SOFTWARE VERIFICATION RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF QUEENSLAND

Queendand 4072
Australia

TECHNICAL REPORT

No. 93-6

Deriving Modular Designs from Formal Specifications

David Carrington and David Duke and lan Hayes and Jim Welsh

April 1993

Phone: +61 7 365 1003
Fax; +61 7 365 1533

Deriving Modular Designs from Formal Specifications

David Carrington* and David Duke! and Tan Hayes* and Jim Welsh*

September 30, 1993

Abstract

We consider the problem of designing the top-level modular structure of an imple-
mentation. Our starting point is a formal specification of the system. Our approach is to
analyse the references to the state variables by the operations of the system. Those vari-
ables that are referenced/modified together are likely candidates for forming the state
of a module. We evaluate the strategy by applying it to a large 7Z specification of a
language-based editor.

1 Introduction

We would like to develop techniques that assist software engineers to modularise a system.
Our starting point for system development is a formal specification consisting of a state, typi-
cally containing a large number of variables, and a set of operations on the state. We consider
the problem of developing modular structures suitable for an implementation starting from
the specification, but not (necessarily) using the explicit structure of the specification.

In Section 2, we explain our approach as a two-step process:

e analysing the formal specification to produce cross-reference information between the
specification state variables and the top-level operations,

e synthesizing a collection of modules from this cross-reference.

A further projection stage (discussed briefly in section 2.3) is required to define the signatures
and pre- and post-conditions of the module-level operations.

As a case study, in Section 3 we examine the application of the techniques to a Z [8, 16]
specification of a language-based editor [18, 1]. In the remainder of the introduction, we
discuss the multiple roles of formal specifications and the concept of modularity.

1.1 Formal specifications

Formal specifications are gaining acceptance as an important component of methods for
developing high-quality software. A formal specification has many roles in the development
process. Some examples are:

*Department of Computer Science, The University of Queensland, Brisbane, 4072, Australia
'Department of Computer Science, University of York, Heslington, York, YO1 5DD, U.K.

e as a vehicle for precise communication between the customer and the software supplier,
e as the standard against which the final program code is verified, and

e as a model from which it is possible to prove properties as an aid to validating the
formal specification against the informal requirements.

In this paper, our interest is on using formal specifications as a starting point for the software
development process. While this might seem the most obvious use of a formal specification,
people such as Hall [6] claim it is not the most important and that formal specifications are
valuable without using them in a formal development process. The latter claim is undoubt-
edly true. However, without a direct link between the formal specification and the software
development process, the task of verifying that the program code satisfies the specification
rapidly becomes infeasible with increasing system size.

We are interested in techniques that start with a formal specification and systematically
incorporate design decisions leading to the program code. Such techniques provide an audit
trail of the design process that can be checked independently. This is invaluable for future
maintenance.

Existing formal development techniques such as VDM [9] and the refinement calculus [11]
provide techniques such as data reification (refinement) but there is no guidance in these
methods for achieving suitable modularity.

1.2 Modularity

An often-stated objective in software development [15, page 68] is to achieve a design that is
easy to understand and to modify. In a large system, one should be able to understand each
component independently, rather than having to examine each in the context of the rest of
the system. The ideal is to have a design in which changes to the system can be isolated to
changes in a single component. The choice of components and their composition is significant
in determining the overall complexity of the system and so contributes to the ease with which
the system can be understood. It is also significant for the development process since

e programming and testing of each component can be performed independently, and

e parts of the system can be changed throughout the system’s lifetime without necessarily
revising or retesting other parts.

To achieve these goals, the choice of structure is influenced by factors other than the system’s
required functionality.

Modularisation aims to manage the complexity of software — an example of the divide and
conquer strategy. Meyer [10, page 11] claims that modularity is one of the favourite buzzwords
of software engineering. Certainly modularity is a concept that is widely promoted but it is
not always defined consistently. Yourdon and Constantine [21, page 32] state:

A module is a lexically contiguous sequence of program statements, bounded by
boundary elements, having an aggregate identifier.

This very general definition encompasses procedures, functions, coroutines, and tasks and
relates primarily to the functional-design methods where single-entry single-exit modules are
emphasised.

Parnas’ widely-quoted 1972 paper [13] established the information-hiding principle as a basis
for modularisation. The principle states that every module should be characterised by its
knowledge of a design decision that it hides from all others. As a consequence, data structures
and their accessing and modifying procedures are typically part of a single module. This
view of a module did not suit the syntactic structures of programming languages of that time
and it has taken considerable time to become accepted. Abstract data types, programming
languages such as Modula-2 and Ada, and growing interest in object orientation have all
served to make Parnas’ view of modules more widely accepted.

The information-hiding principle is not sufficient to determine a unique module structure.
Other qualitative criteria that are used to guide modular decomposition are cohesion and
coupling [21]. These criteria were originally proposed for functional-design modules but the
definitions can be extended for information-hiding modules [5, 14].

The aim of a modular decomposition is to produce a loosely-coupled set of modules, each
of which is highly cohesive. A cohesive module is responsible for a single part of the func-
tionality of the system. In the context of a state-based specification of a module, one way
of interpreting this is to consider how the operations act upon the state. For example, if a
subset of the operations require only a subset of the state to define their effect, then one can
argue that the module is not cohesive and should be split. On the other hand, if operations
of one module need access to the state variables of another module in their definition, the two
modules are tightly coupled, and should perhaps be merged or regrouped. The two criteria
are not independent and the design challenge is to achieve a decomposition that is satisfies
both criteria. It is easy to improve one criterion at the expense of the other, for example
splitting a module to improve cohesion but introducing additional coupling.

2 Modular design method

The simplest approach to structuring a design is to use the structure of the specification. This
approach however can be unduly restrictive. As explained in Section 1, the specification has
many roles in the software development process and its structure must to chosen to satisfy
the combination of these roles. For this reason, we take a less restricted approach that does
not use the explicit specification structure directly, rather it relies on our analysis of the
specification as a guide in determining a suitable modular structure. Of course, it is still
possible that parts of the implementation structure could follow that of the specification. In
that situation, the job of synthesizing the corresponding module specifications is simplified.

Before we delve into the details of techniques for modularising large systems, it is appropriate
to point out that the first step in the refinement of such a system may not be devising a
modular structure, but may be a top-level data refinement that changes the representation
of the system state. However, once this data refinement has been performed, modularisation
of the system may be the appropriate next step. In general, we see the modularisation
techniques outlined below as being applicable at any stage of the refinement process, but we
have concentrated on applying them to the top-level specification because we see that as a
likely place for the techniques to be exercised.

In Section 2.1, we describe a method for analysing the patterns of reference by operations

to state variables with the aim of grouping variables that are referenced together to form
the state of a module. We also consider what additional specification-level information or
structure can assist in this process (without compromising the specification by overloading
it with design information). In Section 2.2, we consider how to use the information derived
from analysing the specification to synthesise a suitable modular structure by partitioning
the state space.

One advantage of the two-step process is that only the first step is specific to a particular
specification notation and our approach should be adaptable to other model-based specifica-
tion languages, such as VDM.

In order to achieve the goal of a loosely-coupled set of cohesive modules in the implementation,
we argue that the first step should be to partition the abstract specification into a loosely-
coupled set of cohesive abstract modules. We do this by partitioning the abstract state of
the system and taking projections of the system operations. If we partition the abstract
state in a manner that leads to a cohesive set of modules acting on the abstract state, the
concrete implementation should follow suit. To put it another way, if the abstract views
of the modules are highly coupled or not cohesive, it is likely that the concrete ones will
be as well. The partitioning of the state and operations into modules can be viewed as a
combination of data refinement and procedural refinement.

2.1 Analysing the specification

Given a specification that describes a system in terms of a state and operations on that state,
the goal of analysis is to produce a table cross-referencing state variables and operations. Fach
entry in the table has one of three values:

eq (equated) the operation neither references nor changes the value of the variable;
rd (read) the operation references the variable but leaves its value unchanged;

wr (written) the operation potentially changes the value of the variable (and may also
reference its value).

Having extracted this information, we can group operations according to the variables they
refer to and/or modify. A useful extension is to consider grouping operations according to
the sets of variables that they refer to and/or modify.

We should include a warning here: just because variables are always referenced together
does not mean that they should be part of the same module. They may have quite different
purposes that could be easily split into separate modules. The converse is, however, more
likely: if variables are not referenced together, then it is unlikely that they will form a suitable
grouping for the state of a module.

Identifying variables explicitly as being completely derived from a set of other variables may
also be useful, because if none of the other variables are modified then neither is the derived
variable. There is not necessarily a unique way of classifying variables as derived or non-
derived. For example, a variable p may be derivable from a set of other variables, p = f(q, r).
Depending on the function f, it may be possible to express the relationship as ¢ = g(p, r).
In addition, p may be also derived from a different set of variables e.g. p = h(s, t). To record
the derived relationship between variables, we need to record for each variable, minimal sets
of other variables from which it can be derived.

In the 7 specification of the UQ2 editor, for example, the state of the edited document
is represented by the string of characters preceding the cursor, upstream, and the string
following the cursor, downstream. As well, there is a derived variable sir: the complete
document string, that is, the concatenation of upstrearmn and downstream. This state is
described in Z by declaring all three variables and linking them with a coupling invariant.

—DOoC

upstream, downstream, str : seq Char

str = upstream ~ downstream

Although we have described str as a derived variable, for this example, the value of any of
these three variables can be derived from the values of the other two. However this fact is
based on the semantic properties of the ‘" operator and can not be deduced syntactically.
Such closely coupled variables complicate the analysis a little as we must be careful to examine
the effects of the coupling invariant. In practice, however, such closely coupled variables do
not cause a significant problem for modularisation, as they are typically grouped into the
same module by the partitioning process.

Other than ensuring that we recognise the coupling between the variables in the analysis
phase, we do not have to treat derived variables specially. Once the variables are all in a
single module, it is likely that they will be data refined as a group. For example, the editor
document state DOC may be represented by the complete document string plus an index
representing the current cursor position.

2.1.1 Analysing Z specifications

In this section, we describe two specific examples of issues that arise with the Z specification
notation:

e The open-world view of Z makes it difficult to determine which state variables are
potentially changed by an operation. The practice of using additional state variables
to simplify the expression of the specification but whose value is determined by other
variables also complicates the analysis process.

e 7 specifications are often constructed in a bottom-up style so that the reader is intro-
duced gradually to the concepts in the system. Examples are [8, the block-structured
symbol table chapter in Part A] and [12]. The technique commonly used to achieve this
is called framing or promotion. Naive analysis of promoted operations fails to achieve
a sufficiently fine-grained result so special techniques have been developed.

For a specification written in a notation such as 7 that uses the predicate calculus, establishing
that a variable is unchanged by an operation would, in general, require theorem proving. In
practice, however, it is desirable to automate the analysis of specifications, and consequently
we have settled for a syntax-based approximation to the result implied by a semantic analysis.
By approximation we mean that our analysis may indicate that a variable is referenced (rd
or wr) by an operation although it could be shown from the semantics of the specification
that the variable is unchanged or need not be referenced. This apparently ‘pessimistic’ view
is founded on the semantics of Z, and in particular, the interpretation given to operation

specification. An operation is defined by relating the value of state variables before the
operation to their value after. Unless otherwise constrained, a variable in a Z specification
is free to take any value within its type. Consequently, unless the before and after values of
a variable are constrained to be equal (the variable is said to be equated), the value of that
variable may be changed by the operation. At the level of modular design, this corresponds
to the operation having write access to the variable.

This issue raises the question of what additional information can be supplied with the spec-
ification to aid in analysing the specification, without compromising its role.

Other specification methods provide more help in this area. For example, VDM [9] uses read
and write imports to identify explicitly state variables that are referenced without modifica-
tion and with the possibility of modification, respectively. In Object Z, delta lists provide
the state variables that may be changed [2, 4].

The promotion technique allows operations specified on state S to be promoted to operations
on a larger state that contains S as a component. A typical example is the promotion of an
operation on a state 5:

_ 9
a: A
b:B
c:C

P(a,b,c)

to operate on a state of the form:
F: X+ 5§

so that the operation takes place on just one element of the function F.

A naive approach to the analysis of such a specification would treat F as a single state variable
and, if a promoted operation modifies any of the components of S, it would be considered to

modify F.

To get a more detailed view of variable access in our analysis, there is a simple transformation
that can be applied to the specification so that the components a, b and ¢ are treated
separately. First we replace F by,

Fa: X + A
Fb: X - B
Fe: X - C

dom Fa = dom Fb = dom Fc¢
V2 :dom Fa e P(Fa(z), Fb(z), Fe(z)).

The relationship between this new state and F'is,

Fa=(Az:dom F e F(z).a)
Fb=(Az :domF e F(z).b)
Fe=(Az:domF e F(z).c)

In the specification any references to F(z).a can be replaced by Fa(z), etc.

With this separated state, it is possible to achieve a finer granularity of analysis on the state
variables of the system.

Note that the form of the above description is intended only to give a theoretical view of how
a finer granularity can be achieved. In practice, an analyser may not actually transform the
specification before doing the analysis. It may directly analyse the specification to come up
with the same results. For example, it may indicate that F'(x).a is modified to indicate that
the transformed Fa is modified.

2.2 Synthesizing modules

With the information that can be gathered about groupings of operations with respect to
groupings of state variables, it is possible to make reasonable attempts to partition the state
variables into modules. The analysis gives a guide to how to partition the ahstract state,
but the final decision is left to the judgement of the designer who may take other factors
into account. The aim is to choose a modular structure that minimises the coupling required
between modules and maximises the cohesion within a module. The designer who may
be influenced by additional information not available to the analysis process, such as the
availability of existing modules. The role of the analysis and synthesis results is to provide
the designer with a global view that can act as the first draft of the top-level modularisation.
With a large specification, it is easy to forget about some of the interconnections if the
modularisation is performed manually. Without domain knowledge however, the automatic
process is inevitably incomplete and will require fine tuning by the designer.

An initial partitioning can be formed by grouping together sets of operations that modify
and/or reference similar sets of state variables. This can be further refined by recognising
that some sets in the partition can be further subdivided because, although they reference
similar variables, they perform logically distinct functions. This second step requires domain
knowledge and hence is not automatable.

The initial partitioning is not necessarily simple and techniques to deal with problems that
arise must be available. One common situation is that a particular state variable is referenced
from two distinct sets of operations. A simple example is given in Figure 1 where the variable
b is referenced by both operations (a blank entry denoted the equated relationship).

Variables

alb|c

Operation-1 | w | 1

Operation-2 w|T

Figure 1: Example of overlapping state spaces

Of course, there may be more than just a single variable in the overlap between the two
distinct sets of operations, and there may be three (or more) distinct groups with variables
in common to all groups. Below we concentrate on the special case of a single variable that
is in the overlap between two modules, as this allows a simpler presentation of the proposed
strategies. The techniques for handling the more general case are straightforward extensions
of the strategies discussed below.

When a state variable is referenced from two distinct sets of operations, it makes sense
to structure the system into two modules with the overlap between the state spaces either
contained in a third shared sub-module or duplicated in both modules.

Shared sub-module With this technique, the structure chosen consists of two top-level
modules with a shared subordinate module. The strategy of hiving off common parts into
a separate, subordinate module will be recognised as a basic technique used in engineering
software. The analysis of the specification can aid in identifying suitable sub-module states.
This is beginning to create a hierarchy of modules that will be extended as the design process
continues. For the example in Figure 1, the variable b would be the state of the subordinate
module.

Duplicated variables Another possibility in resolving the partitioning problem is to allow
some state variables to be duplicated in different modules. If operations can nondeterminis-
tically choose the value of the duplicated variable, care needs to be taken to ensure that the
choice is made consistently in the two modules. Effectively, there is a global invariant in the
specification equating the duplicate variables. If there is a choice for the variable value then
we require that the two modules make the same choice. In practice, we would like to avoid
such global invariants (a form of module coupling) and hence would only duplicate variables
that are uniquely determined by all operations. If there are multiple choices for the value
of a variable, then it is simpler to make the choice unique by a top-level refinement before
duplicating the variable and partitioning the state.

Designers will be familiar with the strategy of duplicating information — usually in different
representations — to provide efficient implementations for different groups of operations
of a system. This strategy can be incorporated into our modularisation method during
the partitioning of the state, although perhaps we should point out that we use the word
‘partition’ loosely, as the sets in our partition are not necessarily disjoint with this strategy.

2.2.1 Synthesis Techniques

The aim of the synthesis process is to transform the specification (as represented by the
cross-reference table) into an equivalent collection of modules where each module captures
some of the functionality of the original system. Thus each module can be represented by its
own cross-reference table.

To direct this transformation, we are developing quantitative measures for cohesion and
coupling in terms of the cross-reference table values. A possible definition for the cohesion
of a single module is:

no. of read or written entries

cohesion(M) =
(M) total no. of entries in M’s cross-reference table

with the overall cohesion of a design defined as the minimum cohesion over all modules.
Our view of coupling is simple: two modules are coupled if they share a common variable
or if an operation requires access to them both. The actual number of shared variables is
not considered important. A definition for the coupling of a design is the number of coupled

modules divided by the potential number of coupled modules. Both measures lie in the range
0to 1.

Various clustering and grouping algorithms are being investigated to help identify potential
modules. The intention is to highlight patterns of reference to subsets of variables within the
system state by subsets of operations. Such subsets of the state variables are candidates for
the state of a cohesive module.

Splitting The splitting approach treats the original specification as a single module with
no coupling but low cohesion. This module is then partitioned into two or more modules,
each with higher cohesion than the original. The splitting process can then be repeated for
each module whose measure of cohesion is still considered unsatisfactory.

Joining This approach starts with every variable in a separate module and selects a pair
of highly-coupled modules to combine into a new composite module. The pair is chosen
so as to minimise the coupling of the new design. The coupling arises from operations that
require access to multiple modules. The joining process is continued until the level of coupling
between any two pairs of modules is considered appropriate.

Graph algorithms A further approach treats the cross-reference table as a graph with a
read or written entry represented by an edge. The graph is then processed to extract a tree
representing the module hierarchy [3]. The Choi and Scacchi algorithm was developed for ex-
tracting design descriptions from implementations. A tree structure representing the system’s
architectural design is derived from a network of relationships between implementation-level
modules. The algorithm breaks the network into its biconnected components with the artic-
ulation points generating interior nodes of the tree.

For our synthesis phase, we can apply it to the cross-reference network to identify variables
that are referenced by two distinct sets of operations. Another technique represents just
the variables as nodes with an edge between two variables when the number of operations
accessing those variables exceeds some threshold. A variety of designs can be generated by
adjusting the threshold.

2.3 Designing module operations

Having identified the state variables that are to be grouped together to form the state of a
module, we need to identify operations on this state. Here are two approaches:

e posil the operations on the module state and then implement the top-level operations
in terms of these — the traditional approach, and

o calculate the projection of the top-level operations that refer to the state variables of
the module — the calculus approach.

A combination of these approaches is likely to be more practical. The calculus approach
can provide a first-level approximation to the required operations. Then a modicum of
generalisation /abstraction/good taste can be applied to give a more widely applicable module
design. Looking for commonalities amongst the projected operations is an obvious starting
point for this process. An issue here is allowing for changes to the top-level specification,
without necessitating changes to the module interfaces, only the way they are used. We want
each module to provide a set of primitive operations from which more complex operations

can be built, rather than a set of operations designed specifically for the current version of the
application. For each top-level operation, it is then a matter of developing an implementation
in terms of the operations provided by the modules.

3 UQ2 case study

To aid our evaluation of analysis and synthesis techniques, a substantial case-study prob-
lem in modularisation has been used. The case study focuses on a generic language-based
editor (UQ2) under development at the University of Queensland. UQ2 is a multi-lingual
editor designed to manipulate documents containing a variety of symbolic notations or lan-
guages in a closely interleaved fashion. Such documents arise in software development where
specifications, refinements, proofs, programns and informal descriptions are generated.

The editor’s facilities have been specified in Z. The specification is a substantial document
of about one hundred pages which is structured to describe the editor in six stages. At
each stage, additional elements of the editor state and relevant operations are introduced.
Each stage builds on the previous stage (using promotion as explained in Section 2.1) and is
intended to be a complete specification of an editor with each one being successively closer

to UQ2.

The modularity project has focussed on the fourth stage since it incorporates the core editor
functionality but omits the file and window handling. To give some idea of the size of the
specification, the first four stages have 271 schema definitions, of which only 32 are top-level
operations for the fourth level. The state contains 54 state variables, a number that increases
to 74 after expansion of schema-valued variables, including promotions. Schema expansion
is performed, taking into account the 7 conventions for ‘A’ and ‘=’ schemas. FExpressions are
expanded using the semantics of the schema operators. As a result of expansion, operation
schemas have large signatures: 50 variables is typical in the case study.

The Z definitions are analysed and annotated with attributes:

e Each state schema has an invariant attribute that lists all variables linked by a state
invariant. There are 165 invariant attributes in the case study (some of these are
generated by the expansion of schema-valued variables). A functional dependency
attribute records where one set of variables completely determine the value of some
other variable. These attributes identify derived variables and elements of the state
that may be modified implicitly by operations.

e Each operation schema has three attributes that contain a list of variables that are
read, written, or are explicitly unchanged by the operation. These lists are disjoint.
The case study has 69 read, 1281 write and 1012 equate dependencies.

The analysis generates relations between elements of the specification state and the system
operations. One compact display for this information is a table, with each row representing
an operation and each column representing a state variable. The entries in the table encode
the type of relationship that holds between the operation and the state variable. Figure 2 is
an example representing part of the results for the case study after applying some clustering
techniques. The figure gives an indication of the results obtained without details from the
editor case study of the particular state variables. Only the read and written attributes are

10

Operations State Variables
11111111112222222222333333333
12345678901234567890123456789012345678
highlight 1| rrrr rr UWWUWWUWWUWW W
operations 2 | rrrr T UWWIWWUWWUWW W
3 r rr UWWUWWUWWUWW
4 r rr UWWUWWUWWUWW
5 IrIrr WWUWWUWWUWWW
6 Irrr WWUWWUWWWWWW
7 Irrr WWUWWUWWWWWW
8 rrr WWUWWUWWUWEW
9 Irrr WWUWWUWWUWWW
10 IrIrrr WWUWWUWWUWWW
pan forward 11 IrYWHUUWWWUWHWHEY W
pan backward 12 hararacaodndndogranananananacad W
zoom—in 13 T THAWIWIWNTRWAWIWW
zoom-out 14 | rIYrrIrrrYWYWWUWWWUTHRW W
fold 15 | WUWWWWWWUL WUWWWWWUWWWUW W
unfold 16 | WUWUWUWUWI WUWWWUWUWWEWW W
search 17 | WIWWWWWIWHTA W WA OW rUWw
operations 18 | WUWWWWWWIWWWWIWWWITHHR W TWUW
19 | WUWWWWWWIWWWWIWWWITAWWEW IrTUWW
20 | YWWWWWUWWITHWWITWWWWIWRY WIWWWW
21 r WIWIWUWUWWWW WUWWW
paste 22 | WWWUWWUWWITWWW IR IIWRE WY
operations 23 | WWWWWWUWWITHWW IR TIWRE WY
24 | UWWWWWUWWITHWWITWWWIIWRE WY
25 | WWUWWWUWWITWWWITWWRWIIWRE WY
26 | WWWWWWUWWITWWW IR UIWRERY
27 | WWUUWWUWWITHWW IR TIWRRWY
insert 28 | WWWWWWWUWW WWUWWUWWWIWRWW
backspace 29 | YWWUWUWWWY WUWWWWUUWUWWEW
zoom-out+ingsert 30 | rrrrrrrrruwWWIVIWWUNWWWWWY
save 31 | YWUWUWUWUW WWWW TUWNWHUW
set language 32 r w WUW W

Figure 2: Example relationship table between state variables and operations for UQ2.

11

shown to highlight the structure of references. This table also omits dependency and invariant
relationships as these seem to be of secondary importance in finding module structure.

To illustrate how the table may be interpreted, the first 23 variables represent various aspects
of the editor contents (e.g. 5 is the parse tree, 6 is the string of characters, and 24 is the
currently highlighted string); 26 is the current input language; variables 29 to 36 are search
parameters. The first ten operations involve moving the highlight. Some components of editor
contents are potentially changed by these operations since highlight moving operations can
change the current context which is part of the editor contents. Operations 17 to 21 are
search operations while the next nine operations perform insertions. The cross-reference
table generated by the analysis phase has been useful for checking the formal specification.
Several errors and omissions have been identified by tracing relationships identified by the
analysis phase.

The evaluation of the various synthesis algorithms is at an early stage. Our preliminary
results are encouraging based on informal evaluations using knowledge of the specification
and the current implementation. We need to establish methods for assessing the quality of
module designs.

For the case study, the split algorithm is more appropriate than the join algorithm as there
are a lot of highly dependent variables and because we expect to get only a few modules at

the top level. Many iterations of the join algorithm are required to achieve a design with a
satisfactory level of coupling.

We are interested in comparing the structure of modules arising from analysing the formal
specification of the UQ2 editor with those developed by conventional software development
methods. We expect that such a comparison will identify additional strategies employed by
human designers, but may reveal opportunities for modularisation that were not obvious.

4 Conclusions and future work

We have presented techniques for analysing large specifications with a view to devising a
modular structure for an implementation, and discussed the application of these techniques
to a substantial case study. The results are encouraging.

The techniques discussed in this paper are seen as aids to the designer, rather than a pre-
scription of a mechanical process for modularisation. Ultimately the designer must judge the
best approach to system design, aided by the information provided by the techniques.

A partial implementation of the analysis process as described in Section 2.1 has been under-
taken using Nu-Prolog [17]. The prototype handles analysis from the level of specifications
down to the level of schemas, but beyond that relies on data obtained from the specification
by hand. Instead of operating on the abstract syntax tree of a specification, the prototype
works on a collection of definitions derived manually from a given specification. Various
prototypes for the synthesis phase have been developed which use data generated from the
analysis phase.
Our goals for future work include

1. completing the tool set for the analysis and synthesis phases. For the analysis phase,

direct extraction of the information from a 7 specification document is required. Devel-
oping tools that allow some interaction in the synthesis process would be desirable so

12

the designer can influence the modular decomposition. This capability would allow a
designer to experiment with alternative decompositions and observe the consequences.

2. evaluating more fully the results obtained with automatic analysis of 7Z specifications
and comparing them with traditional approaches to modular decomposition. Additional
case studies will be helpful to demonstrate the applicability of our techniques.

3. integrating the tools for module design into a user-oriented environment. Qur favoured
approach is to use a language-based editor customised for Z documents (such as [7])
and couple the modularity tools as ‘back-end’ analysers [19, 20].

4. investigating the projection of operations onto modules to generate possible signatures
and pre- and post-conditions to describe required behaviour.

For application in a real software development environment, the development of tools to
assist in the application of these techniques is essential.

5 Acknowledgements

We gratefully acknowledge feedback on the above work from Peter Bancroft, Roger Duke, Cliff
Jones, Brendan Mahony, Nigel Ward and Luke Wildman. The work reported in this paper
has been supported by Australian Research Council grant number A48931426: Modularity
in the derivation of verified software.

References

[1] B. Broom, J. Welsh, and L. Wildman. UQ2: a multilingual document editor. In The
Fifth Australian Software Fngineering Conference, pages 289-294, Sydney, May 1990.

[2] D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and G. Smith. Object-Z: An
object-oriented extension to Z. In S. Vuong, editor, Formal Description Techniques

(FORTE’89). North Holland, 1990.

[3] S.C. Choi and W. Scacchi. Extracting and restructuring the design of large systems.
IFEFE Software, 7(1):66-71, January 1990.

[4] R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specification language: Ver-
sion 1. Technical Report 91-1, Software Verification Research Centre, Department of
Computer Science, University of Queensland, Australia, 1991.

[5] D.W. Embley and S.N. Woodfield. Assessing the quality of abstract data types written
in ADA. In Proceedings of the 10th International Conference on Software Engineering,
pages 144-153. IEEE, 1988.

[6] A. Hall. Seven myths of formal methods. IEEFE Software, 7(5):11-19, 1990.

[7] 1. Hayes, R. Neucom, and J. Welsh. An editor for Z specifications. In Advance Papers
for CASFE 89 Workshop, London, July 1989.

[8] Tan Hayes, editor. Specification Case Studies. Prentice Hall International, second edition,
1993.

13

[9] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall, second
edition, 1990.

[10] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.
[11] C. Morgan. Programming from Specifications. Prentice Hall, 1990.

[12] C. Morgan and B. Sufrin. Specification of the UNIX filing system. IEFE Transactions
on Software Engineering, 10(2):128-142, 1984.

[13] D.L. Parnas. On the criteria to be used in decomposing systems into modules. Commu-
nications of the ACM, 15(12):1053-1058, December 1972.

[14] S. Patel, W. Chu, and R. Baxter. A measure for composite module cohesion. In Proceed-
ing of the 14th International Conference on Software Engineering, pages 3848, 1992.

[15] I. Sommerville. Software Engineering. Addison-Wesley, second edition, 1985.
[16] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second edition, 1992.

[17] J. Thom and J. Zobel. NU-Prolog reference manual (version 1.3). Department of
Computer Science, University of Melbourne, 1986.

[18] J. Welsh, B. Broom, and D. Kiong. A design rationale for a language-based editor.
Software — Praclice and FEzperience, 21:923-948, 1991.

[19] J. Welsh and Y. Yang. Tool integration techniques. Proc. 6th Australian Software
FEngineering Conference (ASWEC ’91), pages 405-418, July 1991.

[20] J. Welsh and Y. Yang. A loosely-coupled tool interface for interactive software develop-
ment. Proc. 15th Australian Computer Science Conference, pages 967-980, Jan 1992.

[21] E. Yourdon and L.L. Constantine. Structured Design: fundamentals of a discipline of
computer program and systems design. Yourdon Press, second edition, 1978.

14

