that is used to capture the sensor’s values.

(9)
v Law 11 (introduce variable)

|[var sens : B;

? chngt , sens:
[
CHNG(chngs, srqd) , chngt ∈ [chngs ... chngs + err ]

]
(10)

]|
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Next we set up a loop that searches for the change of the sensor and then we capture the
time. The introduction of the loop makes use of the following law, that does not have
a conventional variant to show termination. Our semantics of the loop guarantees that
each iteration takes a minimum amount of time, due for example to loop overheads and
guard evaluation. Termination is guaranteed by the fact that time increases by at least that
minimum amount on each iteration, and every iteration of the body of the loop is bounded by
the same constant time limit. The time limit, L, is required to be frame-stable with respect
to the frame, ~x , of the loop. That guarantees that L will remain invariant (stable) during
the execution of the loop. If L does not refer to variables in the frame, or τ , or external
inputs, then it is frame-stable.

Law 1 (iteration with deadline) Given an idle-stable invariant property, INV , a dead-
line expression L, which is frame-stable with respect to the frame ~x , and an idle-stable expres-
sion G, where none of G, L and INV contain references to τ0 or zero-subscripted variables,

?~x :
[
INV ∧ τ ≤ L, ¬ G ∧ INV

]
v ?doG → ?~x :

[
G ∧ INV , INV ∧ τ ≤ L

]
od

The semantics of loops and the proof of this law are contained in Appendix B. Before
introducing the loop, we separate the initialisation, loop, and final capture of the change
time.

(10)
v Law 9 (simple sequential composition) × 2; Law 5 (remove from frame) × 3

? sens:
[
CHNG(chngs, srqd) , INV ∧ τ ≤ chngs + err

]
; (11)

? sens:
[
INV ∧ τ ≤ chngs + err , INV ∧ sens = srqd

]
; (12)

? chngt :
[
INV ∧ sens = srqd , chngt ∈ [chngs ... chngs + err ]

]
(13)

The initialisation establishes the loop invariant. In the second refinement step below, because
of the assumption, if the value sensed is equal to srqd then the completion time of the
command must be after chngs. If the sensed value is not equal to srqd the completion time
may be either before or after chngs, but that does not matter.

(11)
v Law 4 (strengthen effect)

? sens:

[
∀ t : [τ ... chngs + err ] •

sensor(t) = srqd ⇔ chngs ≤ t
,
sens = srqd ⇒ chngs ≤ τ
τ ≤ chngs + err

]
v Law 4 (strengthen effect)

? sens:

[
∀ t : [τ ... chngs + err ] •

sensor(t) = srqd ⇔ chngs ≤ t
,
sens ∈ sensor(| [τ0 ... τ ] |)
τ ≤ chngs + err

]
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v Law 3 (weaken assumption); Law 10 (separate deadline); Definition of read
read(sensor , sens) ; deadline chngs + err

Now we can introduce the loop.

(12)
v Law 1 (iteration with deadline)

?do sens 6= sqrd→

? sens:
[
sens 6= srqd ∧ INV , INV ∧ τ ≤ chngs + err

]
�

od

v Law 3 (weaken assumption)

? sens:
[
CHNG(chngs, srqd) , INV ∧ τ ≤ chngs + err

]
v as for the refinement of (11)

read(sensor , sens) ; deadline chngs + err

On termination the change of the sensor has been detected. It only remains to capture
the current time, before the allowed error bound.

(13)
v Law 3 (weaken assumption)

? chngt :
[
chngs ≤ τ , chngt ∈ [chngs ... chngs + err ]

]
v Law 4 (strengthen effect)

? chngt :
[
chngs ≤ τ , chngt ∈ [τ0 ... τ ] ∧ τ ≤ chngs + err

]
v Law 10 (separate deadline); Law 3 (weaken assumption); Definition of gettime

gettime(chngt) ; deadline chngs + err

The final program, with the procedure detect chng inlined is shown in Figure 1.

6 Timing analysis

The final phase is to determine the time constraints on paths through the code in order
to guarantee that all deadlines will be met. For each deadline command we consider the
paths through the program that terminate at the deadline. For each such path we need
to determine a time constraint on the execution time of the path that guarantees that the
deadline will be met. Grundon, Hayes & Fidge (1998) have formalised the details of timing
path analysis, but here we present a brief overview of the process for the program in Figure 1.
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A :: ?
{
τ ≤ rises

}
;

|[var riset , fallt : time;

|[var sens : B;
read(sensor , sens);

B :: deadline rises + err ;
?do invariantCHNG(rises, true) ∧ (sens = true ⇒ rises ≤ τ)
sens 6= true →

read(sensor , sens);
C :: deadline rises + err
od ;
gettime riset ;

D :: deadline rises + err

]|;
|[var sens : B;

read(sensor , sens);
E :: deadline falls + err ;

?do invariantCHNG(falls, false) ∧ (sens = false ⇒ falls ≤ τ)
sens 6= false →

read(sensor , sens);
F :: deadline falls + err
od ;
gettime fallt ;

G :: deadline falls + err

]|;
size := speed ∗ (fallt − riset)

]|;
H :: deadline falls + react

Figure 1: Final program with the procedure inlined.
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The first path we consider is A–B, which has a start time before1 rises and must complete
before rises + err . That gives a time constraint for the path of err . Both path A–C, which
enters the loop on the first iteration, and path A–D, which does not enter the loop at all,
have the same constraint of err .

The path starting at A that enters the loop for the first iteration is not the only path that
ends at C. The other possibilities come from the repetition of the loop. These paths require
some intricate reasoning to determine suitable time constraints. Our goal is to determine
timing constraints on paths through the code that guarantee that the deadline at point C is
reached before its deadline of rises + err . Because the deadline is within the loop body, we
know on entry to the loop that sens is false, which implies that the previous read must have
commenced before time rises. Hence our constraint is that the path from the previous read,
around the loop through the current read, and finishing at the deadline at C, must take time
less than rises + err − rises = err .

There are paths from D to E, F and G. All start no later than rises + err and must
complete before falls + err . That gives them a time constraint of falls − rises. However, we
are guaranteed by (1) that falls − rises ≥ minsep, and hence we can use minsep as our time
constraint.

The remainder of the paths for calculating the fall time of the sensor are similar to those
for calculating the rise. We do not discuss them in detail here.

The final path that we consider is G–H. It has a start time before falls + err and must
complete before falls + react . This gives a time constraint of react − err . The specification
gives react as 100 µ s, and our refinement requires that err ≤ 100 µ s. The constant err
appears in the constraints of many paths. It can be chosen up to the limit of 100 µ s so that
the paths can meet their timing constraints.

Provided we can show that the machine code generated for each of the above paths
satisfies the corresponding time constraint, then we can guarantee all deadlines will be met.
There has been considerable research in the real-time community on timing analysis of such
machine code sequences (Lim et al. 1995).

7 Conclusions

The main advantage of the sequential real-time refinement calculus presented here is that, to
developers, it appears to be a straightforward extension of the standard refinement calculus.
Although it has a different underlying semantics, most of the standard refinement laws
carry over, and the real-time extended programming language is a superset of the standard
target language. In practice, a development in the real-time calculus is similar to standard
refinement calculus development, but with the addition of steps to separate out timing
constraints and refine them into real-time language constructs.

1To simplify presentation ‘before’ is taken to mean ‘no later than’ throughout this section.
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However, even with this strong connection to the standard calculus, our experience so far
suggests that programs that rely heavily on timing behaviour for their correctness are quite
challenging to develop in our calculus. Finding loop invariants and sequential composition
intermediate predicates seems more difficult than in the standard calculus. We suspect
that this is partly because we have had more experience with the standard calculus, and
partly because real-time programming is intrinsically difficult. Certainly the timing analysis
phase is an additional requirement with its own intricacies. Anyway, it is exciting to have a
calculus that allows the subtle aspects of real-time programs to be formally proved, just as
the standard calculus “dots the i’s and crosses the t’s” of ordinary sequential programming.
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A Laws for language constructs

The following laws are extracted from an earlier paper (Hayes & Utting 1997b) that gives
the semantics of the real-time language constructs, as well as a more comprehensive set of
laws.

Unindexed variables in predicates and expressions In a predicate, unindexed vari-
ables of the form v stand for v(τ), and variables of the form v0 stand for v(τ0). We introduce
the notation R @ (τ0, τ) to stand for the predicate R with every unindexed occurrence of a
variable, v , replaced by v(τ) and every occurrence of v0 replaced by v(τ0). Note that R may
contain explicit indexed references to variables at times other than τ ; these are not affected
by the ‘@’ operator. The operator ‘@’ has a lower precedence than all the normal logical
operators, but a higher precedence than ‘≡’ and ‘V’. For predicates, such as assumptions,
that do not contain any zero-subscripted variables, we use the notation P @τ . If there are no
occurrences of τ0 or zero-subscripted variables in P then P @ (τ0, τ) ≡ P @ τ . The operator
‘@’ distributes over logical operators.

Specifications The assumptions of a specification command determine the range of possi-
ble values of variables over time, as well as the start time of the command. The effect further
constrains the values of variables over time, as well as constraining the finish time of the
command. Program variables (local variables and outputs) not in the frame of a specification
are stable over its execution. Given a variable, v , and a set of times, S ,

stable(v ,S ) def= (∀ t , u : S • v(t) = v(u))

The meaning of a specification command is given with respect to a given environment,
where an environment just records the variables (inputs, outputs and local variables) that
are in scope. We use ρ to stand for an environment, and ρ̂ to stand for the program variables
(outputs and local variables) within ρ. The meaning function, Mρ, gives the meaning of a
real-time construct in environment ρ in terms of a predicate transformer determined by a
standard refinement calculus construct.

Definition 2 (specification) A specification command, ?~x :
[
P , R

]
, is well formed in an

environment, ρ, provided (i) the frame, ~x , is a vector of program variables (outputs and local
variables), (ii) P is a predicate involving the variables in the environment plus τ , and (iii) R
is a predicate involving variables in the environment plus τ0, τ and zero-subscripted versions
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of variables in the environment. The meaning of a well-formed specification command is
given by the following

Mρ

(
?~x :

[
P , R

])
def= τ :

[
P @ τ , R @ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ ~x , [τ0 ... τ ])

]
where ρ̂ \ ~x stands for the program variables, ρ̂, with any elements in the frame ~x removed.

Note that τ , unlike other variables, is not itself a function of time. The frame, ~x , of the real-
time command does not appear in the frame of the equivalent standard command. Instead,
those program variables that are not in the frame are constrained to be stable for its duration,
and the program variables in the frame are only constrained by the effect of the specification,
R. In the assumption and effect of a specification command it is permissible to include both
explicitly indexed references and unindexed references to the same variable. For more details
on the encoding of real-time specifications the reader is referred to Utting & Fidge (1997).

The refinement rules for weakening an assumption and strengthening an effect carry over
to the real-time refinement calculus.

Law 3 (weaken assumption) Provided P @ τ V P ′ @ τ ,

?~x :
[
P , R

]
v ?~x :

[
P ′, R

]
.

When applying this law we can use the fact that from P V P ′ one can deduce that P @ τ V
P ′ @ τ . That gives a special case of the law for dealing with properties that are not time
dependent.

Law 4 (strengthen effect) Given an environment, ρ, provided

(P @ τ0) ∧ (R′ @ (τ0, τ)) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ ~x , [τ0 ... τ ]) V R @ (τ0, τ)

then

?~x :
[
P , R

]
v ?~x :

[
P , R′

]
where ρ̂ \~x stands for the program variables (local variables and outputs) of the environment
ρ, minus the variables in the frame, ~x .

In the case where the properties are not time dependent, a special case of the proviso is,
P0 ∧ R′ V R, where P0 stands for the predicate P with all occurrences of τ replaced by
τ0, and all unindexed occurrences of every variable, v , that is in the frame or is an external
input, replaced by v0.

Law 5 (remove from frame) Given disjoint vectors of program variables, ~x and ~v,

?~x , ~v :
[
P , R

]
v ?~v :

[
P , R

]
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Assertions Assertions may state assumptions about the variables at the point at which
they occur. Hence in an assertion, ?

{
A

}
, an unindexed reference to a variable, v , is inter-

preted as v(τ). Assertions can also state assumptions about the value of variables at other
times by using explicit indices. Assertions take no time, and hence there is no need for τ0 or
zero-subscripted variables, within assertions.

Law 6 (separate assumption)

?~x :
[
U ∧ P , R

]
vw ?

{
U

}
; ?~x :

[
P , R

]
Assignment As the evaluation of the expressions in an assignment takes time, we require
that the expressions in assignments are idle-stable (time-independent).

Law 7 (assignment) Given an environment, ρ, a frame, ~x , such that ~x is contained in the
program variables, ρ̂, and a vector, ~D, of idle-stable expressions, provided

(P @ τ0) ∧ (~x @ τ) = (~D @ τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ ~x , [τ0 ... τ ]) V R @ (τ0, τ)

then

?~x :
[
P , R

]
v ~x := ~D .

If the properties do not involve time then the following special case of the proviso can be
used: P0 ∧ ~x = ~D0 V R.

Logical constants Note that logical constants are not implicit functions of time.

Law 8 (logical constant) Provided (∃ u : T • P @ τ) and u does not occur in C or the
variables in the environment,

C vw |[ con u : T • ?
{
P

}
; C ]|

Refinement to a sequential composition The refinement of a specification command
to a sequential composition of specification commands follows the same approach as in the
standard refinement calculus. One must devise an intermediate predicate Q that holds
on termination of the first component, and hence also for the assumption of the second
component. Because we have assumed that there is no time delay between the execution of
the two commands, τ in the effect of the first component refers to the same time as τ in the
assumptions of the second component.
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Law 9 (simple sequential composition) Provided Q and R do not involve τ0 or zero-
subscripted variables,

?~x :
[
P , R

]
v ?~x :

[
P , Q

]
; ?~x :

[
Q , R

]
A timing deadline in the effect of a specification command may be separated out into a

deadline command.

Law 10 (separate deadline) Provided D is a time-valued expression, which may include
references to logical constants but no references to τ0 or zero-subscripted variables,

?~x :
[
P , R ∧ τ ≤ D

]
v ?~x :

[
P , R

]
; deadlineD

Local variables The definition of a local variable block in the real-time language involves
expanding the environment for the command within the block. The allocation and deal-
location of local variables may take time. Hence we need stability requirements on the
assumption and effect in the variable introduction law.

Law 11 (introduce variable) Given an environment, ρ, such that v does not occur in the
variables of ρ (and hence does not occur free within P or R or in ~x), provided T is nonempty,
P is idle-stable and R is both pre- and post-idle-stable, then

?~x :
[
P , R

]
vw |[ var v : T • ?v , ~x :

[
P , R

]
]|

A predicate R is pre-idle-stable (post-idle-stable) if when R is used as an effect of a specifica-
tion command, the specification command can be prefixed (postfixed) by an idle command
and the result is a refinement of the original specification command (Hayes & Utting 1997b).

B Iteration

We distinguish between the real-time iteration command (?do) and the standard iteration
command (do) within this section and use the latter in the definition of the former as a way
of reusing its predicate transformer.

The guard of an iteration is required to be idle-stable so that it is stable during its
evaluation. To account for the delay to evaluate the guard an idle command with a minimum
execution time (d1) is used,

idle≥d1
def= ? :

[
true , τ − τ0 ≥ d1

]
and to account for exiting the loop, an idle command with a maximum execution time (d2)
is used,

idle≤d2
def= ? :

[
true , τ − τ0 ≤ d2

]
18



Of course, both d1 and d2 are dependent on the implementation, but our definition does not
rely on the particular values of these, just that such constants exist. To allow for the case
when the guard is initially false, an idle is added after the loop to allow the loop to take
some time in this case.

Definition 12 (iteration) Given an environment, ρ, and an idle-stable expression, G,
which does not contain references to τ0 or zero-subscripted variables,

Mρ (?doG → C od) def=
ud1, d2 : Time | d1 > 0 ∧ d2 > 0 •

doG @ τ →Mρ (idle≥d1; C ; idle≤d2) od ◦Mρ (idle)

where ‘u’ is generalised nondeterministic choice and ‘◦’ is standard sequential composition.

The following loop introduction rule does not make use of a conventional variant to
show termination. Instead it makes use of a fixed deadline that does not change during the
execution of the loop. When combined with the inevitable progress of time due to execution
of the loop, this has the same effect as a variant.

Law 13 (iteration timing with deadline) Given an idle-stable invariant property, INV ,
a deadline expression, L, which is frame-stable with respect to the frame ~x , idle-stable expres-
sions G and D, and an environment, ρ, where none of G, D, L and INV contain references
to τ0 or zero-subscripted variables,

?~x :
[
INV ∧ D = τ ≤ L, ¬ G ∧ INV ′

]
v ?doG → ?~x :

[
G ∧ INV ′, INV ′ ∧ τ ≤ L

]
od

where INV ′ def= INV ∧ D ≤ τ ∧ stable(ρ̂ \ ~x , [D ... τ ]).

Proof Our first step is to introduce the idle command at the end of Definition 12 (itera-
tion). The introduction relies on ¬ G ∧ INV ′ being post-idle-stable.

?~x :
[
INV ∧ D = τ ≤ L, ¬ G ∧ INV ′

]
vw Law 9 (simple sequential composition); Definition of idle

?~x :
[
INV ∧ D = τ ≤ L, ¬ G ∧ INV ′

]
; idle

We now proceed to refine the first component using the standard refinement calculus laws.
To emphasise this we use the s-subscripted ‘vs ’ to stand for refinement in the standard
calculus.

Mρ

(
?~x :

[
INV ∧ D = τ ≤ L, ¬ G ∧ INV ′

])
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vws Definition 2 (specification)

τ :
[
INV ∧ D = τ ≤ L @ τ , ¬ G ∧ INV ′ @ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ ~x , [τ0 ... τ ])

]
vs definition of INV ′; strengthen postcondition; weaken precondition; choice

[] d1, d2 : Time | d1 > 0 ∧ d2 > 0 •

τ :
[
INV ′ ∧ τ ≤ L + d2 @ τ , ¬ G ∧ INV ′ ∧ τ ≤ L + d2 @ τ

]
�

vs Standard iteration with variant
⌊

L+d2−τ
d1

⌋
doG @ τ →

τ :

[
G ∧ INV ′ ∧ τ ≤ L + d2 @ τ ,

INV ′ ∧ τ ≤ L + d2 @ τ ∧⌊
L+d2−τ

d1

⌋
<

⌊
L+d2−τ0

d1

⌋ ]
od

vs definition of INV ′; weaken precondition; strengthen with τ0 ≤ τ

doG @ τ →

τ :

[
G ∧ INV ′ @ τ ,

INV ′ ∧ τ0 + d1 ≤ τ ≤ L + d2 @ (τ0, τ)
τ0 ≤ τ ∧ stable(ρ̂ \ ~x , [τ0 ... τ ])

]
od

vws Definition 2 (specification)

doG @ τ →Mρ

(
?~x :

[
G ∧ INV ′, INV ′ ∧ τ0 + d1 ≤ τ ≤ L + d2

])
od

We now concentrate on the body of the loop. The following step relies on the fact that
G ∧ INV ′ is idle-stable, and that INV ′ is both pre- and post-idle-stable.

?~x :
[
G ∧ INV ′, INV ′ ∧ τ0 + d1 ≤ τ ≤ L + d2

]
v Law 9 (simple sequential composition) × 2; Definitions of idles

idle≥d1; ?~x :
[
G ∧ INV ′, INV ′ ∧ τ ≤ L

]
; idle≤d2

Combining the above together we get,

[] d1, d2 : Time | d1 > 0 ∧ d2 > 0 •
doG @ τ →Mρ

(
idle≥d1; ?~x :

[
G ∧ INV ′, INV ′ ∧ τ ≤ L

]
; idle≤d2

)
od ◦Mρ (idle)

vws Definition 12 (iteration)
Mρ

(
?doG → ?~x :

[
G ∧ INV ′, INV ′ ∧ τ ≤ L

]
od

)
2

A simpler rule for iteration does not involve all timing aspects.
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Law 1 (iteration with deadline) Given an idle-stable invariant property, INV , a dead-
line expression L, which is frame-stable with respect to the frame ~x , and an idle-stable expres-
sion G, where none of G, L and INV contain references to τ0 or zero-subscripted variables,

?~x :
[
INV ∧ τ ≤ L, ¬ G ∧ INV

]
v ?doG → ?~x :

[
G ∧ INV , INV ∧ τ ≤ L

]
od

Proof We let INV ′ def= INV ∧ D ≤ τ ∧ stable(ρ̂ \ ~x , [D ... τ ]), where D is fresh, and make
use of Law 13 (iteration timing with deadline).

?~x :
[
INV ∧ τ ≤ L, ¬ G ∧ INV

]
v Law 8 (logical constant); Law 6 (separate assumption); Law 4 (strengthen effect)
|[ conD : Time • ?~x :

[
INV ∧ D = τ ≤ L, ¬ G ∧ INV ′

]
]|

vw Law 13 (iteration timing with deadline)
|[ conD : Time • ?doG → ?~x :

[
G ∧ INV ′, INV ′ ∧ τ ≤ L

]
od ]|

vw Equivalent effect by Law 4 (strengthen effect); Law 3 (weaken assumption)
|[ conD : Time • ?doG → ?~x :

[
G ∧ INV , INV ∧ τ ≤ L

]
od ]|

vw Law 8 (logical constant)
?doG → ?~x :

[
G ∧ INV , INV ∧ τ ≤ L

]
od

2

21


