Specification Directed Module Testing

lan J. Hayes

Abstract— If a program is developed from a specification in a of errors in the initial version of the program. However,
mathematically rigorous manner, work done in the developmat we are still prone to make mistakes through oversights and
can be utilized in the testing of the program. We can apply the 1 nqqgraphical errors and without mechanical verificatioa w

better understanding afforded by these methods to provide a il still ire testi iall | q
more thorough check on the correct operation of the program W!I! SUll réquire testing, especially on larger, more COgm

under test. This should lead to earlier detection of faultsiiaking ~ Programs Wherg errors could more eas.ily slip in un_notich. B
it easier to determine their causes), more useful debugging making use of rigorous methods in testing we can increase our
information, and a greater confidence in the correctness of confidence in the correctness of the final product in a reditiv

the final product. Overall, a more systematic approach showl gy5ightforward manner that requires more moderate ressur
expedite the task of the program tester, and improve softwas . e
than complete mechanical verification.

reliability.
The testing techniques described in this paper apply to testg The testing techniques described in this paper apply to
_of abstre_lct data types (mod_ules, p_ackages). The techniquatilize the testing of abstract data types (modules, classes, geska
information generated during refinement of a data type, such . .
as the data type invariant and the relationship between the clusters). An abstract data type consists of some datahwhic
specification and implementation states; this informationis used we will refer to as its state, and a set of operations on that
to specify parts of the code to be written for testing. The state. Itis a good unit for testing purposes because it septs
?rfe:_ symbol table as an ordered list and as a height-balanced (\ yho same state, parts of the testing code are common to all
the operations; in many cases it would be difficult to test an
uIelsnd?ogﬁzénts;tﬁ?t;?ékigt:styp?ris’a?%t?) ;3;?50:]“3132?;}&{232[operation without having the other operations of the dape ty
" AT e available. Testing of abstract data types can make use of the
function, software refiability, specification language—2 data type invariant for checking the consistency of theestat
between operations, the precondition for distinguishirrgre
INTRODUCTION in the module under test from those in the test program, and

Rigorous program development, such as that advocated relationship between the specification and implemiemtat
Jones’s excellent book [1], can do much to increase our corffat€s along with the individual input-output relations fo
dence in software we produce. The development of a progriiting the correctness of the operations. These conslidod
starts from a high-level specification, which is then refinglations become specifications for parts of the code waritte
through one or more stages to produce the final prograffil ©sting.

Rigorous methods rely heavily on mathematics to specify theThe techniques presented here for testing abstract data typ
software to be developed, and to formalize the relationshiiffer from those of Gannort al. [4] in that Gannon uses
between the specification and an implementation. The waik algebraic specification of a data type using axioms which
done in formalizing these relationships can be of great fitenénterrelate the operations on the data types, while in thjsep

to program testers in developing a thorough testing styate@e use model-based specifications of the individual opamati
that will trap errors as early as possible and thus be an aidgRing the effect of each operation acting upon an abstract
debugging. state. The algebraic approach is more appropriate for more

Given a rigorously developed program it is possible tprimitive data types (e.g., stacks, queues) while the model
prove that it meets its specification [2], [3]. If such a proobased approach is more manageable for specifying larger
is performed mechanically (and we trust the verifier), thamodules (e.g., subsystems, application-oriented paskage
testing should not be required; given the current state ef tthe number of operations on data types increases, the algebr
art, however, complete mechanical verification is a ranity 8 axioms interrelating all the operations become more difficu
expensive in resources. If the proof is done by hand theethes devise and the definition of an individual operation beesm
is still room for error and hence room for testing. Rigorouspread amongst a larger number of axioms. With the model-
methods can help greatly to increase our understandingeof thased approach there is a single specification of each aperat
program that we are developing and hence reduce the numéetl the specifications can be built making use of previously

defined data types. For more complex data types, the model-

The author was with the Programming Research Group, Oxfoidelsity, based specification tends to be simpler

Oxford OX1 3QD, England. He is now with the University of Quskand.
This paper was originally published iHEEE Transactions on Software I ; ; ;

Engineering SE-12(1):124-133, January 1986. This version (dated l@ne We will illustrate the test!ng teChmque by fO"OWIng th@m

2006) uses more up to date Z notation, corrects a few erratshas had a te d.eve|0pme.‘m a_nd testing _Of a symbol table mOdullfi'- The

second appendix added to illustrate handling of nondetestid operations. notation used in this paper will be based on the specification

Significant changes are commented on via footnotes. language Z [5], [6]; programs will be given in a Pascal-like

notation.

2 IAN J. HAYES

SYMBOL TABLE SPECIFICATION function. The list and tree models of a symbol table tend to

This example specifies a symbol table with an operation @S an implementor working from the specification towards
update an entry. We will describe the table by a partial fiomct @ Particular implementation. In fact, both lists and treesld

from symbols 8YM to values YAL). be used to implement such a symbol table. However, any
reasoning we wish to perform involving symbol tables is far
ST easier using the partial function model than either thedist
Fsti SYM-+ VAL tree model.

Initially the symbol table is empty.
The arrow “+" indicates a function fronSYMto VAL that
is not necessarily defined for all elements ®¥YM (hence st={}

“partial”). The subset ofSYM for which it is defined is its The update operation can change the symbol table. We repre-
domain of definition sent the effect of such an operation by the relationship &etw
the symbol table before the operation and the symbol table
dom(st). :
after the operation. We use
If a symbol, s, is in the domain of definition okt (s €

dom(st)), then st(s) is the unique value associated with |7AST

ST

(st(s) € VAL). The notation{s — v} describes a function

which is only defined for that particular ST
dom({s+— v}) = {s} to represent the state befo®T) and the state afteS(T). The
and mapss onto v: ab(_)ve definition ofAST is equivalent to the following one in
which ST, and ST have been expanded.
{s—Vv}(s) =W
AST.
More generally, we can use the notation |7er - SYM=s VAL
(X1 = Y1, X0 = Yo, - 3 Xn = Y} st: SYM—+ VAl
where all thexc's are distinct, to define a function whose \ye yse the convention that the zero-subscripted symbol
domain is table 6t)) represents the state before an operation and the
(X1, Xa, -, Xn} undecoratedsf) the state after. (This convention is slightly

different from the convention used in [1] and [6], both of
and whose value for eacks is the correspondingi. For which use undecorated variables for the state befsijeand
example, if we have the following mapping primed variables for the state aftest; the convention used
in this paper allows some simplification of the assertioresdus
in programs.)
which maps John” onto v; and "Mary” onto v,, then the ~ The operation to update an entry in the table is described

st= {“John” — vy, “Mary” — vs}

domain ofst is the set by the following schema.
dom(st) = {“John”,“Mary”} __Update
and AST
s? : SYM
st(*John”) =wv; v? : VAL
S{*Mary”) = v, st=st @& {s? — Vv?}

The notation
0 A schema consists of two parts: the declarations (above the
center line) in which variables to be used in the schema are
is used to denote the empty function, whose domain déclared, and a predicate (below the center line) contginin
definition is the empty set. predicates giving properties of and relating those vagishin
We are describing a symbol table by modeling it as a partitle schemadJpdatethe second line declares a variable with
function. This use of a function is quite different from thename s?” which is the symbol to be updated. The third line
normal use of functions in computing where an algorithmieclares a variable with name/? to be the value to be
is given to compute the value of the function for a giveassociated witls? in the symbol table. By convention hames
argument. Here we use it to describe a data structure. Tharéhe declarations ending irt™ are inputs and names ending
may be many possible models that we can use to describe ithé!” are outputs; the " and “!" are otherwise just part of
same object. Other models of a symbol table could be a listthie name.
pairs of symbol and value, or a binary tree containing a symbo The predicate part of the schema states that it updates the
and value in each node. These other models are not as abssggtbol table $t)) to give a new symbol tables{) in which the
because many different lists (or trees) can represent the sasymbols? is associated with the valug. Any previous value

SPECIFICATION DIRECTED MODULE TESTING 3

associated witls? (if there was one) is lost. The operatap™ wheresstis a sequence of items, that is, a function from its
(function overriding) combines two functions of the samgety indices (one upto the length of the sequence) to elements of
to give a new function. The new functidn® g is defined at type Item and
X is eitherf or g are defined, and has the valg&) if g is
defined atx; otherwise it has the valuigXx). ordereds: N —+ Item) =

(Vi,j : dom(s) e i < j = s(i).sym<ss(j).sym

dom(f @ g) dom(f) U dom(g)
xecdomg) = (f@®g)x) =gx) where we are assuming there is some total oreleg.) (on
symbols. The state is modeled by a sequence of itessts,
x ¢ dom(g) A x € dom(f) = (f & g)(x) = f(x) The domain of the sequence, d(sl, is the set of integers
For example, that are valid indexes into the sequence. The invarianestat
thatsstis in strictly ascending order on symbols. Initially the
{"Mary” — vi,"John” — va} & sequence is empty.
{*John” — v3,“Ceor ge” — vy }
= {“Mary” — vi,“John” — v3,“George” — v } sst=[]
For the operatiotupdate above, the value adt(x) is v? if Before describing thé&Jpdateoperation on this state let us

x = s7; otherwise it isst(x), providedx is in the domain of |ook at the relation between the ordered sequence model and
st. In Updatewe are only using®” to override one value in the partial function model.

our symbol table function; however, the operatar’‘is more
general: its arguments may both be any functions of the same __ ST-SST.
type. ST

For a symbol table module we would normally define SST
further operations to look up and delete entries in the table
For the purposes of illustrating testing, however, we willyo
consider the update operation.

If we were not allowed to know the internal structure ohere the range of the sequence(&a, is the set containing
the implementation of the symbol table, this specificatiodll the items in the sequenc&T-SST shows how, given a
would give us all the information we needed to test th&eduence representation, we can retrieve the partiali@umct
implementation. At one level this provides a reasonable tégodel of a symbol table by, for each item in the sequence,
strategy but, as will be demonstrated, if we are allowg®apping its symbol to its value.
knowledge of the implementation we can construct a moreThe update operation on the sequence model is given by
rigorous test of that implementation.

st= {it : ran(ss} e it.sym~ it.val}

—_UpdateS

| ASST
MPLEMENTATION AS AN ORDERED SEQUENCE < . SYM
We will first consider implementing a symbol table as an v? - VAL

ordered sequence and later as a height-balanced binary tree
The testing techniques do not have as much to offer for the | ran(ssy = ranssh)uU {mkitens?,v?)}
simpler, ordered-sequence implementation, but it wileeo

illustrate the ideas involved before moving on to the monghere

complicated balanced-tree implementation.

Each item in the ordered sequence will consist of a pair of ASST.
symbol and corresponding value. SST
SST
Iltem
sym: SYM
y . The invariant on the states ensures that the final skt
val : VAL . .
ordered; the predicate part dfpdateSensures that the final

sequence contains the correct values.
The following is a possible implementation written in a
mkitem: SYMx VAL — Item Pascal-like notation. It uses the simple scheme of appgndin

the new pair to the sequence and then rippling it down the

which given a symbol and a value constructs the item coBaguence into the correct place to maintain the ordéring.
taining that pair.

We also define a constructor function

The state is given by 1The invariant has been strengthened from that in the ofigiaper which
included the following two conjuncts instead of the conjsnénvolving
— SST. ordered
sst: seqltem

ordered (1..i — 1) <issh A ordered(i..#sst <1ssf.
orderedsst

4 IAN J. HAYES

Updatds? : SYMV? : VAL) : immediately after the operation that caused it. To aid in
{sst: ssh A orderec{sst)} debugging, diagnostic information such as the point at whic
sst:= sst™ [mklten{s?, v?)]; the sequence is out of order and the corresponding items,
i .= #sst should be displayed if the invariant check fails.

Inv : ran(ssh = ran(ssp) U {mKklten{s?,v?)} A It is possible that the invariant check fails to detect an
1 <i < #sstA ordered{i} g ssb A invalid state because there is an error in the invariantichec
ordered (i..#sst <1 ssh that “cancels out” the error in the operation. In the mayorit
while i # 1 candss{i — 1).sym>g ss{i).symdo of cases, however, we hope that the extra redundancy of the
begin invariant check will not be of the cancelling out form. Peyha
swagssti — 1),ssti)); using different people to code the testing and the module may
i=i-1 help avoid this problem and make full use of the redundancy
end in detecting errors.
{InvA (i =1V ss(i —1).sym<gss{i).sym } If we now run a series of tests on the “ordered sequence”
implementation we should discover that it is incorrect:hié t
where same symbol is inserted into the table more than once, then

« s tis concatenation of sequences, the ordered sequence implementation will leave the first pai

o [mkitenis?,v?)] is a sequence containing a single iteMjy the sequence when the second pair is inserted. This will
that with symbols? and valuev?, cause our invariant check to fail because there will be will

« #s gives the length of a sequense be two consecutive items with the same symbol whereas the

o (i.j) < sstis the sequencsstwith its domain restricted jnyariant states that the sequence is in strictly ascenlidgr
(<) to values in the subrangeto j inclusive, (no duplicates). The invariant check will fail as soon as a

o {i} < sstis the function from natural numbers to ittmsymbol is inserted a second time. If we followed the advice
corresponding to the sequensstwith i removed from given above and displayed the items which caused the imtaria

its domain, and _ check to fail, it should be obvious that the problem is due to
- pcandq s the conditional “and” operator: it only evalu-the duplicate entry.
ates its second argument if its first argument is true. |f we did not perform the invariant check while testing, the

error in the ordered sequence implementation would not be
discovered immediately after the second insertion of tmeesa
To test this implementation we will first write a procedurgymbol. The problem would probably be detected when we
to check if the invariant holds. This will be used to check thgerform an operation that looks up the value associated with
invariant initially and then after every operation perf@uron the duplicated symbol. This could happen at a point in the
the symbol table during testing. The invariant on the order@rogram far removed from the cause of the problem, and may
sequence is not occur until a considerably time after the duplicate entr
- S . : has been inserted; locating the cause of the problem could
(V1,]: dom(ssg e i <] = ssli).sym<s ssij).sym then be much more difficul?. Furthermore, the vrz)alue returned
The following code should suffice to check this holds. on look up could be either the (incorrect) first added or the
Koe 1: (correct) second added depending on the look up algorithm
o d the other values stored in the symbol table.
{Inv: ordered(1..k) < ss A 1 < k < #sst; an

while k < #sstcandssik).sym<s ssi{k + 1).symdo

CHECKING THE INVARIANT

k:i=k+1 CHECKING THE PRECONDITION
{Inv A (k> #sstV ss(k).sym>s sstk + 1).sym } The invariant check in the above example failed because
if k < #tsstthen the implementation was incorrect. In general, the invarian
{sstk).sym>s sstk + 1).sym} check can fail either because of an incorrect implementatio
‘report unordered sequence” or because the testing program incorrectly used the opesati

The above procedure is written solely for testing purposé¥. the module. In the latter case, a failure can be causeeif th
In this case the testing code is as complex as the updat@condmon of an operation does not hold When_ t_he operatio
operation itself. For more sophisticated implementatitres IS invoked. In our example/pdateshas a precondition of true
invariant check is generally (although not always) simpied SO the testing program can never use the operation inctyrrect
shorter than an operation. If the invariant check on a daf this stage let us not try to correct the implementation
structure is very simple and efficient then it is a good ide?f UPdateS but rather change the original specification to
to leave the check on the invariant in the code when it is pliclude the following precondition stating that the symiowl
into operation in order to aid earlier detection of faultatth P& updated is not already in the symbol table.

do occur in operational use. The generality of the specifioat 2
: . s? ¢ dom(sty)
language used here precludes automatic generation of tlee co
to check invariants. Having now changed our specification (a tactic widely used

The strategy of checking the invariant after every openation practice but not really recommended as the most appttepria
on the symbol table will catch a violation of the invariansolution in general) it is the test program that is now ineotr

SPECIFICATION DIRECTED MODULE TESTING 5

if it calls UpdateSwith a symbol that is already in the table. We now have two implementationslpdate and Update$
In order to distinguish between a failure of the implemeatat of the operation to update a symbol table. The states that
and a failure of the test program, we can insist (at least fire two implementations work on are quite different—in one
testing purposes) that the operations should check that thease a mapping and in the other an ordered sequence—so
preconditions hold and, if not, report an error. For our sginbthe two are not directly comparable. In order to perform a
table example, checking the precondition that the symbbekto cross-check between the “mapping” implementation and the
inserted is not already in the table can be achieved by additogdered sequence” implementation, we need to implement
the following code at the end of the current implementatiora retrieval function that extracts a mapping from an ordered
ran(ss — ran(sst) U {mKiten{s?,v?)} A sequence. We“ can t_heT compare th_e extractgd_ mapping to
1 < i< #sstA ordered {i} < ssf A that from the “mapping” implementation both initially and
oraere_o((i 4ssh < ssh A after every operation, each operation being performed om bo
S i . implementations before the retrieval and comparison test.
(i=1vss{i —1).sym<gss{i).sym . ; o .
e . P The relation between the “mapping” and “ordered se-
if i > 1 candss{(i — 1).sym= ss{i).symthen » states is defined by th trieval relat®nSST
“report symbol already in table” quence” states IS detined by ine retrieval rela
given previously. The following code will retrieve the outp
Note that the above check only discovers that the precamditimappingst from the input sequencsst’.
does not hold after it has modified the data structure. This is '
reasonable if all we do on a precondition failure is to print a ST'SS1(§S€ : seqitem st : ST) :

message and abort; we should not attempt to carry on testing I:=0;
any further. st = {}; _

If the precondition checks are inexpensive, then it is pnade {Inv: 0 SIS #SS? A _ . }
to leave them in the code permanently. If they are too (St = {it : ran((1..i) < ss?) e it.sym— it.val}

expensive to leave in, then we should at least have theyatailit while i 7 #sst do

reintroduce them during the testing of any program that make begin
use of the module so that errors in its use of the module are b=1+1; _)
detected as early as possible. A good rule is to design module ond st := st @ {sst(i).sym— sst(i).val}

interfaces in such a way that the precondition can always
be checked efficiently. This is an essential requirement for
public interfaces such as operating system calls or widetflu Te retrieved mapping can then be compared directly with tha
packages; it can help sort out debates about which compong&t in the mapping implementation:

is at fault.

{st = {it : ran(sst) e it.sym— it.val} }

if st # st then
CHECKING THE INPUT-OUTPUT RELATION “i nput-output relation check failed”

Checking invariants and preconditions is not a thorough tesny error detected by the comparison may indicate an error
of an implementation; the implementation could be quite dig ejther

astrously wrong and still maintain the invariant. To thagbly
check an algorithm we also need to check that it conforms to
the input-output relation of the specificatién.

To perform such checking by testing we need to compare
results of two implementations of the same high-level dpeci
cation. To illustrate the technique on our symbol table exam
let us assume that we have available a (very high-lev
programming language with maps and operations on m

as primitives. (In practice, such programming languages . . .
P (in p Prog 9 guag é/gmch of the above is the cause and to find the actual fault.

not generally available; when we consider the more involv Wh bine inbut-outout relati hecks with i)
example of testing balanced trees, we will make use of a sim- en we combingé input-output refation checks with nvarl-

pler implementation, namely the ordered list implementati ant and precondition checks we get a thorough test mechanism

described above, to provide a cross-check.) The operm)ionf(?r ope_rat|on_s on the Ordefed seguence symbol_table imple
ntation. It is almost certain that the redundancy incaisal

update a symbol table can be coded in our very high-le\).gle . - .
programming language as into the above checks is sufficient to catch any fault matefis

during testing. Furthermore, the fault will have been itedao
Updatgs? : SYMv? : VAL) : a particular operation and if appropriate diagnostics Heaen
St:=st® {s? — v7} added to the checking code, the cause should be easily found.
However, we are only dealing with a testing strategy and like
all testing it does not exclude the possibility of latentoest
errors that did not occur on the test cases used but could occu
2Appendix 11 has been added to explore directly checking thegondition ©N Other cases. Such latent errors show the inherent wesknes
for nondeterministic operations. of program testing when compared to program verification.

« the “ordered sequence” implementation,

« the “mapping” implementation,

« the ordered sequence to mapping retrieval function, or
« the comparison itself.

The last three should normally be less likely because they
ould be somewhat simpler. However, they cannot be ruled
t as possible causes of errors, and if an error is detected
rther investigation will be required in order to determin

where the state for this implementation is identical to ihat
the original specification.

6 IAN J. HAYES

To reduce the possibility of latent errors left after tegtine That is, aTreeis either aNodeor it is the special valuail,
should use our knowledge of the implementation to ensuwhere
that it is thoroughly exercised; all parts of the code shdadd

tested. The selection of test cases is covered in othentesds —_Node
of program testing [7] and will not be pursued further here. sym: SYM
val : VAL
bal: —1..1
HEIGHT-BALANCED BINARY TREES left,

In the “ordered sequence” implementation the procedures right : Tree
to test the invariant and retrieve the symbol table are both
as complicated as the operation to update an item. We will

(Vs: symgleft) e s <gsym A
(V's: symsright) e sym<ss) A

now consider a more involved example in which the invariant bal = heightleft) — heighright)
testing and retrieval function are somewhat simpler than th
operations.

Height-balanced binary trees were invented by Adel'soMheresyms: Tree— P SYMsuch that fom : Node
Velskii and Landis [8] to provide a binary search tree with ,
worst-case insert and delete times @flog N), whereN is symsnil) = {}
the number of nodes in the tree. A binary tree is height symsn) = symgn.left) U {n.sym} Usymgn.right)
balanced if at every node in the tree the heigbfsts left and
right subtrees differ by at most one. The beauty of a heigfndheight: Tree— N such that fom : Node
balanced tree is that its worst-case height is at most 4%perc . .
greater than that of an equivalent perfectly-balancedteee heightnil) =0
insertion and deletion of nodes can be performed by exaginin heightn) = maxheigh{n.left), height{n.right)) + 1
a path from the root to a node, unlike perfectly-balanceektre
Search, insert, and delete operations can all be performedihe trees are both ordered and balanced. A tree is ordered
O(log N) time in the worst case, which should be compardfiat each node in the tree all the symbols in its left subtree
with a worst-case time oO(N) for these operations on anare less than the symbol at the node, which is less than all the
ordinary (unbalanced) tree. symbols in its right subtree. A tree is balanced if at evergeno
The major disadvantage of balanced tPeissthat the algo- the difference in heights between the left and right subtree
rithms to manipulate them are considerably more complitatts equal to thebal field of the node (which can only take on
than those for an unbalanced tree. Fortunately, for thequep Values in the range -1..1).
of this paper we do not need to delve into the details of theseThe state of a balanced tree is given by the following.
operations in order to illustrate the approach to testiregnh
The interested reader is referred to one of the many books BT
on algorithms that discuss operations on balanced trees in Ft : Tree
detail. One such book is WirthAlgorithms + Data Structures
= Programs[9]. To give a crude idea of the complexity OfThe relation between a balanced tree and the high-level
the operations on balanced trees, the Pascal versions gi¥gBcification of a symbol table is given by
by Wirth consist of 63 lines for insertion (pp. 220-221) and
92 lines for deletion (pp. 223-225). These figures should ST-BT
be compared with those for unbalanced trees: 19 lines for ST
insertion (p. 205) and 18 lines for deletion (p. 211). Notyonl BT
are balanced tree operations considerably longer tham thei
unbalanced tree counterparts, they are, in the opinion @f th
author, a good deal more subtle and more liable to erroneous

st = {node: nodest) e nodesym— nodeval}

implementation. wherenodes: Tree— PP Nodesuch that fom : Node
As promised earlier we do not need to look in detail at the
implementation of the operations on balanced trees. What we nodegnil) = {}

do need to look at closely, however, is the state invariant fo pogegn) = nodegn.left) U {n} U nodesn.right)
a balanced tree. A tree is given by

Tree= Node| nil CHECKING THE INVARIANT

3The height of a binary tree is the maximum number of nodes oata p AS before, we can write a procedure to check the state
Ste}lrting at its root and descending down the tree. invariant: the tree is both balanced and ordered. A proeetdur
A perfectly-balanced tree is a binary tree in which at eveoglen the ;
number of nodes in its left and right subtrees differ by at) check that a tree is balanped follows. It performs a poseiord
5For the remainder of this paper we will abbreviate “heighianced binary traversal of a tree, checking that each subtree is balanuéd a

tree” to “balanced tree”. returning the height of the tree so that the higher level kimec

SPECIFICATION DIRECTED MODULE TESTING 7

that the tree is balanced can take place. the testing to generate a badly balanced tree. With knowledg
of the internal operation of the algorithm in the invariaheck

2. [.
Balancedt? : Treg h! - integer) - it is far less likely that an incorrect implementation wougjd

if t7 = nil then

hle 0 undetected.
0 o
else{tt).e;émnll} CHECKING THE PRECONDITION
var hl, hr : integer: As with the “ordered sequence” implementation, a pre-
Balancedt?.left, hl); condition check can be incorporated into the implementatio
Balancedt?.right, hr); using balanced trees. This will detect any incorrect use of
hl = heightt?.left) A the operations by the testing program. For balanced trees a
{hr = heigh{t?.right) } simple constant-time check (which should be left in the code
if hl — hr + t?.bal then permanently) can be incorporated into the update operation
“report unbal anced tree” As this is quite simple to do, but to explain requires dethile
ht := maxhl, hr) + 1 knowledge of the update operation on balanced trees, we will
end not elaborate the precondition check for balanced trees. her
We have assumed here that the implementation of our CHECKING THE INPUT-OUTPUT RELATION

programming language will trap any assignment of a value

outside the range -1..1 to thl field of a node; if this were to check that the input-output relation is satisfied. Fos M-

not the case then a check that thal field of each node is : . .
in this range should be added to the above procedure. .I%rgple we will not assume that we have available a very high-

procedure to check that a tree is ordered is straightforwa{f?(yeI programming Ianggage with Mappings as primitives. In
and omitted here. order to cross-check the input-output relation we need argkc

For balanced trees, the invariant checking is far less cem impler) implementation of a symbol table. Fortunately, w

cated than the operations; it is more akin to the compleXity gave just that in our “ordered sequence” implementation. To

the operations on the simpler unbalanced trees, requirihg opitr:orT tr:]e ::(;o?s(-jcheck \r/1ve r]lreer?] a breltrlr(]avaclj fur:gtu:nd tT?t
straightforward tree traversal algorithms. The great eaf extracts an ordered sequence from a balanced (ordered) tree

the invariant check is that if an operation otherwise work-ghe relation between ordered sequences and ordered trees is

correctly but manages to corrupt the data type invariat‘izfl,ven by
the fault will be detected immediately after the operation SSTBT
rather than at some indeterminate time in the future when SST
an operation tries to access the corrupted part of the data | BT
structure. Not only is the detection in this latter case well
after the fault, it may be on an operation other than the one
that caused the corruption; other than detecting that ttsere
an error, one has been given little help in diagnosing thé.fau _
Given this invariant check procedure, our testing can ndwxtracting an ordered sequence from an ordered tree can be

check that the invariant holds initially and then after eacichieved by the following tree traversal algorithm.
operation during testing. The invariant checking above ré-TreetoSequen¢t : Tree sst : seqitem) :

As with the “ordered sequence” implementation, we need

{node: nodegt) ¢ nodesym— nodeval}
= {it : ran(ssY e it.sym~— it.val}

quiresO(N) time versus th&®(log N) time for the operations if t2 = nil then
themselves. Hence it is not sensible to leave the invariant sst =[]
check in the program after testing. After all, the point of else{t? # nil}
using balanced trees was to take advantage of their worst- begin

caseO(log N) performance; if we were to leave the invariant
check in the code the performance would alwaysQé)

and hence worse than the unbalanced tree which, while being
O(N) worst case, is only¥D(log n) average case.

The invariant check given above is a far more stringent
test that the state of a module is consistent than any that
can be carried out purely from knowledge of the high-level The sequence retrieved ByeetoSequencis compared to
specification, even if one is given a retrieval function teragt the sequence maintained by the “ordered sequence” implemen
the abstract state. It is possible that the implementatiaidc tation after each operation is performed (on both implemen-
be incorrect in a way that does not affect the high-levéhtions). The code for the comparison is straightforward an
correctness. For example, the implementation may coyrectlas been omitted here.
maintain an ordered tree but it may be incorrectly balanced.A note of warning is required here. In the example above
In this case the operations would appear to work correctty kihere is a unique representation (as an ordered sequence) fo
in some cases would not be as efficient. Such a fault could omlyery distinct abstract symbol table. This is not necelgsari
be detected externally by timing operations and would mequithe case. For example, if the representation used unordered

var Isst rsst: seqltem

TreetoSequen¢® .left, Isst);

TreetoSequen¢® .right, rsst);

sst :=Isst™ [mklten{t?.symt?.val)] ~ rsst
end

8 IAN J. HAYES

sequences there could be a number of possible represastatie probably better to go back to the original reasoning about
of a single abstract symbol table. In such cases the code tioe program and find the fault there.
the comparison needs to determine if the two representationThe testing procedures should not be discarded once a
correspond to the same abstract object (abstract equogdlermodule has been tested; they will be useful to anyone respon-
rather than if the two representations are identical. sible for making changes to the module (where introduction
For the height-balanced binary tree example, the procedued errors is more likely due to lack of understanding). The

required to use the testing techniques outlined in this pagpevariant check procedure is of more general use if data are
require only a fraction of the time necessary for a programmigept on permanent storage devices. It can be used to check the
to develop the somewhat more sophisticated balanced tmmasistency of the data after a hardware or software failase
operations. The extra time is well spent in terms of incregsi occurred. It cannot guarantee the correctness of the daté, b
one’s confidence in the correct operation of the algorithmsan find inconsistencies which imply the data are incorredt a
but furthermore the techniques are likely to actually sawet it can ensure that the data are in a state suitable for running
if there are errors in the operations: the testing will iselathe system.
the errors quickly and provide useful diagnostics to aid in
debugging. APPENDIXI

NOTATION

DISCUSSION A. Definitions and Declarations

When implementing abstract data types in a programmi!‘r&t X’Axk be identifi(-ar.s.and', Tic sets.) .
modules, Ada packages, or Clu clusters) the invariant check 0 RHS . . -
and retrieval procedures will both have to be part of the: T — Declaration of identifiex of type T.
module as they need access to the internal data structde; T1; X2 : To; cees X Tn — List of declarations.
which should not be accessible externally. This will prdigabXt; X2, --- X0 : T =X :T; Xo = T ooy X o T
imply that the person responsible for the module shouldewrit
these when writing the module (although as mentioned earli®. Logical Symbols
there are good reasons for having a separate person Wigg p, Q be predicates and declarations.
them). In practice this probably represents a reasonaide li P "
. . - P — Negation: “notP”.
of demarcation between the module writer and tester as thffbs - L "
functi id thing that the test ds f ¢ VvV Q — Disjunction: ‘P or Q".
et iy o e s 1o 81 @ — Congron: ?and
: o P = Q — Implication: “P implies Q" or “if P thenQ".
The author has used the techniques described above to Q P plies Q Q

. _ B 101 bal 4 muli ¥ T o P — Existential quantification: “there exists arnof
an implementation of B-trees [10]: balanced multi-way $ree type T such that®”.

suitable for secondary storage databases. B-trees are MAE T o P — Universal quantification: “for alk of type T
complicated data structures than height-balanced trees, a 'P holds” ' ’

the algorithms to manipulate them have a number of specig| Ty %ot To: . Xo: To @ P — “There existx; of type
. 5 . 5 ‘e . n

cases that can eaS|Iy lead to errors in |mplem_entat|qn.en tl Ti, X, of type To, ..., andx, of type T, such thatP

testing of the B-tree implementation, the techniques dlesdr holds.”

Shove e able L S0t o STors (one omission 470 Y8, Ty Ty . Tr e P —“For il of T,
to the nature of the fault; in this respect the invariant &hec Xz of type Ty, ..., andx, of type Tn, P holds.
which for the B-tree is involved but not difficult to implemtgn
was particularly useful in detecting faults as soon as péssi C. Sets
after their prime cause. The use of these techniques dgrtaiket SandT be subsets 0K; t, t, terms;P a predicate; an®
increased the author’'s confidence in the correctness of @clarations.
final implementation—especially that the algorithms alfyua t € S — Set membership:t‘is an element of'.
implemented B-trees rather than some other (strange)tyarie¢ S = - (t € S).
of multi-way tree. SCT = (Vx:Sesc T) — Set inclusion.

Another technique that can be used in testing programs3s- T = SC T A S# T — Strict set inclusion.
to check assertions, such as loop invariants, at executin t {} — The empty set.
This could be useful if a fault is detected in an operationrof &t;,to,...,tn} — The set containing, tz, ..., andt,.
abstract data type but the cause is not obvious. Unfortlypatgx : T | P} — The set containing exactly thoseof type T
expanding such assertions is non-trivial; in some cases the for which P holds.
code to check a loop invariant can be more complicated thém, ts, ... ,t,) — Orderedn-tuple ofty, to, ..., t.
the original loop. The tactic of testing at the abstract dafg x Ty x --- x T, — Cartesian product: the set of atk
type level seems to provide the most benefits for the amount tuples such that thkth component is of typdy.
of effort involved; coding up assertions can be left to aid ifix; : Ty; X:2:Ta; ...; X : Tn | P} — The set ofn-tuples
debugging when a non-obvious error is detected, although it (xq,xo, ..., X)) with eachx, of type Ty such thati holds.

SPECIFICATION DIRECTED MODULE TESTING

{X1 :T1; X:2:Ta; ...; Xn: Tn | Pet} — The set of values [s;,...,s] " [t1,.. . tm] = [S1,---,S,t1,...,tm] — Con-
of the termt such that given all thg, of type Ty, P holds. catenation.
{Det} ={D]|trueet}. ran[s;, Sz, ...,S)) = {s1,%,...,S} — Range of a se-

PS — PowersetP Sis the set of all subsets &

quence: the set of items in the sequence([ran= { }.

F S — Finite subsets of.

SUT ={x:X|xe€ SV xe T} — Set union.
SNT ={x: X|x€ SAxe T} — Set intersection.
#S — Size (number of elements) of a finite set.

G. Schema Notation
Schema definition:

__SCH

. . a:A

D. Relations and Functions b B

A relation is modeled by a set of ordered pairs. Hence :
operators defined for sets can be used on relations. A functio predicate

is a relation with the property that for each element in its

domain there is a unique element in its range related to ft.Schema groups together some declarations of variables and
As functions are relations, operators defined for relatmise @ Predicate relating those variables. A schema can be used
apply to functions. LeA andB be sets;S a set of the same @s a type, in which case for a variatdeof type SCHits a

type asA; R, R; andR, be relations betweeA andB; f be a andb fields can be referred to bya andsb. The following

function; andx, x, v, Yk be terms.

A <~ B =P(A x B) — The set of relations from to B.

A+B={f:A—B]| (Va:A bb :Be(ab)efAa
(a,b’) e f = b = b} — The set of partial functions
from A to B.

A—B = {f: A+ B | domf) = A} — The set of total
functions fromA to B.

XYy = (XY).

{Xl — Y1,X2 — Yo, ...
X1 10 Y1, %o 1O Vo, ..., andx, to y,. It is equivalent to
{(Xlayl)7 (X27y2)a R (men)}-

f(x) — The functionf applied tox.

domR) ={a:A|(3b:Be (a,b) € R)} — The domain of
definition of a relation (or function).

ranNR) = {b:B| (Ja: Ae (a,b) € R} — The range of a
relation (or function).

SaR={a:A b:B]| (ab) € RAaec S} — Domain

I 1

restriction.

SgR={a:A b:B]| (ab) € RAa¢g S — Domain
subtraction.

R ® Ry = (domR;) 9R;) UR, — Relational (or functional)
overriding.

E. Numbers

N — The set of natural numbers (nonnegative integers).

7. — The set of integers (positive, zero and negative).

m.n = {k:Z | m< kA k< n} — The set of integers
betweenm andn inclusive.

F. Sequences

Let X be a set;S be a sequence; and lowercase variables

terms.

segX = {S: N+ X | (In: Nedom(S) =1..n)} — The set
of finite sequences whose elements are drawn fXom

#S — The length of sequencgé

[] ={ } — The empty sequence.

S(i) — Theith element in the sequen&

[X1,...,X] — The sequencgl — Xi,...,N+— X}.

conventions are used for variable names in those schemas
which represent operations:

Subscript “0” State before the operation.
Undecorated State after the operation.
Ending in a “?” Inputs to the operation.
Ending in a “I” Outputs from the operation.

A schema$S may be included within a schem@&, in
which case the declarations @f are merged with the other
declarations ofs (variables declared in bot&and T must be

»¥n — Yn} — The relation that maps the same type) and the predicatesScdnd T are conjoined.

APPENDIX I
CHECKING NONDETERMINSITIC OPERATIONS

This appendix did not appear in the original paper but
numerous people have suggested that it should have.

Consider the following nondeterministic operation that re
moves any symbol and value pair from a nonempty symbol
table.

— RemoveAny
AST
sl: SYM
vl : VAL

sty # {} A
(shvl) e sip A
st=-sf \ {(s,v))}

Because the entry to be removed is chosen nondeterministi-
cally, the scheme outlined for deterministic operationads
adequate. That scheme relied on running both the abstrect an
concrete implementations and comparing the results, bt wi
a nondeterministic operation it is perfectly valid for theot
raplementations to remove different entries.

An approach that copes with nondeterminism is to imple-
ment code to check the postcondition of the abstract operati
and apply it to the states retrieved before and after the
operation. To do this we

« retrieve and save the state of the system before the

operation,

« call the implementation of the operation,

10 IAN J. HAYES

« retrieve the updated state of the system after the opeemch implementation state, and hence for the above example
tion, and used ordered sequences rather than unordered sequences.

« check that the postcondition of the operation is satisfied
by the inputs to the operation, the outputs actually pro- ACKNOWLEDGEMENT

duced, and the retrieved before and after states. | would like to acknowledge the support of IBM (U.K.)
As an example, consider checking the balanced-tree implemoratories during the time in which this work was done.
mentation against the ordered sequence level abstra€in. | would also like to thank the reviewers for some useful
the sequence abstraction the postcondition ofReenoveAny suggested improvements to the paper and K. A. Robinson for
operation is helping sow the seeds of the idea presented here and for his
help in preparing the revised version of this paper. The work

mkitents!, vI) € ran(ssp) A of C. B. Jones on data refinement forms the formal basis and

ran(ssh = ran(ssp) \ {mkitengs!, v!)}

We assume that the proceduRemovelterfs,it,t) returns
the sequencd consisting of the sequence with item it
removed. The following code suffices to check BemoveAny [1]
operation.
(2]
error := false
TreetoSequen¢essb);
/ * Call the implementation« /
RemoveAnig!, v!);
/ * Check the invariant holds: /
Balancedt, h);
TreetoSequence ssb;
/ % Check the postcondition holds for the
retrieved sequences /
if mkitengs!, v!) ¢ ran(ssb) then
error := true;
Removelterfsst, mkitens!, v!), sst);
if sst£ sstl then
error := true
- error <
mkltengs!, vl) € ran(ssb) A
ran(ssb) = ran(ss \ {mklitentsl,v!)}

The above checks not only that the entry removed was in
the sequence retrieved before the calRemoveAnybut that

the only change to the sequence retrieved after the call to
RemoveAnys the removal of that entry. Note that we have
assumed the existence of the procedRmmoveltenoperat-

ing on sequences, which unlilRemoveAnys deterministic.
Removeltenhas an additional parameter which is the item to
remove, which in this case is the item returnedR®moveAny

Of course, as before, errors in the implementation of the
above code, the procedur@gseetoSequencer Removeltem
may invalidate the testing process.

The above only covers the case when the relationship
between the implementation state and the abstract state is
a (retrieve) function, i.e., there is a unique abstractestat
for any implementation state. If the relationship is not a
function there may be multiple abstract states correspandi
to a single implementation state. For example, if we use
unordered sequences in the above example, then there are
many possible unordered sequences for a given tree, and the
above code is invalid iffreetoSequenceeturns an arbitrary
sequence with the same elements as the tree. For practical
testing purposes it is simpler to strengthen the invariarthe
abstract state to ensure that there is a unique abstraetfatat

(31

(4

(5]
(6]

[7]
(8]

El
[10]

main inspiration for the testing techniques described .here

REFERENCES

C. B. JonesSoftware Development: A Rigorous ApproactPrentice-
Hall International Series in Computer Science, 1980.

A. L. Ambler, D. I. Good, J. C. Browne, W. F. Burger, R. M. f&n,
C. G. Hoch, and R. E. Wells, “Gypsy: A language for specifaatand
implementation of verifiable programsXCM SIGPLAN Notices (Proc.
Conf. Language Design for Reliable Softwarg)l. 12, no. 3, pp. 1-10,
Mar. 1977.

G. J. Popek, J. J. Horning, B. W. Lampson, J. G. Mitchefid &. L.
London, “Notes on the design of EuclidXCM SIGPLAN Notices (Proc.
Conf. Language Design for Reliable Softwan)l. 12, no. 3, pp. 11-18,
Mar. 1977.

J. Gannon, P. McMullin, and R. Hamlet, “Data abstractioyplementa-
tion specification and testing®CM Trans. Program. Lang. Systol. 3,
no. 3, pp. 211-223, July 1981.

J. R. Abrial, “The specification language Z: Basic ligr&Programming
Research Group, Oxford University,” Internal report, 1982

C. C. Morgan and B. A. Sufrin, “Specification of the Unixfig system,”
IEEE Trans. on Software Engineeringol. SE-10, no. 2, pp. 128-142,
March 1984.

B. Beizer, Software Testing Techniquesvan Nostrand Reinhold, 1983.
G. M. Adel'son-Velskii and Y. M. Landis, “An algorithm fo the
organization of information (English translation)3ov. Math. Dok|.
vol. 3, pp. 1259-1262, 1962.

N. Wirth, Algorithms + Data Structures = Programs Prentice-Hall,
1976.

R. Bayer and E. M. McCreight, “Organization and mairtece of large
ordered indexes,Acta Informatica vol. 1, no. 3, pp. 173-189, 1972.

