
Acta Informatica manuscript No.
(will be inserted by the editor)

A Sequential Real-Time Refinement Calculus

Ian J. Hayes1, Mark Utting 2

1 School of Computer Science and Electrical Engineering,
The University of Queensland, Brisbane, 4072, Australia
e-mail: ianh@csee.uq.edu.au

2 Department of Computer Science, School of Computing and Mathematical Sciences,
The University of Waikato, Private Bag 3105, Hamilton, New Zealand
e-mail:marku@cs.waikato.ac.nz

The date of receipt and acceptance will be inserted by the editor

Abstract. We present a comprehensive refinement calculus for the devel-
opment of sequential, real-time programs from real-time specifications. A
specification may include not only execution time limits, but also require-
ments on the behaviour of outputs over the duration of the execution of the
program.

The approach allows refinement steps that separate timing constraints
and functional requirements. New rules are provided for handling timing
constraints, but the refinement of components implementing functional re-
quirements is essentially the same as in the standard refinement calculus.

The product of the refinement process is a program in the target pro-
gramming language extended with timing deadline directives. The extended
language is a machine-independent, real-time programming language. To
provide valid machine code for a particular model of machine, the machine
code produced by a compiler must be analysed to guarantee that it meets
the specified timing deadlines.

Key words. Refinement calculus – machine-independent – real-time spec-
ification – real-time refinement – real-time programming – deadline com-
mand – timing constraint analysis – time-invariant properties.

1 Introduction

Our goal is to provide a method for the stepwise refinement of sequential,
real-time programs from real-time specifications. We follow the refinement
calculus approach [1,2,18,19] of devising a wide-spectrum language that

2 Ian J. Hayes, Mark Utting

encompasses both real-time programs and real-time specifications, and the
spectrum in between. Of course time is the all important additional dimen-
sion in our language. The motivation for our work comes from the real-time
refinement calculus of Mahony [12], which allows not only the specifica-
tion of real-time systems, but the refinement of a specification into a set
of truly parallel processes. In this paper we address the task of refining an
individual process to sequential code, using the foundations developed by
Utting and Fidge [22].

The remainder of this section overviews the real-time, wide-spectrum
language and introduces the mechanism for dealing with real-time con-
straints in the target code. Sect. 2 gives the details of the wide-spectrum
language and a comprehensive set of refinement laws. Sect. 3 summarises
the extended real-time programming language. Sect. 4 addresses the issue
of feasibility in the real-time calculus. Sect. 5 gives an example specifica-
tion, timing analysis and refinement for a message receiver example.

1.1 Wide-spectrum language overview

A key change from the standard refinement calculus is our treatment of
variables; they are modelled as functions from time to their value at that
time. This allows a real-time specification command to constrain not only
the final value of variables, but also their values over time. We also intro-
duce a number of time-related commands, such as a delay command and
a deadline command. The deadline command is novel to our approach and
allows timing constraints to be expressed abstractly in an extended pro-
gramming language. A separate program analysis is required to guarantee
that the deadlines are met by the machine code generated for the program
by a compiler.

Inputs, outputs and local variables.In a real-time system there are both
external inputs, whose value may vary independently of the direct control of
the program, and outputs, whose value over time is to be controlled by the
program. Of course, by controlling an output, the program may indirectly
control a related input. In addition to inputs and outputs, there are also
variables local to the program.

In order to capture the time-varying nature of variables, they are mod-
elled as functions from time to their value at that time [12,14,15]. For ex-
ample, a variable representing the level of water in a mine, and a boolean
variable to control a mine pump, are modelled as

level : Time" Depth
pump: Time" boolean (1)

A Sequential Real-Time Refinement Calculus 3

where the typesTimeandDepthare modelled by the nonnegative real num-
bers (real+). To distinguish betweenTimeandDepthwe make use of di-
mensions of measurement.Timehas dimensionT (for time), andDepthhas
dimensionL (for length).

Time=̂ real+ � T
Depth=̂ real+ � L

The operator ‘�’ takes a magnitude and a dimension and forms a dimen-
sioned type [7].

Although our underlying model treats variables as functions of time, it
is convenient to abbreviate the declaration of a variable by just giving the
type of the range of the variable; the type of the domain is alwaysTime.
Additionally, we distinguish between inputs, outputs and local variables
via the keywordsinput, output andvar, respectively. In all cases the
variables are implicitly functions of time. For example, instead of (1) we
write the following.

input level : Depth
output pump: boolean

For many purposes outputs and local variables are treated similarly because
their values are under the direct control of the program. We refer to outputs
and local variables collectively asprogram variables. Because external in-
puts vary independently of the direct control of a program, it cannot be
assumed that they will remain stable just because the program does not
modify them. Hence we treat external inputs quite differently to program
variables. For example, the guard of a loop cannot access an external input.
That ensures that the evaluation of the guard is independent of the order of
access to variables and how long it takes to evaluate the guard. Such restric-
tions greatly simplify reasoning about programs. Access to external inputs
is restricted to a special read command.

Constants do not vary over time. Hence their definition is standard. For
example, limits on the water level (in metres) in the mine and the minimum
rate of change in the level (in metres of depth per second) may be defined
as follows.

const limit =̂ 1 m ; minlevel=̂ 0.1 m ; minpumpratê= 0.01 m s−1

Assumptions.In the standard refinement calculus, assumptions allow state-
ments about the state of the program at the point at which they occur. In the
real-time refinement calculus assumptions are generalised to allow proper-
ties about variables over time, as well as at the point at which they appear
within the program. For example, the following assumption states that at

4 Ian J. Hayes, Mark Utting

any time, if the pump has been turned on for one second, then the water
level in the mine is decreasing (its rate of change is negative) at a rate of at
leastminpumprate.

?

{
∀ t : Time•
pump�\t − 1 s ...t]� = {true} ⇒ (s level)(t) < −minpumprate

}
(2)

where\t − 1 s ...t] is the closed interval of real numbers fromt minus one
second tot, inclusive;pump�S� is the set of all values ofpump(x) for x ∈ S;
ands level is the derivative oflevel with respect to time. In this paper we
prefix constructs in the real-time language by a ‘?’ to differentiate them
from the corresponding constructs of the standard refinement calculus.

Assumptions allow one to state properties about the behaviour of vari-
ables in the environment. That restricts the range of behaviours that a pro-
gram has to cope with.

Specifications.A real-time specification command,?x:
[
P, R

]
, consists

of a set of variables,x, called theframe, that may be modified by the com-
mand; a predicate,P, giving theassumptionsthe command may make about
the environment; and a predicate,R, giving theeffect the command is to
achieve. A command can modify only program variables, and not external
inputs. Hence the framex must be completely contained within the pro-
gram variables. The special variableτ , of typeTime, is introduced to refer
to thecurrent time. Within the assumptions,τ refers to the start time of the
command, and within the effect,τ0 andτ refer to the start and finish times,
respectively; the assumptions may not refer toτ0. For example, in the con-
text of the assumption (2) the following is a specification of one activity of
a mine pump controller.

?pump:
[
level(τ) > limit,

level(τ) ≤ limit ∧
(∀ t : \τ0 ... τ] • level(t) ≥ minlevel)

]
(3)

In this case, no time bounds are specified for the execution time, but exam-
ples later in the paper show how this can easily be done.

The predicates used as assumptions and effects may refer to both ex-
ternal and local variables of the program. Such variables are modelled as
functions of time. To reference the value of variablev at timet one simply
indexesv by t, i.e.,v(t). Because many references to variables, especially
program variables, within the assumptions refer to values of the variables at
the start time of the command, we introduce a convention that an unindexed
occurrence of a variable,v, in a context where an indexed occurrence is ex-
pected, stands forv(τ), i.e., the value ofv at the start time of the command.
For example, the assumption in (3) may be abbreviated tolevel> limit.

A similar convention is used within the effect where an unindexed oc-
currence of a variablev also stands forv(τ), where in this caseτ is the

A Sequential Real-Time Refinement Calculus 5

finish time of the command. For example, the first conjunct in the effect of
(3) can be abbreviated tolevel≤ limit. Within the effect there may also be
references to the initial values of variables. Hence we introduce the con-
vention thatv0 stands forv(τ0), i.e., the value ofv at the start time of the
command. This convention is consistent with that used by Morgan [18].

As well as constraining the value of variables at termination time, the
effect may constrain the value of variables over time. For example, the sec-
ond conjunct in the effect of (3) requires that the water level be maintained
above a minimum level for the entire duration of the command. The as-
sumptions may also include predicates over the values of variables over
time, typically stating assumptions about the properties of external inputs.

The effect of a specification command defines the possible range of be-
haviours required. In achieving that effect only variables in the frame may
be modified, and it may be assumed that the environment satisfies the as-
sumptions of the specification command.

1.2 Real-time constraints

The program development process begins with a specification and refines
it step-by-step until a program written in the target programming language
is reached. Real-time specifications can include timing constraints. Hence
it is essential that the refinement process handles timing constraints.

A fundamental problem with developing real-time programs is that the
actual timing performance of a program is determined by both the com-
piler for the language and the particular model of machine on which the
generated code executes. No analysis of just the higher-level program can
take into account low-level aspects such as register allocation and code op-
timisation within a compiler, or instruction pipelining and cache memories
within processors, which together can affect the timing characteristics of a
program by an order of magnitude.

By definition, specification commands achieve their stated effect, in-
cluding any real-time constraints. However, the executable subset of the
wide-spectrum language does not include general specification commands.
The objective of our real-time refinement process is to derive program
code that satisfies a given specification, including any real-time constraints.
There is an obvious gap between a specification command, which by def-
inition meets its real-time requirements, and program code, which may or
may not meet the real-time requirements depending on the compiler and
target machine.

To tackle this incompatibility we introduce an intermediate program-
ming language that extends the target programming language to allow real-
time constraints to be expressed within program code. The program devel-

6 Ian J. Hayes, Mark Utting

opment process is then split into two phases: refining a real-time specifica-
tion to code in the extended programming language; and performing a tim-
ing analysis on the code generated by a compiler to ensure that it meets all
the real-time constraints. The extended programming language enjoys the
advantage of being both machine and compiler independent, which is one
of the most significant advantages claimed for high-level programming lan-
guages in general. This allows the formal refinement process to be treated
in a machine/compiler independent fashion.

However, there is a catch: there is no guarantee that one can compile
a program in the extended language so as to guarantee all the real-time
constraints are met. The compiled program must be analysed to determine
whether it meets all the timing constraints. If the program passes the tim-
ing analysis phase, it is a valid implementation, but if it fails, it should be
rejected. Logically the timing analysis phase can be viewed as part of a
compiler for the extended real-time programming language. Note that we
refer to three different levels of language in this paper:

– the target programming language, which is a standard programming
language that does not include timing deadlines;

– theextended programming languagethat includes timing deadlines; and
– thewide-spectrum language, which includes all languages features, in-

cluding specification commands.

The extended programming language.To allow timing constraints to be
expressed we make a minimal extension to an existing programming lan-
guage. The main extension is a novel command of the form,deadline D,
which on ‘execution’ guarantees to terminate by timeD. This command
allows timing constraints to be incorporated into programs, but the dead-
line command can not be directly implemented by a compiler. Consider the
following fragment of a program, in whichd is a program variable of type
time.

?
{
τ ≤ d

}
; (4)

delay until d; (5)

“commands which do not updated” ; (6)

deadline d + 1 ms (7)

The assumption (4) states that the code is assumed to begin execution by
time d. The delay command (5) guarantees to terminate after timed. The
deadline directive (7) adds the constraint that the time at which it completes
is before timed plus one millisecond.

To determine whether the above fragment meets its deadline, one needs
to analyse the machine code generated for the delay command (5) and the

A Sequential Real-Time Refinement Calculus 7

other commands (6). The delay command is guaranteed to terminate after
time d, but it may overrun past timed. The maximum time by which it
may overrun is referred to as itslateness. If the lateness of the delay plus
the maximum execution time of the machine code generated for the other
commands (6) is guaranteed to be less than or equal to one millisecond,
then the deadline is guaranteed to be met for all executions for which the
initial assumption (4) holds.

The deadline command can be viewed as a directive to the compiler for
the programming language. If the compiler can determine by analysing the
machine code generated for (5) and (6) that they will always take less than
one millisecond to execute on the target machine, then the compiler will
successfully generate machine code for them. In that case the deadline is
guaranteed to be met, and hence it can be discarded. On the other hand, if
the compiler cannot guarantee that (5) and (6) will always take less than one
millisecond, then it cannot guarantee to satisfy (7). In that case the compiler
should reject the program because it is unable to guarantee its timing cor-
rectness on the given target machine; the compiler can also supply details
indicating which deadline cannot be met, and by what margin it is missed.
Note that a deadline directive defines a hard deadline that must be met. It is
not acceptable to generate code that tests whether the deadline was reached
in time and raises an exception if it was missed. Timing analysis is exam-
ined in more detail in Sect. 3 and in the example in Sect. 5.2.

The combination of a delay until command and a deadline directive al-
lows one to add quite detailed timing constraints to a program, and thus
provides an effective real-time programming language. Given the extended
programming language, our goal is to develop programs from specifications
that include timing requirements, using a process of stepwise refinement.
For the purposes of this paper we have chosen Dijkstra’s guarded com-
mand language [3] as our base programming language, because that has
been used as the basis for other refinement calculus work. However, the
real-time extensions introduced here could equally well be applied to other
programming languages, such as Ada. Interestingly, the nondeterministic
language constructs found in Dijkstra’s language are not problematical with
the approach taken here.

1.3 Related Work

We concentrate our comparison with related work on approaches that de-
velop real-time programs from abstract specifications. The two approaches
we consider are Scholefield’s Temporal Agent Model (TAM) [20,21], and
Hooman’s assertional specification and verification of real-time programs
[9]. Both these approaches also support concurrency, but because our focus

8 Ian J. Hayes, Mark Utting

in this paper is just sequential programs, we ignore the concurrent con-
structs in this comparison.

All the methods introduce some form of time variable that allows ref-
erence to the start and finish times of commands, and that can be used to
specify timing constraints and relationships. The two main features that dis-
tinguish our work are the addition of the deadline command, and the use of
timed traces for inputs, outputs and local variables.

TAM provides a real-time refinement calculus. If we compare the se-
quential aspects of TAM with our approach, the main difference is in the
treatment of deadlines. In TAM, deadlines are specified as a constraint on
the execution time allowed for a command. This restricts deadlines to the
command structure of the TAM language. In comparison, we express dead-
lines via a separatedeadline command. This allows more flexibility in
specifying timing constraints. In addition to being able to specify con-
straints that match the structure of the language, one can also specify con-
straints on execution paths that cross the boundaries of language constructs,
e.g., a path that begins before an alternation command and ends within one
branch of the alternation, or a path from a point within the body of a loop
back around to a point within the body of the loop on its next iteration.

A consequence of the TAM approach to deadlines is that it is necessary
to specify a constant representing the evaluation time for all guards of an
alternation, even though in practice the guard evaluation time is different
for different branches of an alternation. In our approach there is no need for
such a constant: guard evaluation is just considered to be part of the exe-
cution time of each path on which the guard appears. The real constraints
are the overall constraint on each path. There is no necessity to have an
additional, more restrictive, constraint on the guard evaluation.

Another difference is in the treatment of inputs and outputs. TAM pro-
vides shunts for communication between processes and for communication
with the environment. Our approach treats inputs and outputs as traces over
time. One of the main application areas we see for our work is in the spec-
ification and refinement of systems with continuous variables, such as the
levelof water in the mine shaft. In order to be able to give a top-level spec-
ification of such systems, we need to use timed traces. Within this paper
we define a simpleread command, that samples an input, but because we
use timed traces, more complex input commands, such as analog-to-digital
conversion can be handled within the same framework.

Hooman’s work [9] on assertional specification and verification extends
the use of traditional Hoare logic triples to real-time systems. The real-
time interface of the program with the environment can be specified using
primitives denoting the timing of observable events. The interpretation of

A Sequential Real-Time Refinement Calculus 9

triples has been adapted to require the postcondition to hold for terminating
and non-terminating computations.

Each of the atomic commands in Hooman’s language has an associated
constant representing its execution time, and the compound commands,
such asif-then-else have constants representing the time to evaluate the
guard. For example, Hooman [9, page 126] introduces a constant,Ta, rep-
resenting the execution time of an assignment command. An obvious prob-
lem is that not all assignments take the same amount of time, but further,
given a single assignment command, its execution time may vary greatly
(due to the effects of pipelines or caches) depending upon the preceding
commands on the path. Timing constraints on program components must
be broken down into timing constraints on the individual commands. The
overall approach is similar to that used in TAM and suffers in the same
ways in comparison to the use of adeadline command to specify timing
constraints on paths. Hooman also provides non-terminating loops, which
we have not attempted within this paper.

The seemingly small addition of thedeadline command in our work
has had a significant impact on the whole development method, and im-
portantly, has allowed developments to treat real-time constraints in a more
realistic and practical manner than in the other approaches.

– During the refinement process,deadline commands can be used to
separate out timing constraints, leaving behind a requirement to be met
that does not explicitly contain timing constraints. The standard refine-
ment calculus can be used to develop such components.

– The timing constraints are on execution paths through the program and
are not necessarily constrained to the phrase structure of the program-
ming language. This allows more realistic timing constraints to be de-
vised.

– A timing constraint is on a whole execution path rather than each com-
mand in the path, and hence is less restrictive in terms of allowable
implementations.

A deadline command could be added to the standard refinement calcu-
lus extended with a time variable,τ , but not using timed traces for vari-
ables. Such an extension would provide the benefits listed above. However,
it would not allow the top-level specification of systems involving continu-
ous inputs within the same framework.

Sect. 2 contains a comprehensive presentation of definitions of real-time
programming constructs and associated refinement laws. A reader wishing
to get an idea of how the calculus is used may prefer to skip directly to
Sections 3 and 5 and refer back to Sect. 2 as needed.

10 Ian J. Hayes, Mark Utting

2 Semantics and laws for language constructs

Because we treat variables as functions from time to their value at that
time, we cannot directly use the standard refinement calculus [1,2,18,19]
for real-time refinement. However, Utting and Fidge [22,23] introduced a
way to encode the real-time refinement calculus as a standard refinement
calculus that changes only time. In the encoding, variables in the real-time
calculus are explicitly declared as functions of time in the standard calculus;
a special standard variable,τ , (not itself a function of time) is introduced
to stand for time; and all the constructs in the programming language are
replaced with their real-time equivalents. The encoding should not be seen
as a way of implementing the real-time language, but rather as a device for
showing the relationship between the standard and real-time calculi. It also
allows the reuse of the existing standard theory to build the new real-time
theory.

In the encoding, program variables are created with their value initially
unconstrained over all time, except that the value is of the declared type.
The ‘execution’ of commands in the language may constrain the values of
variables. At the specification level, arbitrary constraints are allowed, but
at the level of executable code, the primitive commands of the language
can only constrain the value of program variables during the time period
over which they execute. Without this constraint it would not be feasible to
implement such constructs [23]. (See Sect. 4 for more details.)

2.1 Environment

An environment defines finite and disjoint sets of inputs, outputs and local
variables. Identifier names for variables are chosen from the setIdent, and
� Identstands for the set of all finite subsets ofIdent.

Env
in, out, local : � Ident

in ∩ out = out∩ local = local∩ in = �

Such an environment could be extended to include the type of each variable,
but because the typing aspects are not novel, we have chosen to elide them
in this paper. It is useful to be able to determine the set of all variables in
an environment,var(ρ), and the set of program variables: variables that are
either outputs or local variables (but not inputs),pvar(ρ).

A Sequential Real-Time Refinement Calculus 11

var : Env"� Ident
pvar : Env"� Ident

var(ρ) = ρ.in ∪ ρ.out∪ ρ.local
pvar(ρ) = ρ.out∪ ρ.local

As an abbreviation we writêρ for pvar(ρ).

2.2 Predicate transformers and refinement

As for the standard refinement calculus, the semantics are given in terms of
predicate transformers,PTran, which are monotonic functions from predi-
cates (effects) to predicates (assumptions):

PTran=̂ {PT : Pred" Pred |
∀P, Q : Pred• (P V Q) ⇒ (PT(P) V PT(Q))}

where ‘V’ is the universal quantification over all states of the correspond-
ing implication, as used by Morgan [18]. However, we need to take into
account the environment of the command being defined. Hence we define a
meaning function,M, that given an environment and a command, defines
a predicate transformer,

M : Env" (Command� PTran)

whereCommandis the set of syntactic commands. We write the environ-
ment parameter toM as a subscript. Refinement is defined with respect to
an environment,ρ,

C vρ C′ =̂ Mρ (C) vMρ
(
C′) (8)

where ‘v’ is standard refinement:

Sv S′ =̂ (∀G : Pred• S(G) V S′(G)) (9)

Refinement equivalence is defined by

C vwρ C′ =̂ (C vρ C′ ∧ C′ vρ C) (10)

2.3 Unindexed variables in predicates and expressions

The assumption and effect predicates in a specification may include unin-
dexed references to variables using the conventions outlined in Sect. 1.1.
In an effect, unindexed variables of the formv stand forv(τ), and unin-
dexed variables of the formv0 stand forv(τ0). We introduce the notation
R @ (τ0, τ) to stand for the predicateR with every unindexed occurrence
of a variable,v, replaced byv(τ) and every unindexed occurrence ofv0 is
replaced byv(τ0). In fact, we generalise this notation so thatτ0 andτ are
just parameters. We make use of the same conventions for expressions.

12 Ian J. Hayes, Mark Utting

Definition 1 (at times). Given a predicate or expression, R, R@ (x, y) is
defined to be R with all unindexed occurrences of the form v0 replaced by
v(x) and all unindexed occurrences of v replaced by v(y), and as well, all
occurrences ofτ0 andτ in R are replaced by x and y, respectively.

When the ‘@’ operator is used in the formR@ (τ0, τ), the replacements of
τ0 andτ have no effect. Note thatRmay contain explicit indexed references
to variables at times other thanτ ; these are not affected by the ‘@’ oper-
ator. The operator ‘@’ has a lower precedence than all the normal logical
operators, but a higher precedence than ‘≡’ and ‘V’. For predicates, such
as assumptions, that do not contain any zero-subscripted variables, we use
the notationP @ x.

Definition 2 (at time). Given a predicate or expression, P, P@ x is defined
to be P with all unindexed occurrences of a variable v replaced by v(x),
and any occurrences ofτ replaced by x.

If there are no occurrences ofτ0 or zero-subscripted variables inP then
P @ (τ0, τ) ≡ P @ τ . The operator ‘@’ distributes over logical operators.
For example, the following identities hold.

(P ∧ Q @ x) ≡ (P @ x) ∧ (Q @ x)
(P ∨ Q @ x) ≡ (P @ x) ∨ (Q @ x)
(¬ P @ x) ≡ ¬ (P @ x)

Aside: One interesting approach to proving properties of predicates us-
ing the conventions outlined above, is to prove entailment between predi-
cates treating unindexed variables as variables of their range type. This al-
lows simpler proofs of properties that do not involve explicit time indices.
For example, from

x = y V x− y = 0

we may deduce that

x = y @ τ V x− y = 0 @ τ

also holds. We note that this allows one to treat proof obligations that do
not involve time indices in a manner very close to the proof obligations in
Morgan’s calculus [18]. This lifting property is not essential to the calculus
presented in this paper; it is treated in more detail in [6].

In the remainder of this section we introduce the constructs in the wide-
spectrum language along with related refinement laws. On the first reading
the proofs of laws may be skipped over unless the reader is uncertain about
a given law.

A Sequential Real-Time Refinement Calculus 13

2.4 Specifications

A real-time specification command can be defined in terms of a standard
specification command using the conventions introduced by Utting and
Fidge [22]. The equivalent standard specification command allows time to
increase, and insists that all program variables that are not in the frame
remain stable (unchanged) for the duration of the command.

Definition 3 (stable).Given a variable, v, and a set of times, S,

stable(v, S) =̂ (∀ t, u : S• v(t) = v(u))

Within this paper we allow a set of variables to be used as the first parameter
to stable, with the meaning that every variable in the set is stable over the
set of times. The notation,x, stands for a vector of variables; we allow a
vector to be used where a set is expected, with the meaning that it stands
for the set of variables contained in the vector.

The assumptions of a specification command determine the range of
possible values of variables over time, as well as the start time of the com-
mand. The effect further constrains the values of variables over time, as
well as constraining the finish time of the command.

Definition 4 (specification).A specification command,?x:
[
P, R

]
, is well

formed in an environment,ρ, provided

– the frame,x, is a vector of program variables,x ⊆ ρ̂ (remember̂ρ is an
abbreviation for the program variables ofρ),

– P is a predicate involving the variables in the environment plusτ , and
– R is a predicate involving variables in the environment plusτ0, τ and

zero-subscripted versions of variables in the environment.

The meaning of a well-formed specification command is given by the fol-
lowing

Mρ
(
?x:

[
P, R

])
=̂

τ :
[
P @ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
whereρ̂ \ x stands for the set̂ρ with any elements in the framex removed.

Note thatτ , unlike other variables, is not itself a function of time. The
frame of the real-time command,x, does not appear in the frame of the
equivalent standard command. Instead, those program variables that are not
in the frame are constrained to be stable for its duration, and the program
variables in the frame are only constrained by the effect of the specification,
R. The use of traces, and their exclusion from the frame, leads to interesting
feasibility issues, which are discussed in Sect. 4. In the assumption and

14 Ian J. Hayes, Mark Utting

effect of a specification command it is permissible to include both explicitly
indexed references and unindexed references to the same variable.

The definitions of many of the remaining commands can be given in
terms of equivalent specification commands. The environment used for the
equivalent command is usually the same as that for the command being
defined. Hence, we introduce the abbreviation

C =̂ρ C′

to stand for

Mρ (C) =̂ Mρ (C′)

We use the abbreviation that the default assumption in a specification
command istrue.

Definition 5 (default assumption).Given an environmentρ, providedx is
contained in the program variables,̂ρ, and R is a predicate as defined in
Def. 4 (specification), then

?x:
[
R

]
=̂ρ ?x:

[
true, R

]
For the remainder of the paper, we assume that the frame and the predicates
in the assumptions and effects of specification commands satisfy the well-
formedness constraints outlined in Def. 4 (specification). In addition, we
make use of Def. 5 (default-assumption) without explicit reference to its
definition.

The refinement rules for weakening an assumption and strengthening an
effect carry over to the real-time refinement calculus.

Law 6 (weaken assumption).Given an environment of variables,ρ, pro-
vided P@ τ V P′ @ τ ,

?x:
[
P, R

]
vρ ?x:

[
P′, R

]
.

When applying this law we can use the fact that fromP V P′ one can
deduce thatP@τ V P′@τ . That gives a special case of the law for dealing
with properties that are not time dependent. This special case is identical to
the weaken-precondition law of Morgan’s calculus [18].

Proof. The law follows from the equivalent standard refinement calculus
law.

Mρ
(
?x:

[
P, R

])
vw Def. 4 (specification)

τ :
[
P @ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
v Standard weaken precondition

τ :
[
P′ @ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
vw Def. 4 (specification)
Mρ

(
?x:

[
P′, R

])
ut

A Sequential Real-Time Refinement Calculus 15

Law 7 (strengthen effect).Given an environment,ρ, provided

(P @ τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ]) ∧ (R′ @ (τ0, τ))
V R@ (τ0, τ)

then

?x:
[
P, R

]
vρ ?x:

[
P, R′

]
.

This law is often used to replace an effectRby anotherR′ that is equivalent
under the assumptionsP. In that case the refinement is an equivalence. In
the case where the properties are not time dependent, a special case of the
proviso is the following

P0 ∧ R′ V R

whereP0 stands for the predicateP with all occurrences ofτ replaced by
τ0, and all unindexed occurrences of every variable,v, that is in the frame
or is an external input, replaced byv0. This corresponds to the equivalent
law in Morgan’s calculus [18].

Proof. The law follows from the equivalent standard refinement calculus
law.

Mρ
(
?x:

[
P, R

])
vw Def. 4 (specification)

τ :
[
P @ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
v From the proviso using standard strengthen postcondition

τ :
[
P @ τ , R′ @ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
vw Def. 4 (specification)
Mρ

(
?x:

[
P, R′

])
ut

A requirement that a variable in the frame remains stable for the du-
ration of a command can be achieved by removing the variable from the
frame.

Law 8 (contract frame). Given an environment,ρ, and disjoint vectors of
program variables,x andv,

?x,v:
[
P, R∧ stable(x,\τ0 ... τ])

]
vwρ ?v:

[
P, R

]
Proof.

Mρ
(
?x,v:

[
P, R∧ stable(x,\τ0 ... τ])

])
vw Def. 4 (specification)

τ :
[
P @ τ ,

R@ (τ0, τ) ∧ stable(x,\τ0 ... τ]) ∧
τ0 ≤ τ ∧ stable(ρ̂ \ (x,v),\τ0 ... τ])

]
vw As x is stable andx andv are disjoint

τ :
[
P @ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ v,\τ0 ... τ])

]
vw Def. 4 (specification)
Mρ

(
?v:

[
P, R

])
ut

16 Ian J. Hayes, Mark Utting

A variable can always be removed from the frame.

Law 9 (remove from frame). Given an environment,ρ, and disjoint vec-
tors of program variables,x andv,

?x,v:
[
P, R

]
vρ ?v:

[
P, R

]
Proof.

?x,v:
[
P, R

]
vρ Law 7 (strengthen-effect)

?x,v:
[
P, R∧ stable(x,\τ0 ... τ])

]
vwρ Law 8 (contract-frame)

?v:
[
P, R

]
ut

2.5 Assumptions

Assumptions may state properties of the variables at the point at which
they occur. Hence in an assumption, an unindexed reference to a variable,
v, is interpreted asv(τ). Assumptions can also state properties of the value
of variables at other times by using explicit indices. Assumptions take no
time, and hence there is no need forτ0 or zero-subscripted variables, within
assumptions.

Definition 10 (assumption).An assumption,?
{
P

}
, is well-formed pro-

vided P does not refer toτ0 or zero-subscripted variables. Given an en-
vironment,ρ, an assumption is equivalent to a specification command that
takes no time and has the assumption as its precondition.

?
{
P

}
=̂ρ ?

[
P, τ0 = τ

]
From this definition we can deduce

Mρ
(
?

{
P

})
vw Def. 10 (assumption)
Mρ

(
?

[
P, τ0 = τ

])
vw Def. 4 (specification)

τ :
[
P @ τ , τ0 = τ

]
vw Standard contract frame[

P @ τ , true
]

vw Standard refinement calculus{
P @ τ

}
The last line above represents a standard refinement calculus assumption,
while the first line is an assumption in the real-time refinement calculus.

For the remainder of this paper we assume that all assumptions are well-
formed, i.e., they do not refer toτ0 or to zero-subscripted variables.

A Sequential Real-Time Refinement Calculus 17

Law 11 (weaken assumption command).Given an environment,ρ, pro-
vided P@ τ V P′ @ τ ,

?
{
P

}
vρ ?

{
P′

}
Proof. The law follows directly from Def. 10 (assumption) and Law 6
(weaken-assumption).ut

2.6 Sequential composition

The definition of sequential composition carries over from the standard re-
finement calculus, provided we assume that the start time of the second
component is identical to the finish time of the first component.

Definition 12 (sequential composition).Given an environment,ρ,

Mρ (C; D) =̂ (Mρ (C)) ◦ (Mρ (D))

where‘◦’ is used here to represent standard sequential composition, i.e.,
functional composition of the predicate transformers.

Law 13 (separate assumption).Given an environment,ρ,

?x:
[
U ∧ P, R

]
vwρ ?

{
U

}
; ? x:

[
P, R

]
Proof.

Mρ
(
?x:

[
U ∧ P, R

])
vw Def. 4 (specification)

τ :
[
U @ τ ∧ P @ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
vw Standard refinement calculus{

U @ τ
}
◦ τ :

[
P @ τ ,

R@ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
vw Def. 10 (assumption); Def. 4 (specification)
Mρ

(
?

{
U

})
◦Mρ

(
?x:

[
P, R

])
vw Def. 12 (sequential-composition)
Mρ

(
?

{
U

}
; ? x:

[
P, R

])
ut

Law 14 (establish assumption).Given an environment,ρ, and a predicate
V, such that neitherτ0 nor zero-subscripted variables occur in V, provided
R@ (τ0, τ) V V @ τ then

?x:
[
P, R

]
vwρ ?x:

[
P, R

]
; ?

{
V

}
For time independent properties, we can use the provisoR V V as a special
case of this law, because from that we can deduce thatR@(τ0, τ) V V@τ .

18 Ian J. Hayes, Mark Utting

Proof.

Mρ
(
?x:

[
P, R

])
vw Def. 4 (specification)

τ :
[
P @ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
vw Standard refinement calculus

τ :
[
P @ τ ,

R@ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
◦

{
V @ τ

}
vw Def. 4 (specification); Def. 10 (assumption)
Mρ

(
?x:

[
P, R

])
◦Mρ

(
?

{
V

})
vw Def. 12 (sequential-composition)
Mρ

(
?x:

[
P, R

]
; ?

{
V

})
ut

2.7 Doing nothing

The identity of sequential composition is the command that changes no
variables and takes no time.

Definition 15 (skip). For any environment,ρ,

?skip =̂ρ ?
[
τ0 = τ

]
In terms of a standard specification command,?skip has an empty frame,
and hence is equivalent toskip in the standard refinement calculus.

Mρ (?skip) vw τ :
[
τ0 = τ

]
vw

[
true

]
vw skip

Law 16 (skip identity). For any environment,ρ,

?skip; C vwρ C vwρ C; ? skip

Proof.

Mρ (?skip; C)
vw Def. 12 (sequential-composition)
Mρ (?skip) ◦Mρ (C)

vw Def. 15 (skip)
skip ◦Mρ (C)

vw Standard refinement calculus
Mρ (C)

vw Standard refinement calculus
Mρ (C) ◦ skip

vw Def. 15 (skip)
Mρ (C) ◦Mρ (?skip)

vw Def. 12 (sequential-composition)
Mρ (C; ? skip) ut

A Sequential Real-Time Refinement Calculus 19

An assumption may be removed by refining it to?skip and then using
Law 16 (skip-identity).

Law 17 (remove assumption).For any environment,ρ,

?
{
P

}
vρ ?skip

Proof.

?
{
P

}
vwρ Def. 10 (assumption)

?
[
P, τ0 = τ

]
vρ Law 6 (weaken-assumption)

?
[
τ0 = τ

]
vwρ Def. 15 (skip)

?skip ut

A command that does nothing, but may take time, isidle.

Definition 18 (idle). For any environment,ρ,

idle =̂ρ ?
[
true

]
In terms of a standard specification command we have

Mρ (idle) vw τ :
[
τ0 ≤ τ ∧ stable(ρ̂,\τ0 ... τ])

]
Henceidle vwρ ?

[
τ0 ≤ τ

]
.

Law 19 (skip idle). For any environment,ρ,

idle vρ ?skip

Proof.

idle
vwρ Def. 18 (idle)

?
[
true

]
vρ Law 7 (strengthen-effect)

?
[
τ0 = τ

]
vwρ Def. 15 (skip)

?skip ut

20 Ian J. Hayes, Mark Utting

2.8 Invariant properties

Many properties are invariant over the execution of particular commands.
Two interesting cases are predicates that are invariant over the execution of
anidle command, and predicates that are invariant over the execution of a
specification command with framex. We refer to these asidle-invariantand
frame-invariantpredicates, respectively. In fact, idle-invariant predicates
are the special case of frame-invariant predicates when the frame is empty.

Definition 20 (frame invariant). Given an environment,ρ, a predicate, P,
that contains no references toτ0 or zero-subscripted variables, isframe-
invariantwith respect to framex, if and only if

(P @ τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ]) V P @ τ

Definition 21 (idle invariant). Given an environment,ρ, a predicate, P, is
idle-invariantif and only if P is frame-invariant with respect to the empty
frame.

For both types of properties there are syntactic checks that are sufficient
(but not necessary) to ensure that the properties are invariant. A property,
P, is idle-invariant if it is invariant over the execution of anidle command.
During the execution of anidle command, the program variables (outputs
and local variables) are stable. Hence, if the property only refers to program
variables, it is invariant. If the property refers toτ , the property may be in-
validated because theidle command may take time. For example, the prop-
erty τ ≤ D is not invariant if theidle command executes until after time
D. For this reason our syntactic check disallows references toτ . Similarly,
references to external inputs are not guaranteed stable over time. Hence we
exclude unindexed references to external inputs as well. For frame-invariant
properties we add the restriction that there are no unindexed references to
variables in the frame.

Law 22 (frame-invariant property). Given an environment,ρ, a frame,
x, such thatx ⊆ ρ̂, and a predicate, P, then P is frame-invariant with
respect to the framex, provided P does not involveτ0, τ or zero-subscripted
variables, and has no unindexed references to program variables that are
in the frame,x, or to external inputs.

Proof. According to Def. 20 (frame-invariant), becauseP does not contain
τ , P @ τ0 is P with every occurrence of an unindexed variable,v, replaced
by v(τ0). However, every suchv is a program variable that is not in the
frame, and hence is stable, sov(τ0) = v(τ). ThereforeP @ τ0 V P @ τ as
required. ut

A Sequential Real-Time Refinement Calculus 21

Law 23 (idle-invariant property). Given an environment,ρ, and a predi-
cate, P, then P is idle-invariant, provided P does not involveτ0, τ or zero-
subscripted variables, and has no unindexed references to external inputs.

Proof. The proof follows directly from Def. 21 (idle-invariant), and Law 22
(frame-invariant-property) with an empty frame.ut

Law 24 (frame invariant). Given an environment,ρ, a frame,x, and a
predicate, P, that is frame invariant with respect tox, then

?x:
[
P ∧ Q, P ∧ R

]
vwρ ?x:

[
P ∧ Q, R

]
Proof. The refinement from right to left is a trivial application of strength-
ening the effect. The refinement from left to right is also an application of
strengthening the effect. The proviso for the latter is

(P ∧ Q @ τ0) ∧ (R@ (τ0, τ)) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])
V (P ∧ R@ (τ0, τ))

but asP is frame invariant with respect tox,

(P @ τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ]) V P @ τ

and hence the proviso holds.ut

Idling only changes time so any property invariant over time is main-
tained byidle.

Law 25 (idle invariant). Given an environment,ρ, if P is an idle-invariant
predicate, then

?
[
P, P

]
vρ idle

Proof. If P is idle-invariant, then by definition it is frame-invariant for the
empty frame. Hence, we use Law 24 (frame-invariant) with an empty frame
andQ andRbothtrue.

?
[
P, P

]
vwρ Law 24 (frame-invariant)

?
[
P, true

]
vρ Law 6 (weaken-assumption)

?
[
true

]
vwρ Def. 18 (idle)

idle ut

Assumptions that are invariant over time and do not depend on variables
in the frame are invariant over the execution of a specification command.

22 Ian J. Hayes, Mark Utting

Law 26 (frame-invariant assumption).Given an environment,ρ, a frame,
x, and a predicate, P, that is frame-invariant with respect tox, then

?
{
P

}
; ? x:

[
Q, R

]
vwρ ?

{
P

}
; ? x:

[
Q, R

]
; ?

{
P

}
Proof.

?
{
P

}
; ? x:

[
Q, R

]
vwρ Law 13 (separate-assumption)

?x:
[
P ∧ Q, R

]
vwρ Law 24 (frame-invariant)

?x:
[
P ∧ Q, P ∧ R

]
vwρ Law 14 (establish-assumption)

?x:
[
P ∧ Q, P ∧ R

]
; ?

{
P

}
vwρ Law 24 (frame-invariant)

?x:
[
P ∧ Q, R

]
; ?

{
P

}
vwρ Law 13 (separate-assumption)

?
{
P

}
; ? x:

[
Q, R

]
; ?

{
P

}
ut

Law 27 (idle-invariant assumption). Given an environment,ρ, and an
idle-invariant predicate, P, then

?
{
P

}
; idle vwρ ?

{
P

}
; idle; ?

{
P

}
Proof. The law follows from Law 26 (frame-invariant-assumption) with an
empty frame and Def. 18 (idle).ut

Definition 28 (frame-stable expression).Given an environment,ρ, and a
frame,x, then an expression, D, that contains no references toτ0 or zero-
subscripted variables, isframe stablewith respect tox, if and only if

τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ]) V (D @ τ0) = (D @ τ)

Law 29 (frame-stable expression).Given an environment,ρ, and a frame,
x, an expression, D, is frame stable with respect tox, provided D contains
no occurrence ofτ0, τ , or zero-subscripted variables, and has no unindexed
references to variables in the frame,x, or unindexed references to external
inputs.

Proof. BecauseD does not containτ , D @ τ0 is D with every unindexed
variable,v, replaced byv(τ0), but becauseD does not contain unindexed
references to variables in the frame or external inputs, each suchv is stable,
sov(τ0) = v(τ). Hence,D @ τ0 = D @ τ . ut

Definition 30 (idle-stable expression).Given an environment,ρ, an ex-
pression, D, isidle stable, if and only if D is a frame-stable expression
with respect to the empty frame.

A Sequential Real-Time Refinement Calculus 23

Law 31 (idle-stable expression).Given an environment,ρ, an expression,
D, is idle stable, provided D contains no occurrence ofτ0, τ , or zero-
subscripted variables, and has no unindexed references to external inputs.

Proof. The proof follows from Def. 30 (idle-stable-expression) and Law 29
(frame-stable-expression) with an empty frame.ut

There is a difference between a predicate being idle-invariant and a
(Boolean) expression being idle-stable. For an idle-invariant predicate, if
it is true before an idle, then it must be true after the idle, but it may be
false before the idle and become true on executing the idle. However, for
an idle-stable (Boolean) expression, it must have the same value before and
after the idle. For example, ifD is an idle-stable expression, thenD ≤ τ is
idle-invariant, but not idle-stable becauseD ≤ τ being false atτ does not
preclude it being true at some later time.

2.9 Assignment

Because the evaluation of the expressions in an assignment takes time, we
require that the expressions in assignments are idle-stable.

Definition 32 (assignment).Given an environment,ρ, a frame,x, such that
x ⊆ ρ̂, and a vector,D, of idle-stable expressions, where the lengths ofx
andD are the same and the types of the corresponding elements inx and
D are assignment compatible

x := D =̂ρ ?x:
[
(x @ τ) = (D @ τ0)

]
For all assignment commands in the remainder of this paper we assume that
the lengths of the vectorsx andD are the same, and that the corresponding
elements are assignment compatible.

Law 33 (assignment).Given an environment,ρ, a frame,x, and a vector,
D, of idle-stable expressions, provided

(P @ τ0) ∧ (x @ τ) = (D @ τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])
V R@ (τ0, τ)

then

?x:
[
P, R

]
vρ x := D.

If the properties do not involve time then the following special case of the
proviso can be used

P0 ∧ x = D0 V R

whereP0 and D0 are the same asP and D, respectively, but with every
unindexed occurrence of a variable,v, that is in the frame or is an external
input, replaced byv0.

24 Ian J. Hayes, Mark Utting

Proof.

?x:
[
P, R

]
vρ Law 7 (strengthen-effect) using proviso; Law 6 (weaken-assumption)

?x:
[
(x @ τ) = (D @ τ0)

]
vwρ Def. 32 (assignment)

x := D ut

2.10 Reading an external input

An external input may change without the action of the program directly
causing the change. For example, an input buffer register may change when
an input is received. The commandx : read(v) reads the external variable
v and places its value in the program variablex. The value selected is any
of the values thatv takes during the execution of the command. In practice,
one often requires thatv is stable for the duration of the command, so that
the value read is uniquely defined.

Definition 34 (read). Given an environment,ρ, provided x is contained in
the program variables,̂ρ, and v is an external input (v∈ ρ.in),

x : read(v) =̂ρ ?x:
[
x ∈ v�\τ0 ... τ]�

]
where v�\τ0 ... τ]� is the image of the set\τ0 ... τ] through v, i.e., all the
values of v during the closed interval fromτ0 to τ .

2.11 Reading the clock

Thegettime command returns the current time. The value returned is be-
tween the start and finish times of the command. Because we use real num-
bers to model time, we cannot have a type in the programming language
corresponding exactly toTime. To overcome this we introduce the program-
ming language typetime , wheretime ⊂ Time(althoughtime may be
represented within the implementation as an integer in some appropriate
units, e.g., nanoseconds).

Definition 35 (gettime).Given an environment,ρ, provided x is a program
variable (x∈ ρ̂) of typetime ,

x : gettime =̂ρ ?x:
[
x ∈ \τ0 ... τ]

]
Note that we assume a perfect clock with no drift, or perhaps we should
say that the time base of our system is that provided by the implementation
of gettime, rather than some more global time, such as Universal Time
Coordinated (UTC).

A Sequential Real-Time Refinement Calculus 25

Also note that we assume that a clock tick will occur during the exe-
cution of thegettime command, so that there exists an element oftime
in the range\τ0 ... τ]. This is a reasonable assumption provided the clock
resolution is fine enough — close to the machine instruction time — but for
a larger clock resolution the definition may have to be modified to take the
clock resolution into account. In that case we could definegettime by

x : gettime =̂ρ ?x:
[
x ∈ \τ0 − resolution... τ]

]
whereresolutionis the time between clock ticks. For the remainder of this
paper we assume the simpler definition.

There is also the problem of the finite bound on the implementation
of type time . We assume that the implementation of typetime is suffi-
ciently large (at least well beyond the year 10,000) that this will not be a
problem in practice. In practice, an implementation only guarantees to meet
the specification until the end oftime , not until the end ofTime.

2.12 Delay until

A delay command guarantees that its completion is after the specified time.

Definition 36 (delay). Given an environment,ρ, provided D is an idle-
stable time-valued expression,

delay until D =̂ρ ?
[
D ≤ τ

]
.

2.13 Deadline

The deadline directive allows a time deadline to be specified. It is the com-
piler’s responsibility to ensure the deadline is met by the generated code. If
the compiler cannot, it must report a compile-time error.

Definition 37 (deadline).Given an environment,ρ, provided D is a time-
valued expression, which may include references to logical constants but
no references toτ0 or zero-subscripted variables,

deadline D =̂ρ ?
[
τ0 = τ ∧ τ ≤ D

]
.

Because thedeadline command takes no time, there is no need to require
D to be idle-stable. From the definition of the specification command we
have

Mρ (deadline D)
vw τ :

[
τ0 = τ ∧ τ ≤ D @ τ ∧ τ0 ≤ τ ∧ stable(ρ̂,\τ0 ... τ])

]
vw As \τ0 ... τ] = {τ}

τ :
[
τ0 = τ ∧ τ ≤ D @ τ

]
vw

[
τ ≤ D @ τ

]

26 Ian J. Hayes, Mark Utting

In refinement calculus terms, a deadline directive is a coercion. A tim-
ing path analysis is required to show that the deadline directive is always
reached before its deadline. In that context the directive can be eliminated.
Otherwise the program cannot be successfully compiled. For more discus-
sion on the deadline directive see Sections 1.2, 3 and 5.2.

2.14 Logical constants

Logical constants carry over from the standard refinement calculus. Note
that, unlike variables, logical constants are not implicit functions of time.
The definition of a logical constant block is given in terms of a predicate
transformer, whose goal may not contain free occurrences of the introduced
name. To account for this, the definition also includes the ability to system-
atically change the name of a logical constant to some fresh name.

Definition 38 (logical constant).Given an environment,ρ, provided u does
not occur free in G or var(ρ),

Mρ (|[con u : T • C]|) (G) =̂ (∃u : T • Mρ (C) (G))

and provided y does not occur free in C,

|[con u : T • C]| vwρ |[con y : T • C
[y

u

]
]|

Law 39 (logical constant).Given an environment,ρ, provided u does not
occur in C or var(ρ), and(∃u : T • P @ τ),

C vwρ |[con u : T • ?
{
P

}
; C]|

Proof. Assumeu does not occur free inG (otherwise changeu to a fresh
name).

Mρ
(
|[con u : T • ?

{
P

}
; C]|

)
(G)

≡ Def. 38 (logical-constant)
(∃u : T • Mρ

(
?

{
P

}
; C

)
(G))

≡ Def. 12 (sequential-composition); Def. 10 (assumption)
(∃u : T • P @ τ ∧Mρ (C) (G))

≡ u does not occur free inC or G or var(ρ), and henceMρ (C) (G)
(∃u : T • P @ τ) ∧Mρ (C) (G)

≡ from assumption
Mρ (C) (G) ut

Law 40 (remove logical constant).Given an environment,ρ, provided u
does not occur in C or var(ρ), and T is non-empty,

|[con u : T • C]| vwρ C

Proof. This is a special case of Law 39 (logical-constant) withP the pred-
icatetrue. ut

A Sequential Real-Time Refinement Calculus 27

2.15 Refinement to a sequential composition

The refinement of a specification command to a sequential composition of
specification commands follows the same approach as in the standard re-
finement calculus. One must devise an intermediate predicateQ that holds
on termination of the first component, and hence also for the assumption of
the second component. Because we have assumed that there is no time de-
lay between the execution of the two commands,τ in the effect of the first
component refers to the same time asτ in the assumption of the second
component. We would also like to allow references toτ0 within the effect
of the first component. However, references toτ0 are not allowed within
the assumptions of the second component. To cope with this we use the
approach used by Morgan [18] to handle zero-subscripted variables within
a sequential composition and introduce a logical constantu to stand for the
start time of the first component, and replace all occurrences ofτ0 by u
within the assumptions of the second component. In the desired overall ef-
fect,R, τ0 refers to the commencement of the whole sequential composition
(not the commencement of the second component). Hence the references to
τ0 in the effect of the second component are also replaced byu.

Law 41 (sequential composition).Given an environment,ρ, provided u is
a fresh name,

?x:
[
P, R

]
vρ

|[con u : Time• ?x:
[
u = τ ∧ P, Q

]
; ? x:

[
Q @ (u, τ), R@ (u, τ)

]
]|

Q may contain unindexed references to variables. For example, a reference
to v is treated asv(τ). Becauseτ is the finish time withinQ in the first
command as well as being the start time withinQ in the second command,
references tov within the two occurrences ofQ refer to the value ofv at the
same time.

Proof.

?x:
[
P, R

]
vwρ Law 39 (logical-constant);u fresh
|[con u : Time• ?

{
u = τ

}
; ? x:

[
P, R

]
]|

We proceed by refining the body of the block.

Mρ
(
?

{
u = τ

}
; ? x:

[
P, R

])
vw Law 13 (separate-assumption); Def. 4 (specification)

τ :
[
u = τ ∧ P @ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
vw Standard strengthen postcondition

28 Ian J. Hayes, Mark Utting

τ :
[
u = τ ∧ P @ τ , R@ (u, τ) ∧ u≤ τ ∧ stable(ρ̂ \ x,\u ... τ])

]
v Standard sequential composition

τ :
[
u = τ ∧ P @ τ ,

Q @ (u, τ) ∧ u≤ τ ∧
stable(ρ̂ \ x,\u ... τ])

]
◦

τ :
[

Q @ (u, τ) ∧ u≤ τ ∧
stable(ρ̂ \ x,\u ... τ]) ,

R@ (u, τ) ∧ u≤ τ ∧
stable(ρ̂ \ x,\u ... τ])

]
v Standard strengthen postcondition (twice)

τ :
[
u = τ ∧ P @ τ ,

Q @ (τ0, τ) ∧ τ0 ≤ τ ∧
stable(ρ̂ \ x,\τ0 ... τ])

]
◦

τ :
[

Q @ (u, τ) ∧ u≤ τ ∧
stable(ρ̂ \ x,\u ... τ]) ,

R@ (u, τ) ∧ τ0 ≤ τ ∧
stable(ρ̂ \ x,\τ0 ... τ])

]
v Def. 4 (specification); standard weaken precondition
Mρ

(
?x:

[
u = τ ∧ P, Q

])
◦

τ :
[
Q @ (u, τ) @ τ ,

R@ (u, τ) @ (τ0, τ) ∧ τ0 ≤ τ ∧
stable(ρ̂ \ x,\τ0 ... τ])

]
v Def. 4 (specification)
Mρ

(
?x:

[
u = τ ∧ P, Q

])
◦Mρ

(
?x:

[
Q @ (u, τ), R@ (u, τ)

])
vw Def. 12 (sequential-composition)
Mρ

(
?x:

[
u = τ ∧ P, Q

]
; ? x:

[
Q @ (u, τ), R@ (u, τ)

])
ut

If Q andR do not involveτ0 or zero-subscripted variables, the above
rule can be simplified.

Law 42 (simple sequential composition).Given an environment,ρ, pro-
vided Q and R do not involveτ0 or zero-subscripted variables,

?x:
[
P, R

]
vρ ?x:

[
P, Q

]
; ? x:

[
Q, R

]
Proof.

?x:
[
P, R

]
vρ Law 41 (sequential-composition); Law 6 (weaken-assumption)
|[con u : Time• ?x:

[
P, Q

]
; ? x:

[
Q @ (u, τ), R@ (u, τ)

]
]|

vwρ from provisoQ @ (u, τ) = Q @ (τ0, τ) and similarly forR
|[con u : Time• ?x:

[
P, Q

]
; ? x:

[
Q, R

]
]|

vρ Law 40 (remove-logical-constant)
?x:

[
P, Q

]
; ? x:

[
Q, R

]
ut

A timing deadline in the effect of a specification command may be sep-
arated out into a deadline command.

Law 43 (separate deadline).Given an environment,ρ, provided D is a
time-valued expression, which may include references to logical constants
but no references toτ0 or zero-subscripted variables,

?x:
[
P, R∧ τ ≤ D

]
vρ ?x:

[
P, R

]
; deadline D

A Sequential Real-Time Refinement Calculus 29

Proof.

?x:
[
P, R∧ τ ≤ D

]
vρ Law 41 (sequential-composition); Law 6 (weaken-assumption)
|[con u : Time•

?x:
[
P, R

]
; ? x:

[
R@ (u, τ), (R∧ τ ≤ D) @ (u, τ)

]
]|

vwρ asτ0 does not occur inD; Law 9 (remove-from-frame)
|[con u : Time• ?x:

[
P, R

]
; ?

[
R@ (u, τ), R@ (u, τ) ∧ τ ≤ D

]
]|

vρ Law 7 (strengthen-effect)
|[con u : Time•

?x:
[
P, R

]
; ?

[
R@ (u, τ), R@ (u, τ) ∧ τ0 = τ ∧ τ ≤ D

]
]|

vρ Law 7 (strengthen-effect); Law 6 (weaken-assumption)
|[con u : Time• ?x:

[
P, R

]
; ?

[
τ0 = τ ∧ τ ≤ D

]
]|

vρ Law 40 (remove-logical-constant); Def. 37 (deadline)
?x:

[
P, R

]
; deadline D ut

2.16 Prefix and postfix idle commands

In this section we examine the properties required by specification com-
mands in order to be able to prefix (postfix) them with anidle command.
To prefix a specification by anidle command, the assumption of the speci-
fication must be idle-invariant, and additionally, the effect of the specifica-
tion must be able to tolerate the prefix of theidle command. We refer to an
effect with this property as beingpre-idle-invariant.

Definition 44 (pre-idle-invariant). Given an environment,ρ, a predicate R
(which may involveτ0 and zero-subscripted variables) ispre-idle-invariant,
if and only if for any u not occurring in R or var(ρ),

R@ (τ0, τ) ∧ u≤ τ0 ∧ stable(ρ̂,\u ... τ0]) V R@ (u, τ)

Law 45 (pre-idle-invariant property). Given an environment,ρ, if a pred-
icate R has no references toτ0 and all references to zero-subscripted vari-
ables in R are to program variables, then R is pre-idle-invariant.

Proof. As R does not containτ0, R @ (u, τ) is R with every occurrence
of a zero-subscripted variable,v0, replaced byv(u), but all such variables
are stable over the interval\u ... τ0], and hencev(u) = v(τ0). Therefore,
R@ (τ0, τ) V R@ (u, τ). ut

Law 46 (idle before).Given an environment,ρ, provided P is idle-invariant,
and R is pre-idle-invariant, then

?x:
[
P, R

]
vwρ idle; ? x:

[
P, R

]

30 Ian J. Hayes, Mark Utting

Proof. The refinement from right to left is a straightforward application
of Law 19 (skip-idle) followed by Law 16 (skip-identity). The refinement
from left to right follows.

?x:
[
P, R

]
vρ Law 41 (sequential-composition); Law 6 (weaken-assumption)
|[con u : Time• ?x:

[
P, P ∧ τ0 ≤ τ ∧ stable(ρ̂,\τ0 ... τ])

]
;

?x:
[
P @ (u, τ) ∧ u≤ τ ∧ stable(ρ̂,\u ... τ]), R@ (u, τ)

]
]|

vρ Law 9 (remove-from-frame); Law 7 (strengthen-effect); noτ0 in P
|[con u : Time•

?
[
P, P

]
; ? x:

[
P ∧ u≤ τ ∧ stable(ρ̂,\u ... τ]), R@ (u, τ)

]
]|

vρ Law 25 (idle-invariant)
|[con u : Time•

idle; ? x:
[
P ∧ u≤ τ ∧ stable(ρ̂,\u ... τ]), R@ (u, τ)

]
]|

vρ Law 7 (strengthen-effect);Rpre-idle-invariant
|[con u : Time• idle; ? x:

[
P ∧ u≤ τ ∧ stable(ρ̂,\u ... τ]), R

]
]|

vρ Law 6 (weaken-assumption); Law 40 (remove-logical-constant)
idle; ? x:

[
P, R

]
ut

An idle command may be postfixed to a specification command pro-
vided the effect of the specification tolerates theidle command. We refer
to effects with this property as beingpost-idle-invariant.

Definition 47 (post-idle-invariant). Given an environment,ρ, a predicate
R ispost-idle-invariantif and only if for any u not occurring in R or var(ρ),
R@ (u, τ) is idle-invariant. That is,

R@ (u, τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂,\τ0 ... τ]) V R@ (u, τ)

Law 48 (idle after). Given an environment of variables,ρ, provided R is
post-idle-invariant,

?x:
[
P, R

]
vwρ ?x:

[
P, R

]
; idle

Proof. The refinement from right to left follows from Law 19 (skip-idle)
followed by Law 16 (skip-identity). The refinement from left to right fol-
lows.

?x:
[
P, R

]
vρ Law 41 (sequential-composition); Law 6 (weaken-assumption)
|[con u : Time• ?x:

[
P, R

]
; ? x:

[
R@ (u, τ), R@ (u, τ)

]
]|

vρ Law 9 (remove-from-frame)
|[con u : Time• ?x:

[
P, R

]
; ?

[
R@ (u, τ), R@ (u, τ)

]
]|

vρ Law 25 (idle-invariant);Rpost-idle-invariant
|[con u : Time• ?x:

[
P, R

]
; idle]|

vρ Law 40 (remove-logical-constant)
?x:

[
P, R

]
; idle ut

A Sequential Real-Time Refinement Calculus 31

2.17 Local variables

The definition of a local variable block in the real-time language involves
expanding the set of program variables for the command within the block.
Hence we need to give the definition in terms of the meaning functionM
introduced in Sect. 2.2, instead of using the abbreviated form of definition.
Because allocating and deallocating a local variable may take time,idle
commands are used to represent possible time delays. In the definition of
AddVar below, a fresh variable name,v′, is used in place of the namev
in order to allow the local variable to have the same name as an existing
variable. The renaming is necessary because the local variable block must
ensure the stability of the existing variable. Of course, ifv itself is a fresh
name, the renaming is unnecessary.

Definition 49 (local block). Given an environment,ρ, provided that the
type T is nonempty,

|[var v : T • C]| vwρ idle; AddVarv:T(C); idle

where AddVarv:T is defined as follows: provided v′ is a fresh name (v′ /∈
var(ρ)), and v′ does not occur free in the goal predicate, G,

Mρ (AddVarv:T(C)) (G) =̂ (∀ v′ : Time" T • Mρ′

(
C

[
v′

v

])
(G))

whereρ′ is the environmentρ with its local variables extended by v′, that
is, ρ′ = ρ +l v′ where

+l : Env× Ident" Env

(ρ +l v′ = ρ′) ⇔
(ρ′.in = ρ.in ∧ ρ′.out = ρ.out∧ ρ′.local = ρ.local∪ {v′})

An alternative approach is not to treat local variables as timed traces,
but as standard refinement calculus local variables. With the alternative ap-
proach one can only usev andv0 to reference the value of local variables,
but it does allow an expand frame law [18].

Law 50 (introduce variable). Given an environment,ρ, and a variable
name, v, provided v does not occur free within P or R orx, T is nonempty,
P is idle-invariant and R is both pre- and post-idle-invariant, then

?x:
[
P, R

]
vwρ |[var v : T • ?v,x:

[
P, R

]
]|

Proof. First we introduce theidle commands in Def. 49 (local-block).

?x:
[
P, R

]
vwρ Law 46 (idle-before); Law 48 (idle-after)

idle; ? x:
[
P, R

]
; idle

32 Ian J. Hayes, Mark Utting

Next we show thatAddVarv:T(?v,x:
[
P, R

]
) is equivalent to?x:

[
P, R

]
.

Let ρ′ = ρ +l v′ and assumev′ does not occur free inG.

Mρ
(
AddVarv:T(?v,x:

[
P, R

])
(G)

≡ Definition ofAddVar; v does not occur inP, Randx
(∀ v′ : Time" T • Mρ′

(
?v′,x:

[
P, R

])
(G))

≡ Def. 4 (specification)
(∀ v′ : Time" T • P @ τ ∧

(∀ τ • R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable((ρ̂, v′) \ (v′,x),\τ0 ... τ])
⇒ G))

≡ asv′ does not occur inP, R, G or x; v′ is disjoint fromρ̂; T nonempty
P @ τ ∧ (∀ τ • R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ]) ⇒ G)

≡ Def. 4 (specification)
Mρ

(
?x:

[
P, R

])
(G) ut

Example: Relative delay.A relative delay of lengthD, whereD is an idle-
stable time-valued expression, can be specified by the following command.

?
[
τ0 + D ≤ τ

]
It can be implemented by getting the current time and then using an (abso-
lute) delay until command to delay until the current time plusD.

?
[
τ0 + D ≤ τ

]
vρ Law 50 (introduce-variable);τ0 + D ≤ τ pre- and post-idle-invariant

|[var c : time • ?c:
[
τ0 + D ≤ τ

]
]|

vρ Law 41 (sequential-composition)

|[var c : time • |[con u : Time•
?c:

[
u = τ , τ0 ≤ c

]
; ? c:

[
u≤ c, u + D ≤ τ

]
]|]|

vρ Law 7 (strengthen-effect); Law 9 (remove-from-frame)

|[var c : time • |[con u : Time•
?c:

[
u = τ , c ∈ \τ0 ... τ]

]
; ?

[
u≤ c, c + D ≤ τ

]
]|]|

vρ Law 6 (weaken-assumption); Law 40 (remove-logical-constant)

|[var c : time • ?c:
[
c ∈ \τ0 ... τ]

]
; ?

[
c + D ≤ τ

]
]|

vρ Def. 35 (gettime); Def. 36 (delay)

|[var c : time • c : gettime; delay until c + D]|

2.18 Outputs

Like local variables, outputs are program variables, but they differ from
local variables in that they are externally visible.

A Sequential Real-Time Refinement Calculus 33

Definition 51 (output). Given an environment,ρ, provided v /∈ var(ρ),
then for all goal predicates, G, whichmay include references to v,

Mρ (output v : T • C) (G) =̂ (∀ v : Time" T • Mρ+ov (C) (G))

where

+o : Env× Ident" Env

(ρ +o v = ρ′) ⇔
(ρ′.in = ρ.in ∧ ρ′.out = ρ.out∪ {v} ∧ ρ′.local = ρ.local)

Note that, unlike local variables, it is not possible to change the name of
an output, and that the goal,G, may refer to the output,v. The only other
difference between local variables and output variables is that output vari-
ables are global (not stack-allocated), so we assume that no time is needed
to allocate or deallocate them.

2.19 Inputs

External inputs are not under the control of the program. Hence they are
not considered to be program variables. In addition, external inputs are ex-
ternally visible. The only way a program can affect the value of an external
input is by modifying an output, that indirectly controls the value of the
input, via the environment.

Definition 52 (input). Given an environment,ρ, provided v/∈ var(ρ), then
for all goal predicates, G,

Mρ (input v : T • C) (G) =̂ (v ∈ Time" T) ∧Mρ+iv (C) (G)

where

+i : Env× Ident" Env

(ρ +i v = ρ′) ⇔
(ρ′.in = ρ.in ∪ {v} ∧ ρ′.out = ρ.out∧ ρ′.local = ρ.local)

The purpose of declaring inputs is to introduce them as part of the name
space, as well as declare their type. Note that, unlike local variables, it is
not possible to change the name of an input, and that the goal,G, may refer
to the input,v.

34 Ian J. Hayes, Mark Utting

2.20 Alternation

An alternation is defined in terms of a standard alternation. The guards
are required to be idle-stable expressions so that they are stable during
their evaluation. For the definition we use their value at the start time of
the whole alternation. The time taken to evaluate the guards and to exit a
branch of the alternation is accounted for by includingidle commands at
the beginning and end of each branch of the alternation. Although theidle
commands are defined to allow an arbitrary delay,deadline commands
placed elsewhere in the program ensure that they cannot take too long.

Definition 53 (alternation). Given an environment,ρ, provided B0, . . . , Bn

are idle-stable Boolean-valued expressions, then

Mρ

? if B0 → C0
...
[] Bn → Cn

fi

 =̂

if B0 @ τ →Mρ (idle; C0; idle)
...
[] Bn @ τ →Mρ (idle; Cn; idle)
fi

Introducing an alternation is similar to the standard refinement calculus
rule.

Law 54 (alternation). Given an environment,ρ, provided P is an idle-
invariant predicate, B0, . . . , Bn are Boolean-valued idle-stable expressions,
and R is a predicate that is both pre- and post-idle-invariant, then

?x:
[
P ∧ (B0 ∨ . . . ∨ Bn), R

]
vρ

? if B0 → ?x:
[
P ∧ B0, R

]
[] . . . [] Bn → ?x:

[
P ∧ Bn, R

]
fi

Proof. The introduction of the standard alternation relies on the equiva-
lence ofP ∧ (B0 ∨ . . . ∨ Bn)@τ and(P@τ) ∧ ((B0@τ) ∨ . . . ∨ (Bn@τ)).

Mρ
(
?x:

[
P ∧ (B0 ∨ . . . ∨ Bn), R

])
vw Def. 4 (specification)

τ :
[
P ∧ (B0 ∨ . . . ∨ Bn) @ τ ,

R@ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
v Standard alternation introduction

if B0 @ τ → τ :
[
P ∧ B0 @ τ ,

R@ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
...

[] Bn @ τ → τ :
[
P ∧ Bn @ τ ,

R@ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
fi

vw Def. 4 (specification)

A Sequential Real-Time Refinement Calculus 35

if B0 @ τ →Mρ
(
?x:

[
P ∧ B0, R

])
...
[] Bn @ τ →Mρ

(
?x:

[
P ∧ Bn, R

])
fi

vw Law 46 (idle-before); Law 48 (idle-after)
if B0 @ τ →Mρ

(
idle; ? x:

[
P ∧ B0, R

]
; idle

)
...
[] Bn @ τ →Mρ

(
idle; ? x:

[
P ∧ Bn, R

]
; idle

)
fi

vw Def. 53 (alternation)
Mρ

(
? if B0 → ?x:

[
P ∧ B0, R

]
[] . . . [] Bn → ?x:

[
P ∧ Bn, R

]
fi

)
ut

2.21 Iteration

An iteration is defined in terms of a standard iteration. The guard is re-
stricted so that it is stable during its evaluation. To account for the delay to
evaluate the guard and iterate or exit the loop,idle commands are intro-
duced. To allow for loop exit overheads, including the case when the guard
is initially false, anidle is added after the loop.

Definition 55 (iteration). Given an environment,ρ, and a Boolean-valued
idle-stable expression, B, which does not contain references toτ0 or zero-
subscripted variables,

Mρ (?do B→ C od)
=̂
do B @ τ →Mρ (idle; C; idle) od ◦Mρ (idle)

A multi-branch iteration may be defined in a similar manner. Introducing
an iteration is similar to the standard refinement calculus rule.

Law 56 (iteration timing). For the introduction of a loop one needs to sup-
ply a Boolean-valued guard expression, B, an invariant, INV, and a variant
expression, V, which evaluates to an element of a well-founded set with or-
dering≺, provided INV and B hold. Given an environment,ρ, provided B
and V are idle-stable expressions, and INV is idle-invariant, and none of
B, V and INV contain references toτ0 or zero-subscripted variables, and u
is a logical constant,

?x:
[
INV ∧ u = τ , ¬ B ∧ INV′]

vρ

?do B→ ?x:
[
B ∧ INV′, INV′ ∧ V ≺ V0

]
od

36 Ian J. Hayes, Mark Utting

where INV′ =̂ INV ∧ u ≤ τ ∧ stable(ρ̂ \ x,\u ... τ]) and V0 is V with
every unindexed reference to a variable, v, replaced by v0, and every oc-
currence ofτ replaced byτ0.

Proof. As the first step in the proof, we introduce theidle command at the
end of Def. 55 (iteration). The introduction relies on¬ B ∧ INV′ being
post-idle-invariant.

?x:
[
INV ∧ u = τ , ¬ B ∧ INV′]

vwρ Law 48 (idle-after)
?x:

[
INV ∧ u = τ , ¬ B ∧ INV′] ; idle

We now proceed to refine the first component.

Mρ
(
?x:

[
INV ∧ u = τ , ¬ B ∧ INV′])

vw Def. 4 (specification)

τ :
[
INV ∧ u = τ @ τ ,

¬ B ∧ INV′ @ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
v Definition of INV′

τ :
[
INV′ @ τ , ¬ B ∧ INV′ @ τ

]
v Standard iteration with variantV @ τ

do B @ τ → τ :
[
B ∧ INV′ @ τ , (INV′ @ τ) ∧ (V @ τ ≺ V @ τ0)

]
od

v Definition of INV′; strengthen withτ0 ≤ τ
do B @ τ →

τ :
[
B ∧ INV′ @ τ ,

INV′ ∧ V ≺ V0 @ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \ x,\τ0 ... τ])

]
od

vw Def. 4 (specification)
do B @ τ →Mρ

(
?x:

[
B ∧ INV′, INV′ ∧ V ≺ V0

])
od

We now concentrate on the body of the loop. The following step relies on
the fact thatB ∧ INV′ is idle-invariant, and thatINV′ ∧ V ≺ V0 is both
pre- and post-idle-invariant.

?x:
[
B ∧ INV′, INV′ ∧ V ≺ V0

]
vwρ Law 46 (idle-before); Law 48 (idle-after)

idle; ? x:
[
B ∧ INV′, INV′ ∧ V ≺ V0

]
; idle

Combining the above together we get the following.

do B @ τ →
Mρ

(
idle; ? x:

[
B ∧ INV′, INV′ ∧ V ≺ V0

]
; idle

)
od ◦Mρ (idle)

vw Def. 55 (iteration)
Mρ

(
?do B→ ?x:

[
B ∧ INV′, INV′ ∧ V ≺ V0

]
od

)
ut

A Sequential Real-Time Refinement Calculus 37

A simpler rule for iteration does not involve timing aspects.

Law 57 (iteration). For the introduction of a loop one needs to supply a
Boolean-valued guard expression, B, an invariant, INV, and a variant ex-
pression V, which evaluates to an element of a well-founded set with order-
ing≺, provided INV and B hold. Given an environment,ρ, provided B and
V are idle-stable expressions, and INV is idle-invariant, and none of B, V
and INV contain references toτ0 or zero-subscripted variables,

?x:
[
INV, ¬ B ∧ INV

]
vρ

?do B→ ?x:
[
B ∧ INV, INV ∧ V ≺ V0

]
od

where V0 is V with every unindexed reference to a variable, v, replaced by
v0, and every occurrence ofτ replaced byτ0.

Proof. We let INV′ =̂ INV ∧ u ≤ τ ∧ stable(ρ̂ \ x,\u ... τ]), whereu is
a fresh logical constant, and make use of Law 56 (iteration-timing).

?x:
[
INV, ¬ B ∧ INV

]
vρ Law 39 (logical-constant); Law 13 (separate-assumption)
|[con u : Time• ?x:

[
u = τ ∧ INV, ¬ B ∧ INV

]
]|

vwρ Law 7 (strengthen-effect)
|[con u : Time• ?x:

[
u = τ ∧ INV, ¬ B ∧ INV′]]|

vwρ Law 56 (iteration-timing)
|[con u : Time• ?do B→ ?x:

[
B ∧ INV′, INV′ ∧ V ≺ V0

]
od]|

vwρ Law 7 (strengthen-effect); Law 6 (weaken-assumption)
|[con u : Time• ?do B→ ?x:

[
B ∧ INV, INV ∧ V ≺ V0

]
od]|

vwρ Law 40 (remove-logical-constant)
?do B→ ?x:

[
B ∧ INV, INV ∧ V ≺ V0

]
od ut

Example: Absolute delay.As an example of a real-time refinement using
a loop we give an implementation of a delay until command in terms of an
iteration involving thegettime command and a primitive delay command,
tick, that delays for at least some fixed timeε > 0.

tick =̂ρ ?
[
τ0 + ε ≤ τ

]
We begin from the specification of an absolute delay.

?
[
D ≤ τ

]
vwρ Law 50 (introduce-variable); Law 7 (strengthen-effect)
|[var c : time • ?c:

[
D ≤ c≤ τ

]
]|

vρ Law 42 (simple-sequential-composition)
|[var c : time • ?c:

[
c≤ τ

]
; ? c:

[
c≤ τ , D ≤ c≤ τ

]
]|

vρ Law 7 (strengthen-effect); Def. 35 (gettime)
|[var c : time • c : gettime; ? c:

[
c≤ τ , D ≤ c≤ τ

]
]|

38 Ian J. Hayes, Mark Utting

The remaining specification command refines to an iteration, with invariant,
c ≤ τ , and variant,

⌊
D−c

ε

⌋
. For this refinement we make use of the fact

that the loop introduction rule only requires the variant to be a member of
the well-founded set (in this case the natural numbers) provided both the
invariant and the loop guard hold.

?c:
[
c≤ τ , D ≤ c≤ τ

]
vρ Law 57 (iteration)

?do c < D → ?c:
[
c < D ∧ c≤ τ , c≤ τ ∧

⌊
D−c

ε

⌋
<

⌊
D−c0

ε

⌋]
od

The body of the loop can be refined as follows.

?c:
[
c < D ∧ c≤ τ , c≤ τ ∧

⌊
D−c

ε

⌋
<

⌊
D−c0

ε

⌋]
vρ Law 41 (sequential-composition); Law 6 (weaken-assumption)
|[con u : Time• ?c:

[
c < D ∧ c≤ τ , c0 ≤ τ0 ∧ τ0 + ε ≤ τ

]
;

?c:
[
c(u) ≤ u ∧ u + ε ≤ τ , c≤ τ ∧

⌊
D−c

ε

⌋
<

⌊
D−c(u)

ε

⌋]
]|

vρ Law 9 (remove-from-frame); Law 7 (strengthen-effect)
|[con u : Time• ?

[
c < D ∧ c≤ τ , τ0 + ε ≤ τ

]
;

?c:
[
c(u) ≤ u ∧ u + ε ≤ τ , c ∈ \τ0 ... τ]

]
]|

vρ Law 6 (weaken-assumption); Law 40 (remove-logical-constant)
?

[
τ0 + ε ≤ τ

]
; ? c:

[
c ∈ \τ0 ... τ]

]
vρ Definition of tick; Def. 35 (gettime)

tick; c : gettime

The collected code for the absolute delay follows.

|[var c : time • c : gettime;
?do c < D → tick; c : gettime od]|

The refinement of an absolute delay has been given here as a simple, but
interesting, example of a real-time refinement involving a loop. In practice,
the explicit use of the commandtick is unnecessary because the time taken
by the loop overhead is bounded below by some constantε > 0. One could
allow for such overheads in Def. 55 (iteration) by replacing the firstidle
command by atick, and developing a more complex refinement rule. This
has been done for the development of a loop introduction rule that uses a
fixed deadline to guarantee termination [8].

2.22 Procedures

A procedure call may involve delays due to the overheads of entering and
exiting the procedure.

A Sequential Real-Time Refinement Calculus 39

Definition 58 (procedure call).Consider a procedure C defined via

C =̂ procedure S

where S is the specification of C. A call on the procedure,?call C, is defined
to be equivalent to executing some implementation of the procedure, but
with delays before and after to allow for calling overheads.

idle; S; idle vρ ?call C

Law 59 (procedure call). Given an environment,ρ, provided P is idle-
invariant, and R is both pre- and post-idle-invariant, then, if a procedure C
is defined via

C =̂ procedure ? x:
[
P, R

]
then

?x:
[
P, R

]
vρ ?call C

Proof.

?x:
[
P, R

]
vwρ Law 46 (idle-before); Law 48 (idle-after)

idle; ? x:
[
P, R

]
; idle

vρ Def. 58 (procedure-call)
?call C ut

Parameters to procedures can be handled in the same way as in the
standard calculus [17] (the timing analysis must account for any additional
overhead).

3 The extended programming language

The extended programming language contains all the commands in the
wide-spectrum language, except for the specification command. In addi-
tion, the extended language has the following restrictions:

– the variables in the frame of an assignment, aread, or agettime com-
mand should be program variables, not external inputs;

– the variable being read by aread command should be an external input;
– expressions appearing in assignments, guards and delays should be pro-

gramming language expressions, that is, they may only reference pro-
gram variables (outputs and local variables) but may not reference exter-
nal inputs orτ0 or τ or logical constants or zero-subscripted variables;

40 Ian J. Hayes, Mark Utting

– the expression in a deadline command should be a programming lan-
guage expression, except that it may also reference logical constants
(but recall that deadline directives must be removed by a timing analy-
sis process before the program is finally code);

– the program may contain logical constants, provided the only references
to logical constants are in assumptions and deadline commands.

The deadline command is quite different from the other primitive com-
mands because, if the deadline has already passed when the command is
reached, it is infeasible. In general, such a command cannot be considered
part of the executable subset of the language. However, if one can show that
the deadline command is always guaranteed to be reached before its dead-
line passes, then it can be eliminated. In standard refinement calculus terms
the deadline command,deadline D, is a coercion of the form

[
τ ≤ D

]
.

The standard refinement calculus rule for removing an assumption-coercion
pair can be applied to a deadline command.{

τ ≤ D
}

;
[
τ ≤ D

]
v skip

That allows a deadline command to be eliminated, provided the time at
which it is reached is before its deadline,D.

For the purposes of real-time refinement we retain the deadline com-
mand as a primitive command in our extended programming language.
We rely on a timing analysis being performed on the machine code gen-
erated for the program. If the analysis guarantees that all deadlines will
be reached in time, the deadlines may be elided and the resulting program
is executable, but if the timing analysis fails, the program is rejected. The
failure of the analysis could either be because the program contains unmet
deadlines, or because the analysis is not sophisticated enough to determine
that all deadlines are met. In the latter case the program, although correct,
is still rejected because it has not been shown to met all deadlines. Timing
analysis is discussed in more detail in the example in Sect. 5.2.

In order to specify some deadlines it is advantageous to allow the dead-
line command to refer to logical constants. For example, the following
specifies that the assignment,x := 3, takes at most 10 attoseconds to exe-
cute.

|[con s : Time• ?
{
τ = s

}
; x := 3; deadline s+ 10attoseconds]| (11)

Logical constants are not code, but they may be removed provided there are
no references to them within the program. In the above example the timing
analysis, if successful, will remove the deadline command and hence one
reference to the logical constant. The other reference to the logical constant
is in the assumption, but assumptions can always be removed. Hence a
successful timing analysis of the above fragment allows all references to

A Sequential Real-Time Refinement Calculus 41

s to be removed, and hences can be removed. In order to accommodate
fragments such as that above, we allow the extended language to include
logical constants, provided the only references to logical constants are in
assumptions and deadline commands.

In some cases the timing analysis fails because the code generated for
the target machine takes too long and fails to meet the deadline. In such
cases a faster machine or a better compiler or a combination of both may
be able to meet the deadline. In other cases it may be impossible to generate
code to meet the deadline for any machine. For example, the sequence

delay until d;
deadline d− 1 s

has a timing constraint of minus one second. It is impossible to meet this
deadline on any machine. For our refinement theory we do not need to
distinguish whether deadlines are impossible or not, but we hope that the
vigilant programmer will not generate code with impossible deadlines. Of
course, the analysis process can be applied to detect intrinsically impossible
deadlines before the program is even compiled. That form of analysis can
be applied to partially refined programs at any stage to check for impossible
deadlines. Indeed, analysis of partially refined programs may be used at
any stage to assist the engineer to determine the timing constraints on the
partially refined code, and hence determine whether an implementation is
likely to meet its deadlines. It may highlight the paths with the tightest
constraints, where the most care needs to be taken.

4 Feasibility

The reader may be familiar with the notion of feasibility and Dijkstra’s
law of the excluded miraclefrom the standard refinement calculus [3]. The
definition of feasibility for the standard refinement calculus is not appro-
priate for the real-time calculus. In this section we develop a definition of
real-time feasibilityand show its relationship to standard feasibility. This
section may be skipped by those readers more interested in the application
of the refinement calculus; the following sections do not rely on it.

An unusual feature of our semantics (Def. 4 (specification)) is that each
command operates by updatingonly the special time variableτ . All other
program variables are timed traces and are simplyconstrainedby the com-
mand. This means that most of our commands areinfeasiblein the standard
refinement calculus. For example,

?v:
[
τ ≤ 9, τ ≤ 10 ∧ v(τ) = 3

]

42 Ian J. Hayes, Mark Utting

is equivalent to the standard specification command

τ :
[
τ ≤ 9,

τ ≤ 10 ∧ v(τ) = 3
∧ τ0 ≤ τ ∧ stable(ρ̂ \ v,\τ0 ... τ])

]
(12)

which is only feasible if the tracev already has the constant value3 (at
least up to time 10) in the initial state, because the tracev does not ap-
pear in the frame of the equivalent standard specification command, so the
specification cannot update it. Yet according to our refinement laws, this
specification can be implemented by the assignmentv := 3, plus a deadline
of one second, so intuitively the specification should be feasible.

It is quite common in the standard refinement calculus for valid de-
velopments to include some infeasible program fragments [16]. They typ-
ically appear in some context that avoids the infeasible part of their be-
haviour, so that the whole surrounding program remains feasible. However,
according to the standard test (Dijkstra’s Law of the Excluded Miracle:
S(false) = false), virtually all commands are infeasible with our seman-
tics. The standard test is inappropriate for our calculus for the following
two reasons:

1. We designed the semantics to exclude program output and local traces
from the frame. This means that most of our refinements are done in
the ‘magical’ portion of the predicate transformer lattice, but it allows
us to use total traces (avoiding undefinedness issues), and gives a more
elegant semantics than alternative approaches, where each commandex-
tendsor overwritesa segment of the traces [23].

2. Our real-time variables are modeled as traces over time, and most pro-
gram fragments constrain only a small segment of the traces, typically
in the range{t : Time| τ0 < t ≤ τ}, which we shall write asXτ0 ... τ].
We want programs that constrain traces outside this range of times to be
treated as infeasible. We view output traces as being observable (up to
the current time,τ), from outside the system, so do not want programs
to be able to change history! That is, any program that constrains an
output tracev at timet ≤ τ0 should be infeasible, because it is attempt-
ing to further constrain an output that may have already been observed.
Similarly, programs that attempt to make time go backwards should be
infeasible.

The standard feasibility test is too coarse to make these distinctions that
we want for our real-time calculus. So we now propose a more suitable
feasibility test.

For an environment,ρ, recall thatρ̂ stands for the program variables
(i.e., the outputs and local variables) ofρ. We would like to quantify over
(partial) traces over the variables inρ andρ̂. We use ‘∀ ρ : Time" Tρ’ to
stand for quantification over traces of all variables inρ; Tρ stands for the

A Sequential Real-Time Refinement Calculus 43

type of the variables inρ. Similarly, ‘∀ ρ̂ : Xτ0 ... τ] " Tρ̂’ stands for the
quantification over partial traces fromτ0 to τ of all program variables.

We define a test for identifying predicates that depend upon traces of
program variables only up to timeτ , not on the future portion of those
traces [23].

Definition 60 (Future-Independent). Given an environment,ρ, a predi-
cate Q on the variables ofρ is future independentaccording to the follow-
ing definition.

FutureIndependentρ(Q) =̂
(∀ ρ : Time" Tρ; τ0, τ, τ

′ : Time• τ0 ≤ τ ≤ τ ′ ⇒

(∀ ρ̂′ : Xτ ... τ ′]" Tρ̂ • Q⇔ Q
[

ρ̂⊕ρ̂′

ρ̂

]
)))

whereρ̂⊕ ρ̂′ stands for the tracêρ overridden by the partial tracêρ′ in the
interval for whichρ̂′ is defined, i.e.,Xτ ... τ ′].

All of our real-time commands are defined in terms of conjunctive pred-
icate transformers with frameτ . From relational-decomposition results in
the standard refinement calculus [13] we know that every conjunctive com-
mandC (in an environmentρ) is equivalent to a specification command

τ :
[
assumpρ(C), effectρ(C)

]
where

assumpρ(C) =̂ Mρ (C) (true)
effectρ(C) =̂ (¬Mρ (C) (τ 6= τ ′))

[
τ,τ0
τ ′,τ

]
The assumption of the specification command is just the condition under
which it is guaranteed to terminate. In general, for a predicate transformer,
PT,¬ PT(¬ R), characterises those states from whichPT is not guaranteed
to achieve¬ R, that is, it characterises those states from which it is possible
for PT to achieveR. The definition ofeffectρ(C), characterises those states
from which there exists a timeτ ′ such that it is possible forC to terminate
with τ equal toτ ′. The renaming is used to convert the predicate in terms
of τ for the start time andτ ′ for the finish time, into a predicate withτ0 for
the start time andτ for the finish time. See [13] for more details.

Hence for a conjunctive command,C,

Mρ (C) (R) ≡ assumpρ(C) ∧ (∀ τ : Time• effectρ(C) ⇒ R)
[

τ
τ0

]
For example, in the case of a real-time specification command,?v:

[
A, E

]
,

theassumpρ(. . .) andeffectρ(. . .) terms can be derived fromA andE.

44 Ian J. Hayes, Mark Utting

Theorem 1.For any specification command,?v:
[
A, E

]
, in an environ-

mentρ, we have:

assumpρ(?v:
[
A, E

]
) ≡ A @ τ

effectρ(?v:
[
A, E

]
) ≡

A @ τ0 ⇒ E @ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \ v,\τ0 ... τ])

Proof. The theorem follows from Def. 4 (specification) plus the definitions
of assumpρ(C) andeffectρ(C) above. ut

The assumption of a real-time feasible command should depend on the
value of the program variables only up to the start time of the command,
and the effect of a command should depend on the value of the program
variables only up to the completion time of the command. In addition, for a
command to bereal-time feasible, for any trace,̂ρ, of program variables that
satisfies the assumption of the command, there must exist a partial trace,ρ̂′

of the program variables over the execution interval of the command, such
that the effect of the command holds for the traceρ̂ updated over the interval
Xτ0 ... τ] with the partial tracêρ′, i.e., the effect should hold for̂ρ⊕ ρ̂′.

Definition 61 (RTFeasible).Given an environmentρ, and a conjunctive
command, C,

RTFeasibleρ(C) =̂
FutureIndependentρ(assumpρ(C)) ∧
FutureIndependentρ(effectρ(C)) ∧
(∀ τ0 : Time; ρ : Time" Tρ •

assumpρ(C)
[τ0

τ

]
⇒

(∃ τ : Time; ρ̂′ : Xτ0 ... τ]" Tρ̂ • effectρ(C)
[

ρ̂⊕ρ̂′

ρ̂

]
))

Applying RTFeasibleto example (12) above (withρ.in = {}, ρ̂ = {v}), we
see that the assumption and effect are both future-independent, so we get:

RTFeasibleρ(?v:
[
τ ≤ 9, τ ≤ 10 ∧ v(τ) = 3

]
)

≡ (∀ τ0 : Time; v : Time" • τ0 ≤ 9 ⇒
(∃ τ : Time; v′ : Xτ0 ... τ]" •

(τ ≤ 10 ∧ v(τ) = 3 ∧ τ0 ≤ τ)
[

v⊕v′

v

]
))

≡ true

It is interesting to look at howRTFeasiblejudges other simple specifica-
tions. Assume that the environmentρ has a single input variablee and two

A Sequential Real-Time Refinement Calculus 45

output variables,x andy, and that the predicateE is future independent.

1. RTFeasibleρ(?x:
[
false, E

]
) = true

2. RTFeasibleρ(?x:
[
true, true

]
) = true

3. RTFeasibleρ(?x:
[
true, false

]
) = false

4. RTFeasibleρ(?x:
[
true, τ = τ0 − 1

]
) = false

5. RTFeasibleρ(?x:
[
true, τ < 9

]
) = false

6. RTFeasibleρ(?x:
[
τ < 8, τ < 9

]
) = true

7. RTFeasibleρ(?x:
[
true, y(τ) = 2

]
) = false

8. RTFeasibleρ(?x:
[
true, x(τ) = 2

]
) = true (∗)

9. RTFeasibleρ(?x:
[
true, x(τ) = y(τ)

]
) = true (∗)

10. RTFeasibleρ(?x:
[
τ < 8, τ < 9 ∧ x(τ) = e(10)

]
) = true (∗)

11. RTFeasibleρ(?x:
[
τ < 8, τ ≤ 9 ∧ x(τ) = e(9)

]
) = true (∗)

12. RTFeasibleρ(?
[
true, τ0 = τ ≤ 9

]
= false

The starred lines show whereRTFeasiblediffers from standard feasibil-
ity. Note that in all the examples,y is not in the frame, so is required to be
stable during\τ0 ... τ]. Specifications 8, 9 and 10 are feasible becausex
is in the frame, so the∃ in the definition ofRTFeasibleallows thex trace
to be updated during timesXτ0 ... τ]. Specification 8 could be refined to
x := 2 and 9 could be refined tox := y (no deadlines are required, since the
specifications do not give any upper bound for the finish time,τ).

It is interesting to note that specification 10 passes the feasibility test
even though it refers to the inpute at time10, which is in the future, since
it terminates withτ < 9. This illustrates that our feasibility test allows
some non-causal specifications (where information may need to flow back-
wards in time) to be treated as feasible, even though it may not be possible
to generate code for such specifications. In our experience, specifications
often refer to future input values to express assumptions about how those
inputs change over time, and there is no simple test that distinguishes such
innocuous future references from those that imply non-causal behaviour.

Although example 11 passes the feasibility test, in practice it cannot be
refined to our target language. One reason for this is that our target language
does not provide any command for reading an input value at an exact time
(only sometime betweenτ0 andτ) – such a command would be impossible
to implement without knowing more about how the value ofe varies over
time. Even if there were such a command, specification 11 requires the read
of e to be done at timeτ , which would leave no time to store the value into
x (this problem would be detected when the code is submitted to the timing
analysis phase of our methodology).

This again illustrates that our feasibility test provides only an approxi-
mation to practical feasibility. Any program that is rejected by our feasibil-
ity test is definitely not implementable. However, some programs that pass

46 Ian J. Hayes, Mark Utting

the feasibility test may still not be implementable, because the specification
language can express relationships and properties (like references to future
input values, or other non-causal effects) that are not expressible in the tar-
get programming language or because timing requirements are too tight.
This is as expected, we want specification languages to be more expressive
than implementation languages and the analysis of code timings is deferred
to a later stage. The ultimate assurance of feasibility comes only when a
specification has been refined to code and all the timing requirements of
that code have been checked.

In the final example, 12, the command is equivalent todeadline 9.
As expected, this fails the real-time feasibility test, but that does not mean
that programs that contain deadline commands are infeasible. The extended
programming language allows deadline commands, but in order to get to
code in the target programming language, all deadlines must be removed
by a timing analysis phase that shows that the generated code will reach
each deadline command before its stated deadline.

The next theorem relatesRTFeasibleρ(C) to the standard feasibility of
an entire process. Any top-level process can be written as a conjunctive
command,C, within a block that declares the inputs and outputs for the
process:|[input x : S; output v : T • C]|. If the body of a process
satisfiesRTFeasible, then the whole process is feasible in the traditional
sense. Intuitively, this result validates our definition ofRTFeasible.

Theorem 2 (Process-Feasibility).Given a conjunctive command, C, if C
is real-time feasible then the top-level process containing just C, with all
the inputs and outputs in C’s environment explicitly declared within the
process, is (standard) feasible.

RTFeasibleρ(C) V
Mφ (|[input x : S; output v : T • C]|) (false) = false

whereφ is the empty environment, andρ = φ +i x +o v.

Proof. AssumeRTFeasibleρ(C).

Mφ (|[input x : S; output v : T • C]|) (false)
≡ Def. 52 (input); Def. 51 (output)

x ∈ Time" S∧ (∀ v : Time" T • Mρ (C) (false))
V drop first conjunct

(∀ v : Time" T • Mρ (C) (false))
≡ SinceC is conjunctive

(∀ v : Time" T • assumpρ(C) ∧ (∀ τ : Time• ¬ effectρ(C))
[

τ
τ0

]
)

A Sequential Real-Time Refinement Calculus 47

≡ distributing∀ over∧
(∀ v : Time" T • assumpρ(C)) ∧

(∀ v : Time" T • (∀ τ : Time• ¬ effectρ(C))
[

τ
τ0

]
V Rewritingassumpρ(C) using definition ofRTFeasibleρ(C)

(∀ v : Time" T •

(∃ τ : Time; v′ : Xτ0 ... τ]" T • effectρ(C)
[

v⊕v′

v

]
)
[

τ
τ0

]
) ∧

(∀ v : Time" T • (∀ τ : Time• ¬ effectρ(C))
[

τ
τ0

]
)

V Using last conjunct (withv beingv⊕ v′) to rewriteeffectρ(C)
[

v⊕v′

v

]
.

(∀ v : Time" T • (∃ τ : Time; v′ : Xτ0 ... τ]" T • false))
V false ut

In conclusion, the definition ofRTFeasibleprovides a useful check that
can be applied to detect most infeasible specifications, even though it is
more complex than the standard feasibility test. Fortunately, it is not essen-
tial to check real-time feasibility when developing a program by refinement.
If the refinement process ends with code, then because code, with the no-
table exception of the deadline command, is real-time feasible, there is no
need to check feasibility except for the deadline commands. Feasibility of
deadline commands comes down to ensuring that the deadline command is
reached at a time before its deadline. To check this we need to check the
actual execution time of the code leading up to the deadline via a timing
analysis process. The role of the deadline command is discussed in more
detail in Sections 3 and 5.2.

5 An example specification and refinement

In this section we illustrate the use of sequential real-time refinement on
the simple example of a message receiver.

5.1 Specification of a message receiver

The environment.Before giving the specification of the operation to be
performed, we need to set up the environment of the receiver. The receiver
takes input from an input buffer register,in, that is assumed to hold the
characters of the message over time. The message is to be assembled and
placed in the local variablemsg, which is a sequence of characters with
indices starting from one.

input in : char; var msg: seq char

48 Ian J. Hayes, Mark Utting

Each character of the message is available in the input buffer for only 80
microseconds and the characters appear in the input buffer at intervals of
100 microseconds.

const chsep= 100µ s; chdef= 80µ s

The receiver begins execution at timestart, which corresponds to the time
at which a start-of-text character was identified in the input stream. The
characters of the message follow the start-of-text character at regular inter-
vals of durationchsep.

con start : Time

The ith character of the message is therefore available in the input buffer
during the interval fromstart+ chsep∗ i until start+ chsep∗ i + chdef.

let interval =̂
(λ i : nat • \start+ chsep∗ i ... start+ chsep∗ i + chdef]) (13)

Thelet construct introduces a syntactic abbreviation.
We would like to state that the input buffer is stable over every interval

up to the first interval that contains an end-of-text (ETX) character. How-
ever, in general there may be more than one character in the input buffer
during an interval. Hence we first introduce the relationchin, that relates
each index,i, to every character in the input buffer during theith interval.
(Later we will see thatchin is a function up to the first end-of-text charac-
ter.)

let chin =̂ {i : nat ; ch : char | ch∈ in�interval(i)� • i 7→ ch} (14)

The receiver assumes that an end-of-text (ETX) character appears in the
input stream.

?
{
∃ i : nat • i 6= 0 ∧ ETX∈ in�interval(i)�

}
(15)

This assumption does not depend onτ . We state it once as an assumption,
rather than including it explicitly in the assumption of the specification (i)
below and numerous specification commands within the refinement. Be-
cause the assumption is frame-invariant, it can be distributed through the re-
finement using Law 26 (frame-invariant-assumption), but we do not bother
to show these steps explicitly.

The message to be received consists of all the characters in the input
stream up until the first end-of-text character. We introducemx to stand for
that position.

let mx=̂ min{i : nat | i 6= 0 ∧ ETX∈ in�interval(i)�} (16)

A Sequential Real-Time Refinement Calculus 49

The receiver also assumes that the input buffer is stable (with the appro-
priate character of the message) for each character time up until the first
end-of-text character.

?
{
∀ i : 1 . . mx• stable(in, interval(i))

}
(17)

From the above properties we can deduce that the stream of input characters
up to the first end-of-text character is uniquely defined, that is, the relation
chin, with its domain restricted to indices in the range 1 through tomx,
inclusive, relates each such index to a single character, and hence it is a
sequence of characters.

((1 . . mx)� chin) ∈ seq char (18)

The binary operator ‘�’ takes a set and a relation and returns the relation
with its domain restricted to the elements in the set.

The specification.Given the above environment, the receiver should ex-
tract the characters from the input stream up to, but not including, the first
end-of-text character, and place them in the variablemsg. The receiver pro-
cess is assumed to start at timestart, and is required to complete within one
character time of the first end-of-text character.

?msg:
[
start = τ ,

msg= (1 . . mx− 1)� chin∧
τ ≤ start+ chsep∗ (mx+ 1)

]
(i)

5.2 Final program and timing analysis

In order to give the reader an idea of the way in which the delay and dead-
line commands are used in practice, we present the final code for the re-
ceiver (Fig. 1) before detailing the refinement of the receiver specification.
The receiver program determines an (upper bound) approximation to the
start time in the variablest, and then proceeds to read all the characters of
the message until an end-of-text character is found. The program in Fig. 1
is not the most efficient implementation of the specification. Its form was
chosen to make the relationship between the original specification and the
refined program as simple as possible.

The final program includes deadline commands. These cannot be com-
piled to machine code, and an analysis of the program is required to de-
termine whether the deadlines are met. The analysis is performed in two
phases. Firstly, paths of the program that end at a deadline command are
analysed to determine the timing constraint on each path. In the second
phase the machine code generated for each program path is analysed to de-
termine whether or not it meets the constraint on the path. In this section we
concentrate on the first phase of determining the paths and their associated
timing constraints.

50 Ian J. Hayes, Mark Utting

A :: ?
{

start = τ
}

;

|[var st : time •
B :: st : gettime;

C :: ?
{

start≤ st
}

;

|[var n : nat ; ch : char •

let INV =̂

(
msg= (1 . . n− 1)� chin∧
1 ≤ n ≤ mx∧ start≤ st∧ ch = chin(n)

)
•

n, msg:= 1, 〈〉;
D :: delay until st+ chsep∗ n;

ch : read(in);

E :: deadline start+ chsep∗ n + chdef;

?do ch 6= ETX→
n, msg:= n + 1, msg� 〈ch〉;

F :: delay until st+ chsep∗ n;

ch : read(in);

G :: deadline start+ chsep∗ n + chdef

od ;

?
{

n = mx
}

]|
]|;

H :: deadline start+ chsep∗ (mx+ 1)

Fig. 1 The receiver program (without procedurereadchar)

Determining timing path constraints.To make life simpler in the analysis,
we require that delay commands are reached before their specified delay
times. That allows delays to be used as the starting point of paths. This is a
stricter requirement than necessary and, although it simplifies the analysis,
it may lead to a valid program failing the analysis.

The first path we consider is the path fromA to D in Fig. 1. It consists
of the allocation of the local variablest, reading the current time intost,
allocatingn andch, and assigning initial values ton andmsg. The starting
time of the path isstart, and the path should finish beforest + chsep∗ n,
if the delay is to be reached before its specified delay time. In the path
n is assigned the value 1. Hence the deadline is actuallyst + chsep. The
time available to execute the path is the difference between the starting and
finishing times:st + chsep− start. This expression contains the variable
st, which contains the retrieved clock time. The minimum, and hence most
pessimistic, value for the path time is whenst is minimal. The smallest

A Sequential Real-Time Refinement Calculus 51

feasible value ofst is start plus the minimum execution time for the path
A–B. Hence we can express the time constraint for the pathA–D as

start+ min(A–B) + chsep− start = min(A–B) + chsep

Aside: A better bound on the minimum value ofst can be determined at
the level of machine code, where the internals of the implementation of
gettime are available. We do not consider such refinements of the path
analysis techniques in this paper.

Having determined the constraint on pathA–D in order to ensure that
D is reached before its delay time, we may assumeD is reached before its
delay time for the analysis of the remainder of the program. The next path
we consider is fromD to E. It includes the lateness of the delay command
(D), and the read command. Execution must reachE beforestart+ chsep∗
n + chdef. Hence the time constraint for this path is

start+ chsep∗ n + chdef− (st+ chsep∗ n) = start+ chdef− st

Again this contains the variablest, but this time the constraint is minimal
whenst is maximal. An upper bound on the value ofst is start plus the
maximum execution time of the pathA–C. Hence the time constraint on the
pathD–E is

start+ chdef− (start+ max(A–C)) = chdef−max(A–C)

For our analysis we require the delay command atF to be reached before
its delay time. Hence we consider the path fromD to F, which consists of
the lateness of the delay atD, the read command, evaluating the loop guard
(to true), and updating the values ofn andmsg. The starting time for the
path isst + chsep∗ n. The finishing time is alsost + chsep∗ n, but along
the pathn has been incremented. To allow for the increment we express
the finishing time in terms of the values of the variables at the start of the
path; that gives the finishing time asst + chsep∗ (n + 1). Hence the time
constraint on the path is

st+ chsep∗ (n + 1)− (st+ chsep∗ n) = chsep

The path fromF to G has the same time constraint as the pathD–E.
The next path we consider is from the delay atF, through the remainder

of the body of the loop, looping back to the start of the loop, and then back
down toF. Its starting and finishing times are bothst+ chsep∗n, but along
the pathn has been incremented. Hence the timing constraint for this path
is the same as for pathD–F.

The next path we consider begins atF, executes the remainder of the
body of the loop, loops back to the start of the loop and evaluates the guard

52 Ian J. Hayes, Mark Utting

(to false) and exits the loop; it then exits the two local variable blocks,
deallocating the associated variables, before reachingH. The path has a
starting time ofst+chsep∗n and a finishing time ofstart+chsep∗(mx+1).
That gives a constraint ofstart+chsep∗(mx+1)−(st+chsep∗n). On exit
from the loop we know thatn = mxfrom the assumption just after the loop.
That assumption was generated as part of the refinement (Sect. 5.3) in order
to allow the timing analysis access to that information. The assumption,
n = mx, allows the constraint to be simplified to

start+ chsep∗ (n + 1)− (st+ chsep∗ n) = start+ chsep− st

As with the pathD–E, this is minimal whenst is maximal. This gives the
time constraint

start+ chsep− (start+ max(A–C)) = chsep−max(A–C)

The final path we need to consider is fromD to H. It corresponds to the
case when the loop guard is false on its first evaluation, and the body of the
loop is never entered. The constraint on the path is

start+ chsep∗ (mx+ 1)− (st+ chsep∗ n)

This is the same constraint as for the pathF–H.

Timing analysis of machine code paths.Having determined constraints on
every timing path in the program, the final phase is to analyse the machine
code generated by the compiler for each path to determine whether it meets
its time constraint. In order to perform the analysis, the timing points in the
high-level language program need to be mapped by the compiler to points
in the generated machine code. In addition, any optimisations performed
by the compiler need to take into account the position of timing points;
code involving accesses or updates to external inputs or outputs may not be
moved across a timing point. These issues are discussed in more detail in
[10], and timing analysis of machine code sequences is discussed in [11].

Timing path constraints and refinement.Note that determining the tim-
ing constraints on paths is, in general, a non-trivial process. Finding all the
deadline directives and extracting their deadline times is straightforward,
but determining a suitable corresponding starting point for the path requires
some intelligence. In addition, simplifying the timing constraint on a path
may require the use of non-trivial properties of the program. These prop-
erties need to be passed from the refinement process to the timing analysis
process via assumptions in the program code. For example, in the receiver
program the property thatn = mxon termination of the loop is required to
simplify the timing constraints on paths exiting the loop. The assumptions

A Sequential Real-Time Refinement Calculus 53

on a path give a collection of constraints that can be used to simplify its
timing constraint. Timing constraint determination can be automated pro-
vided the programs being analysed are of a sufficiently simple form. See
[5] for a more detailed discussion of timing constraint analysis and [4] for
preliminary work on automation of constraint determination.

The integration of refinement and timing analysis into the one develop-
ment process makes it possible to use higher-level program properties to
assist in the timing analysis, and hence simplify constraints that could not
be resolved using just the program code. That may require modification of
the refinement of a program in order to include assumptions that enable
timing path constraints to be simplified.

In the receiver example all the timing constraints can be simplified to
constant values. This is because we have taken care to generate a program
with sensible timing constraints. The refinement process does not preclude
the generation of non-constant timing constraints, such as data dependent
time constraints. However, it is possible for a refinement to generate time
constraints that are so complex that an automated timing analysis process
cannot resolve them. In such cases, the timing analysis process should fail,
and identify the reason for failure.

In the receiver program, the analysis of timing constraints has been sim-
plified by the fact that there is a timing point inside the loop, which effec-
tively cuts the cycle in the loop. Without a cut point in a loop, the whole of
the loop becomes part of a path. One would not expect the timing constraint
on a path containing a loop to be constant. Instead it would be an expres-
sion involving a variable that corresponds to the number of times the loop
is executed. In such a case, determining the timing constraint expression is
no different to a path that does not involve a loop, but the analysis of the
time taken by the machine code for the loop also needs to take into account
the number of times the loop is executed.

5.3 Refinement

In the refinement we do not generate exactly the code given in Fig. 1, in-
stead we introduce a procedure,readchar, which corresponds to the task
of reading a single character. The code including the procedure is given in
Fig. 2. We return to timing path analysis with procedures in Sect. 5.5.

For the refinement we assume the environment described in Sect. 5.1.
The refinement begins from the specification (i) from Sect. 5.1, which we
repeat here.

?msg:
[
start = τ ,

msg= (1 . . mx− 1)� chin∧
τ ≤ start+ chsep∗ (mx+ 1)

]
(i)

54 Ian J. Hayes, Mark Utting

readchar=̂ procedure ? ch:
[
start≤ st, ch = chin(n)

]
vρ |[I :: delay until st+ chsep∗ n;

ch : read(in);
J :: deadline start+ chsep∗ n + chdef

]|

K :: ?
{

start = τ
}

;

|[var st : time •
L :: st : gettime;

M :: ?
{

start≤ st
}

;

|[var n : nat ; ch : char •

let INV =̂

(
msg= (1 . . n− 1)� chin∧
1 ≤ n ≤ mx∧ start≤ st∧ ch = chin(n)

)
•

n, msg:= 1, 〈〉;
N :: ?call readchar;

?do ch 6= ETX→
n, msg:= n + 1, msg� 〈ch〉;

O :: ?call readchar

od ;

?
{

n = mx
}

]|
]|;

P :: deadline start+ chsep∗ (mx+ 1)

Fig. 2 Message receiver program with procedure

Separate out the finishing deadline.The second conjunct of the effect of
the specification is clearly a time deadline. This can be separated out.

(i)

vρ Law 43 (separate-deadline)

?msg:
[
start = τ , msg= (1 . . mx− 1)� chin

]
; (ii)

deadline start+ chsep∗ (mx+ 1)

At this stage of the refinement, one can perform a trivial timing analysis of
the partially refined program. It gives a timing constraint ofchsep∗(mx+1)
for the whole receiver process. As this is linear in the number of characters
to be read, it does not raise any alarms.

Capture the starting time.The starting time of the program is given by
the logical constantstart. Although deadline directives may make use of

A Sequential Real-Time Refinement Calculus 55

logical constants, other commands in the final program code, such as de-
lays, may not reference logical constants. The next few refinement steps are
done with the foresight that the variablest is required as an (upper bound)
approximation to the value ofstart. (The obvious initial refinement is to
usestart instead ofst, but then to get code one needs to then eliminate all
references tostart.) The application of Law 50 (introduce-variable) relies
on the fact that the predicate,start≤ τ , is idle-invariant, and the predicate,
msg= (1 . . mx− 1)� chin, is both pre- and post-idle-invariant.

(ii)

vρ Law 13 (separate-assumption); Law 6 (weaken-assumption)

?
{
start = τ

}
; ? msg:

[
start≤ τ , msg= (1 . . mx− 1)� chin

]
vρ Law 50 (introduce-variable) forst

?
{
start = τ

}
;

|[var st : time •
?st, msg:

[
start≤ τ , msg= (1 . . mx− 1)� chin

]
(iii)

]|

We separate out the capture of the start time via a sequential composition.

(iii)

vρ Law 42 (simple-sequential-composition)

?st, msg:
[
start≤ τ , start≤ st

]
; (iv)

?st, msg:
[
start≤ st, msg= (1 . . mx− 1)� chin

]
(v)

Reading the current time gives an upper bound on the start time.

(iv)

vρ Law 9 (remove-from-frame) onmsg; Law 7 (strengthen-effect)

?st:
[
start≤ τ , st∈ \τ0 ... τ]

]
vρ Law 6 (weaken-assumption); Def. 35 (gettime)

st : gettime

Set up for loop. To read in the characters of the message, a loop that se-
quences through the characters is required. Local variablesch and n are
introduced to keep track of the current character and index in the message.
The following makes use of the fact that the predicate,start ≤ τ , is idle-
invariant, and the predicate,msg= (1 . . mx− 1) � chin, is both pre- and
post-idle-invariant, for the application of Law 50 (introduce-variable).

56 Ian J. Hayes, Mark Utting

(v)

vρ Law 9 (remove-from-frame) onst; Law 50 (introduce-variable)

|[var ch : char ; n : nat •
?ch, n, msg:

[
start≤ st, msg= (1 . . mx− 1)� chin

]
(vi)

]|

The loop invariant indicates that the characters up to positionn− 1 have
been placed in the message and thatch is the next (nth) character in the
input stream. In addition,n remains within the range 1 tomx, andst is
an (upper bound) approximation tostart. A sequential composition corre-
sponding to the loop initialisation and the loop itself is introduced.

(vi)

vρ Law 7 (strengthen-effect)

let INV =̂
(

msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st∧ ch = chin(n)

)
•

?ch, n, msg:
[
start≤ st, INV ∧ n = mx

]
vρ Law 42 (simple-sequential-composition)

?ch, n, msg:
[
start≤ st, INV

]
; (vii)

?ch, n, msg:
[
INV, INV ∧ n = mx

]
(viii)

Initialisation. The initialisation for the loop is performed via a sequential
composition, which first establishes the first three conjuncts ofINV, and
then establishes the last conjunct.

(vii)

vρ Law 42 (simple-sequential-composition)

?ch, n, msg:
[
start≤ st,

msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st

]
; (ix)

?ch, n, msg:
[

msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st

, INV
]

(x)

The initialisation ofn andmsgestablishes all but one requirement of the
loop invariant.

(ix)

vρ Law 9 (remove-from-frame) onch; Law 33 (assignment)

n, msg:= 1, 〈〉

A Sequential Real-Time Refinement Calculus 57

Read one character.The final requirement of the loop invariant is to read
the first character intoch.

(x)

vρ Law 9 (remove-from-frame) onn andmsg

?ch:

msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st

,
msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st∧
ch = chin(n)

vρ Law 24 (frame-invariant); Law 6 (weaken-assumption)

?ch:
[
start≤ st, ch = chin(n)

]
(xi)

At this point rather than perform the refinement of the above specification
command, we introduce a procedure corresponding to the command. The
introduction of this procedure is done with the foresight that we need it
again later in the refinement.

readchar=̂ procedure ? ch:
[
start≤ st, ch = chin(n)

]
(xii)

Now the specification command can be implemented by a call on the pro-
cedure. The introduction of the call makes use of the fact that the predicate,
start ≤ st, is idle-invariant, and the predicate,ch = chin(n), is both pre-
and post-idle-invariant.

(xi)

vρ Law 59 (procedure-call)

?call readchar

Loop guard. The obvious termination condition for a loop refining (viii)
is n = mx. However,mx is an abbreviation which, if expanded, contains a
reference to the external inputin. That is not permitted in a guard. However,
mxcorresponds to the position of the first end-of-text character in the input
stream. From the loop invariantn is less than or equal tomx. Hence, from
(16), n = mx if and only if chin(n) = ETX. However, from the invariant
ch = chin(n). Hencen = mxif and only if ch = ETX. Because the assump-
tion ?

{
n = mx

}
is required for the timing analysis performed in Sect. 5.2,

it is separated out before being replaced bych = ETX in the effect.

(viii)

vρ Law 14 (establish-assumption); Law 7 (strengthen-effect)

?ch, n, msg:
[
INV, INV ∧ ch = ETX

]
; (xiii)

?
{
n = mx

}

58 Ian J. Hayes, Mark Utting

Introduce loop. The variant expression for the loop ismx−n. Because the
loop invariant boundsn by mx, this expression is always a natural number
(a well-founded set). The introduction of the loop makes use of the fact
that the predicateINV is idle-invariant, and the expressionsch 6= ETX and
mx− n are idle-stable.

(xiii)

vρ Law 57 (iteration)

?do ch 6= ETX→
?ch, n, msg:

[
ch 6= ETX∧ INV, INV ∧ mx− n < mx− n0

]
(xiv)

od

Loop body. The body of the loop must make progress by increasingn. It
must also maintain the loop invariant. We introduce a sequential compo-
sition, in which the first component establishes all the required conditions
exceptch = chin(n). The latter is re-established by the second component.

(xiv)

vρ Law 41 (sequential-composition)

|[con u : Time•

?
ch, n,
msg:

u = τ ∧
ch 6= ETX∧
INV

,
msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st∧
mx− n < mx− n0

 ; (xv)

?
ch, n,
msg:

msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st∧
mx− n < mx− n(u)

,
INV ∧
mx− n < mx− n(u)

 (xvi)

]|

In the application of Law 41 (sequential-composition), the logical constant
u is introduced to represent the start time of the sequential composition.
Hence in the effect of the first componentn0 = n(τ0) = n(u), and in the
second componentn(u) is used throughout to refer to the value ofn at the
commencement of the whole composition.

The next character of the message is already inch; this can be appended
to the message. When that action is combined with incrementingn, the
first two conjuncts of the effect, as well as the decrease of the variant are
established. Becausest is not modified, the conjunctstart≤ st is invariant.

(xv)

vρ Law 9 (remove-from-frame) onch; Law 33 (assignment)

n, msg:= n + 1, msg� 〈ch〉

A Sequential Real-Time Refinement Calculus 59

The remaining conjunct of the invariant that needs to be re-established is
ch = chin(n).

(xvi)

vρ Law 9 (remove-from-frame) onn andmsg

?ch:

msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st∧
mx− n < mx− n(u)

,

msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st∧
mx− n < mx− n(u) ∧
ch = chin(n)

vρ Law 24 (frame-invariant); Law 6 (weaken-assumption)

?ch:
[
start≤ st, ch = chin(n)

]
vρ Law 59 (procedure-call)

?call readchar

That completes the refinement of the receiver, except for the refinement
of the procedurereadchar.

5.4 The procedure to read a single character

We start from the specification of the procedurereadchar, which we repeat
here.

readchar=̂ procedure ? ch:
[
start≤ st, ch = chin(n)

]
(xii)

A delay is required until the start of the time interval corresponding to the
nth character. From definitions (13) and (14) in Sect. 5.1, the start of the
nth character isstart+ chsep∗ n.

(xii)

vρ Law 42 (simple-sequential-composition)

?ch:
[
start≤ st, start+ chsep∗ n≤ τ

]
; (xvii)

?ch:
[
start+ chsep∗ n≤ τ , ch = chin(n)

]
(xviii)

In order that the delay is code, it must not reference logical constants. Hence
the (upper bound) approximation,st, to start is used.

(xvii)

vρ Law 9 (remove-from-frame); Law 7 (strengthen-effect)

?
[
start≤ st, st+ chsep∗ n≤ τ

]
vρ Law 6 (weaken-assumption); Def. 36 (delay)

delay until st+ chsep∗ n

60 Ian J. Hayes, Mark Utting

The character must be read before the end of the interval corresponding to
thenth character, which from (13) isstart+ chsep∗ n + chdef.

(xviii)

vρ Law 7 (strengthen-effect)

?ch:
[
start+ chsep∗ n≤ τ ,

ch∈ in�\τ0 ... τ]� ∧
τ ≤ start+ chsep∗ n + chdef

]
vρ Law 6 (weaken-assumption); Law 43 (separate-deadline)

?ch:
[
ch∈ in�\τ0 ... τ]�

]
; (xix)

deadline start+ chsep∗ n + chdef

The external inputin can only be accessed via theread command.

(xix)

vρ Def. 34 (read)

ch : read(in)

The final program is collected in Fig. 2. We note that the program still
includes references to the logical constantstart, but becausestart is only
referenced in assumptions and deadline directives, we have a valid program
in our extended programming language.

5.5 Timing analysis with procedure calls

The timing analysis of the program containing the procedurereadchar is
similar to that for the program without the procedure. We illustrate the dif-
ference by examining a few corresponding paths. We use the notationN:I
to refer to positionI in the procedure called from positionN in the program.
The pathA–D in Fig. 1 corresponds to the pathK–N:I in Fig. 2. The latter
path consists of the allocation of the variablest, the command to get the
current time, allocation ofn andch, initialisation ofn andmsg, and the call
entry overhead of procedurereadcharat N. Both paths have the same time
constraint.

The pathI–J in the version with procedures corresponds to both the
pathsD–E andF–G. These paths all contain the same code and have the
same time constraint. The pathD–F in the version without procedures cor-
responds to the pathN:I–O:I in the version with procedures. That is the path
starting fromI that reads a character, exits the call on procedurereadcharat
N, evaluates the loop guard (totrue), updatesn andmsg, and enters the pro-
cedurereadcharfor a second time atO. The timing constraint on this path
is the same as forD–F. The remaining paths in the version with procedures
are analysed in a similar fashion. The only differences are the overheads for
entering and exiting the procedure.

A Sequential Real-Time Refinement Calculus 61

6 Conclusions

The main advantage of the sequential real-time refinement calculus pre-
sented here is that, to developers, it appears to be a straightforward exten-
sion of the standard refinement calculus. Although it has a different un-
derlying semantics, most of the standard refinement laws carry over, and
the real-time extended programming language is a superset of the standard
target language.

Our conventions of usingx andx0 as abbreviations forx(τ) andx(τ0)
are intended to make refinements of functional components (i.e., not in-
volving time) as close to Morgan’s calculus [18] as possible. In practice,
a development in the real-time calculus is similar to standard refinement
calculus development, but with the addition of steps to separate out tim-
ing constraints and refine them into real-time language constructs. It is the
ability to partition refinements into components dealing with time and those
dealing with functional requirements that allows conventional refinement of
the functional requirements [6].

The specifications provided by our approach are quite general. Not only
do they allow time limits to be specified, but they also allow the detailed
specification of the behaviour of outputs over time, as well as assumptions
about the behaviour of inputs over time.

Real-time specifications may contain timing deadlines, both explicitly
and implicitly. To be able to refine such specifications to code in a real-
time programming language, it too must include mechanisms for specifying
deadlines in the code. The approach we have taken is to extend a real-time
programming language with the deadline directive. This extension provides
amachine-independentsequential real-time programming language. An ad-
vantage of our approach is that deadlines are associated with paths through
the code. This is more flexible and realistic than over specifying deadlines
by requiring each language construct to have a maximum execution time.

Of course to compile a program in our extended programming language,
we must ensure that the compiled code meets all timing deadlines. This
requires a sophisticated timing analysis procedure. Hence our seemingly
simple extension of adding a deadline directive leads to a more complex
‘compilation’ process. However, such analysis is essential to any approach
to ensuring deadlines are met by the machine code of a hard real-time sys-
tem.

In general, the analysis may need to make use of quite general properties
of a program. For example, in the analysis of the exit path from the loop
in the receiver example, the assumption,n = mx, generated during the
refinement, was essential to be able to simplify the timing constraint on
the exit path. The combination of refinement and timing analysis within
one framework, allows such properties to be passed from the refinement to

62 Ian J. Hayes, Mark Utting

the timing analysis as assumptions in the code. Even so, resolving timing
constraints is non-trivial. Details of techniques for extracting timing path
constraints are given in [5]. Analysing machine code to determine worst-
case execution time bounds is dealt with by [11].

In this paper we have developed a refinement calculus for a real-time
extension of Dijkstra’s language. Interestingly, the techniques are able to
cope with the nondeterministic constructs in the language. We believe that
the techniques may be applied to develop a real-time refinement calculus
for other sequential, real-time programming languages, such as Ada. Of
course, we only consider the sequential subset of Ada, and additional re-
search is required to cope with Ada exceptions, etc. Another construct that
is common in real-time programming languages is the time-out; that is an
area for future work.

The motivation for the definition of the specification command comes
from Mahony’s real-time refinement calculus [12]. That calculus allows
specification of system behaviour over all time, and allows refinement of
a specification to a set of truly parallel processes. The sequential real-time
refinement calculus could be used to refine each such process to sequential
code, but more work is required to properly integrate concurrency into our
calculus.

Acknowledgements.We would like to thank Colin Fidge, Stephen Grundon, Jim Grundy,
Brendan Mahony, Raymond Nickson, Trevor Vickers and Luke Wildman for feedback on
earlier drafts of this paper; the members of IFIP Working Group 2.3 on Programming
Methodology for feedback on this topic; and the anonymous referees whose feedback led
to a number of improvements in the paper and the inclusion of Sect. 4.

Ian Hayes would like to acknowledge the support of the the Australian Research Coun-
cil (ARC) Large Grant A49801500,A Unified Formalism for Concurrent Real-time Soft-
ware Development, The University of Queensland Special Studies Programme for the sec-
ond half of 1996, and the hospitality of both the Oxford University Computing Laboratory
and the Department of Computer Science at the Australian National University. Part of
Mark Utting’s contribution was funded by the Information Technology Division of DSTO.

References

1. R.-J. Back. Correctness preserving program refinements: Proof theory and applica-
tions. Tract 131, Mathematisch Centrum, Amsterdam, 1980.

2. R.-J. Back and J. von Wright.Refinement Calculus: A Systematic Introduction.
Springer, 1998.

3. E.W. Dijkstra.A Discipline of Programming. Prentice-Hall, Englewood Cliffs, 1976.
4. S. Grundon. Timing constraint analysis for real-time programming. Honours thesis,

Department of Computer Science, The University of Queensland, November 1996.
5. S. Grundon, I. J. Hayes, and C. J. Fidge. Timing constraint analysis. In C. McDonald,

editor,Computer Science ’98: Proc. 21st Australasian Computer Sci. Conf. (ACSC’98),
Perth, 4–6 Feb., pages 575–586. Springer, 1998.

A Sequential Real-Time Refinement Calculus 63

6. I. J. Hayes. Separating timing and calculation in real-time refinement. In J. Grundy,
M. Schwenke, and T. Vickers, editors,Int. Refinement Workshop and Formal Methods
Pacific 1998, pages 1–16. Springer, 1998.

7. I. J. Hayes and B. P. Mahony. Using units of measurement in formal specifications.
Formal Aspects of Computing, 7(3):329–347, 1995.

8. I. J. Hayes and M. Utting. Deadlines are termination. In D. Gries and W.-P. de Roever,
editors, IFIP TC2/WG2.2, 2.3 International Conference on Programming Concepts
and Methods (PROCOMET’98), pages 186–204. Chapman and Hall, 1998.

9. J. Hooman. Assertional specification and verification. In M. Joseph, editor,Real-time
Systems: Specification, Verification and Analysis, chapter 5, pages 97–146. Prentice
Hall, 1996.

10. K. Lermer and C. J. Fidge. A methodology for compilation of high-integrity real-
time programs. In C. Lengauer, M. Griebel, and S. Gorlatch, editors,Euro-Par’97:
Parallel Processing, volume 1300 ofLecture Notes in Computer Science, pages 1274–
81. Springer-Verlag, 1997.

11. Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul Min,
Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and Chong Sang
Kim. An accurate worst case timing analysis for RISC processors.IEEE Trans. on
Software Eng., 21(7):593–604, 1995.

12. B. P. Mahony. The Specification and Refinement of Timed Processes. PhD thesis,
Department of Computer Science, University of Queensland, 1992.

13. B. P. Mahony. Calculating the least conjunctive refinement and promotion in the re-
finement calculus.Formal Aspects of Computing, 11:75–105, 1999.

14. B. P. Mahony and I. J. Hayes. A case study in timed refinement: A central heater. In
Proc. BCS/FACS Fourth Refinement Workshop, Workshops in Computing, pages 138–
149. Springer, January 1991.

15. B. P. Mahony and I. J. Hayes. Using continuous real functions to model timed histories.
In P. A. Bailes, editor,Proc. 6th Australian Software Engineering Conf. (ASWEC91),
pages 257–270. Australian Comp. Soc., 1991.

16. C. C. Morgan. Data refinement using miracles.Information Processing Letters,
26(5):243–246, January 1988.

17. C. C. Morgan. Procedures, parameters, and abstraction: Separate concerns.Science of
Computer Programming, 11(1):17–28, 1988. Reprinted in [?, pages 47–58].

18. C. C. Morgan.Programming from Specifications. Prentice Hall, second edition, 1994.
19. J. M. Morris. A theoretical basis for stepwise refinement and the programming calcu-

lus. Science of Computer Programming, 9(3):287–306, 1987.
20. D. J. Scholefield.A Refinement Calculus for Real-Time Systems. PhD thesis, Depart-

ment of Computer Science, University of York, U.K., 1992.
21. D. J. Scholefield, H. Zedan, and He Jifeng. A specification-oriented semantics for the

refinement of real-time systems.Theoretical Computer Science, 131:219–241, 1994.
22. M. Utting and C. J. Fidge. A real-time refinement calculus that changes only time. In

He Jifeng, editor,Proc. 7th BCS/FACS Refinement Workshop, Electronic Workshops in
Computing. Springer, July 1996.

23. M. Utting and C. J. Fidge. Refinement of infeasible real-time programs. InProc.
Formal Methods Pacific ’97, pages 243–262, Wellington, New Zealand, July 1997.
Springer.

