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Coercing Real-time Refinement:

A Transmitter

Ian J. Hayes∗ Mark Utting†

Abstract

Our overall goal is to support the development of real-time programs from specifications
via a process of stepwise refinement. One problem in developing a real-time program in
a high-level programming language is that it is not possible to determine the detailed
timing characteristics of the program until the compiler and target machine are taken into
account. To overcome this problem the programming language can be augmented with
directives specifying real-time constraints; it is a compile-time error if the compiler cannot
guarantee that the generated code will meet them. During the refinement process the timing
directives are inserted into the program in order to ensure it meets the specification. The
paper introduces the real-time directives, gives a set of laws for real-time refinement, and
illustrates their use in the refinement of a simple real-time transmitter.

Keywords Real-time refinement.

1 Introduction

Programming languages such as Ada provide some real-time features such as delay commands.
However, there is no facility to specify that a section of code is to be executed by a desired time
deadline. To overcome this problem we propose to add a deadline directive to the programming
language so that time deadlines can be incorporated into programs. The directive is of the form

deadline exp

Consider the following fragment of a program, in which dt is a normal program variable of type
Time and τ stands for the finishing time of the command in which it appears.{

τ ≤ dt
}

(1)
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delay until dt (2)
“commands which do not update dt” (3)
deadline dt + 1millisecond (4)

We assume the fragment begins execution at a time before dt , as indicated by the assertion (1).
The delay command (2) guarantees that execution of the commands following it (3) will begin
after time dt . The lateness of a delay command is the difference between its actual termination
time and the specified delay time. The novel addition to the programming language is the
deadline directive (4). It adds the constraint that the time at which it completes is before
dt plus 1 millisecond, that is, the lateness of the delay (2) plus the execution time of the
intermediate commands (3), takes no more than 1 millisecond.

The deadline directive is rather tricky to implement. If the time taken for the preceding
commands (2) and (3) is more than 1 millisecond, then there is no way the deadline directive
(4) can make time go backwards. However, if the time taken to execute (2) and (3) is always
guaranteed to be less than 1 millisecond, then (4) can simply be implemented by generating
no code at all for it.

The deadline command can be viewed as a directive to the compiler for the programming
language. If the compiler can determine by analysing the code generated for (2) and (3) that
they will always take less than 1 millisecond to execute on the target machine, then the compiler
will successfully generate code for them. Because in this case the deadline is guaranteed to be
met, it can be discarded. On the other hand, if the compiler cannot guarantee that (2) and (3)
will always take less than 1 millisecond, then it cannot guarantee to satisfy (4). In that case
the compiler must reject the program because it is unable to guarantee its timing correctness
on the given target machine.

The combination of a delay command and a deadline directive allows one to add quite
detailed timing constraints to a program, and thus provides an effective real-time programming
language. Given this programming language, our overall goal is to develop programs from
specifications that include timing requirements, using a process of stepwise refinement.

Our approach to real-time specification and refinement is based on the timed refinement
calculus [3, 4, 5, 6], and in particular on the adaption of timed refinement for developing
sequential programs by Utting and Fidge [10], although our treatment of time constraints is
quite different to that in [10].

We present our approach via an example of the refinement of a simple real-time transmitter.
In Section 2 we present a specification of a simple transmitter that includes real-time constraints
on the transmitter output. In Section 3 we jump straight to the final program to give the reader
a feel for the way in which deadline directives are used to express timing constraints. In Section
3 we also outline the analysis process to calculate the timing constraints for the transmitter
program. Section 4 presents the refinement laws for our timed refinement calculus. This
includes the definition of the deadline directive in terms of a coercion. The refinement rules
for the non-real-time constructs are similar to those of Morgan [7], but with extensions for
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real-time aspects. Section 5 presents the details of the refinement of the transmitter example.

2 The Transmitter Specification

In the timed refinement calculus variables are represented as functions from time to their value
at that time. For example, a character variable ch is represented by

ch : Time 7→ Char . (5)

Given a time, t , ch(t) is the value of the variable ch at time t . As all variables are represented
by such functions of time, we elide the “Time 7→” in their declaration. For example, we declare
ch via the more conventional

var ch : Char ,

but emphasise that this is a shorthand for (5).

The environment Before giving the specification of the transmitter we need to set up its
environment. The message to be output is a sequence of characters:

varmsg : seq0 Char .

The sequence msg is an input to the transmitter. The number of characters in the message is
denoted by #msg , and the indices of msg range from 0 to #msg − 1. The message is to be
output one character at a time via a single character output buffer:

var out : Char ,

which is connected to an external output transmission bus. We need to specify the value of
out over time. The start time for transmission of the message is given by the input variable:

var st : Time,

which is not modified by the transmitter. Each character in the message should remain in the
output buffer for a contiguous period of at least chdef seconds, and the separation between
characters is chsep seconds:

const chsep = 100µ s; chdef = 80µ s.

The time interval during which the ith character should be stable in the output buffer is
from st + chsep ∗ i through until st + chsep ∗ i + chdef . We introduce the function interval to
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aid in writing the specification. It takes a parameter, i , and returns the time interval (set of
times) during which the ith character should be stable in the output buffer:

let interval == (λ i : N • st + chsep ∗ i . . st + chsep ∗ i + chdef ).

A second auxilliary function, chout , takes the same parameter as interval , but it returns
the set of characters appearing in the output buffer during the ith interval (the image through
out of the ith interval). If the transmitter is working correctly, this will be a singleton set:

let chout == (λ i : N • out(| interval(i) |)).

The specification The task of the transmitter is to output the message via the output buffer.
The transmission of the first character must begin by time st , and after that the characters
should appear at intervals of chsep seconds, and be stable for at least chdef seconds. The
transmitter should send the complete message within chsep ∗ #msg seconds of the starting
time. The time at which the transmitter code begins execution is c seconds before the time,
st , at which the transmission should begin.

out :

[
τ ≤ st − c,

(∀ i : 0 . . #msg − 1 • chout(i) = {msg(i)}) ∧
τ ≤ st + chsep ∗#msg

]

The above specification is given as a specification command [3, 8, 7] of the form v : [A,E ].
It consists of a list, v , of variables that may be modified by the operation (the frame of the
operation); assumptions, A, that the operation may make about the environment of its call;
and an effect, E , that the operation is to achieve. Within the assumptions, τ refers to the
start time of the command, and within the effect τ0 and τ refer to the start and finish times,
respectively, of the command. We always have τ0 ≤ τ , so this is not explicitly stated. The
assumptions may not reference τ0. Neither τ0 nor τ may appear in the frame of a specification
or an assignment.

The assumptions may include properties of the values of the variables at the start of the
operation (usually referred to as the precondition), but it may also include properties of the
values of the environment variables over time. The effect can include properties about the
values of the variables in the frame on termination of the operation (usually referred to as
the postcondition), but it can also include properties about the values over time. Within a
specification command we may refer to the value of a variable v at time t by v(t). If v occurs
unindexed by a time, then it stands for v(τ). Hence, within an assumption, v stands for the
value of v at the start time of the command, and within an effect, v stands for the value of v
on completion of the command. Within an effect, v0 stands for v(τ0).

The specification above states that the program fragment begins execution before st − c
and must terminate before st + chsep ∗#msg . During this time interval the output buffer is to
be updated regularly so that it contains the ith character of the message during interval(i).
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3 The final program

Before going through the details of the development of the program, we skip ahead to the final
program (Figure 1) in order to see how the real-time directives are used. The program achieves
its goal by ensuring that the transmission of the nth character begins before the start of the
interval on which it must be stable: st + chsep ∗ n. It then waits to ensure the output buffer
is stable until at least the end of the nth interval: st + chsep ∗ n + chdef .

A ::
{
τ ≤ st − c

}
|[ varn : N •

n := 0;
don 6= #msg →

out := msg(n);
B :: deadline st + chsep ∗ n;
C :: delay until st + chsep ∗ n + chdef ;

n := n + 1
od

]|;
D :: deadline st + chsep ∗#msg

Figure 1: Program for the transmitter

In order to be able to safely discard the deadline directives the compiler needs to analyse the
code it generates to check that it will satisfy the time constraints. The analysis can be broken
down by identifying paths between significant timing points in the program. We demonstrate
this analysis for the transmitter program by decomposing the program into its different timing
paths and calculating a time constraint on each of these paths. The analysis that the machine
code generated by the compiler meets the timing constraints is beyond the scope of the current
paper; the interested reader is referred to [2]. In practice, such checks may be performed
by a separate analysis phase that has access to the generated code and details of the timing
constraints.

Consider the execution path from A to B in Figure 1. This path includes the allocation
of the local variable n and its initialisation, evaluating the loop guard (to true), and sending
the first character. The start time for this path is assumed to be before st − c and the finish
deadline is st + chsep ∗ n. At the finish time, for this path the value of n is 0, so the maximum
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execution time allowed for the path A–B is

st + chsep ∗ 0− (st − c) = c.

If the message is empty then the loop guard is false on its first evaluation. This gives a
path A–D, which excludes the body of the loop. It contains the allocation and initialisation
of n, evaluating the guard (to false), exiting (or more precisely, not entering) the loop, and
deallocating the local variable n. The start time for this path is before st − c and the finish
deadline is st + chsep ∗#msg . Because the loop guard fails on its first evaluation we know that
#msg = n = 0, and hence the maximum execution time allowed for the path A–D is

st + chsep ∗ 0− (st − c) = c.

The deadline directive (B) guarantees the time at which the delay command (C) commences
is before the delay time specified in C. Hence the delay time specified in C becomes the effective
time for the start of paths beginning at C.

There is a path from C cycling back to B. The path includes any lateness of the delay
command (C), the increment of n, branching back1 to the start of the loop, evaluating the guard
(to true) and sending the next character. The start time of the path is st + chsep ∗ n + chdef
and its finish deadline is st + chsep ∗ n, but in the meantime n has been incremented, so that
the maximum execution time allowed is

st + chsep ∗ (n + 1)− (st + chsep ∗ n + chdef ) = chsep − chdef .

After the last character of the message has been sent, there is a path from C to D, which
includes any lateness of the delay command (C), the increment of n, branching back to the
start of the loop, evaluating the guard (to false), exiting the loop, and deallocating the local
variable n. The start time of the path is st + chsep ∗ n + chdef and the finish deadline is
st + chsep ∗#msg . Because the loop guard is false, we know that n = #msg on termination of
the loop, but n is incremented before the loop is exited. Hence the maximum execution time
allowed for the path is

st + chsep ∗#msg − (st + chsep ∗ (#msg − 1) + chdef ) = chsep − chdef .

4 Refinement laws

The timing related commands in our language are introduced via equivalent specification com-
mands. The standard guarded commands have rules that are adapted to allow for time; if the
commands do not refer to time these rules are just the standard ones.

The specification command has already been introduced in Section 2. The rules for weaken-
ing an assumption and strengthening an effect carry over to the real-time refinement calculus.

1The term ‘branching back’ refers to the programmer’s view of the high-level program; in the generated code
there may not be a branch instruction at this point.
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Law 1 (weaken assumption) Provided P V P ′,

x : [P ,R] v x : [P ′,R].

Law 2 (strengthen effect) Provided P0 ∧ R′ V R,

x : [P ,R] v x : [P ,R′].

where P0 stands for the predicate P with all occurrences of τ replaced by τ0, and all unindexed
occurrences of x replaced by x0.

The proviso could also be written P0 V (R′ ⇒ R). Often this law is used to replace an effect
R by another R′ that is equivalent under the assumptions P0.

A delay command guarantees that its completion is after the specified time.

Definition 3 (delay) Provided neither τ0 nor τ occur free in exp,

[exp ≤ τ ] = delay until exp.

The deadline directive allows a time deadline to be specified. It is the compiler’s respon-
sibility to ensure the deadline is met by the generated code. If it cannot it should report a
compile-time error. In refinement calculus terms, a deadline directive is a coercion.

Definition 4 (deadline) Provided neither τ0 nor τ occur free in exp,

[τ0 = τ ≤ exp] = deadline exp.

A requirement that a variable in the frame remains stable for the duration of a command
can be achieved by removing the variable from the frame.

Law 5 (contract frame)

x , v : [P ,R ∧ stable(x , τ0 . . τ)] vw v : [P ,R]

where stable(x ,S ) = (∀ t , u : S • x (t) = x (u)).

For sequential composition we introduce an intermediate predicate Q which holds on ter-
mination of the first component.

Law 6 (sequential composition) Provided u is a fresh name, and neither Q nor R makes
use of zero subscripted variables other than τ0,

w : [P ,R] v |[ con u : Time • w : [P ∧ u = τ,Q ]; w : [Q [τ0\u] ,R [τ0\u]] ]|.
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We assume that the start time of the second component is identical to the finish time of the first
component. Hence τ in the effect of the first component is identical to τ in the assumptions
of the second component. However, τ0 in the effect of the first component refers to the start
time of the first component. To cope with this we introduce a constant u to stand for the start
time of the first component, and replace all occurrences of τ0 by u within the assumptions of
the second component. In the desired overall effect, R, τ0 refers to the commencement of the
whole sequential composition (not the commencement of the second component). Hence the
references to τ0 in the effect of the second component are replaced by u. (Any reference to a
zero subscripted variable, x0, can be replaced by x (τ0) before applying this rule.)

During the refinement process it is useful to be able to separate out time constraints from
other requirements.

Law 7 (separate timing constraints) If R is a predicate that does not explicitly involve τ ,
and V does not involve τ0 nor zero subscripted variables then,

w : [P ∧ U ,R ∧ V ] v {U }; w : [P ,R]; [V ].

Note that assertions, such as {U }, take no time. There may be references to v (and v0) in
P and R; these are really references to v(τ) (and v(τ0)). These implicit references to τ are
allowed.

Law 8 (introduce variable) Provided neither x , τ0 nor τ occur free in P or R,

w : [P ,R] v |[ var x • x ,w : [P ,R] ]|.

Because allocation and deallocation of local variables may take time, one often precedes a step
which introduces a local variable with the law for separating out time constraints.

Law 9 (assignment) Provided P V R [x\exp] and neither τ0 nor τ occur free in exp,

x : [P ,R] v x := exp.

Law 10 (iteration) For the introduction of a loop one needs to supply a variant expression
V (not involving zero subscripted names) which evaluates to an element of a well-founded set
with ordering ≺. Provided neither τ0 nor τ occur free in INV or G,

w : [INV , INV ∧ ¬ G ] v do{INV }G → w : [G ∧ INV , INV ∧ V ≺ V0] od .
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5 The Transmitter Refinement

We assume that the time used in the specification refers to that provided by the clock of the
implementation. If this were not the case, we would need to assume that there was some bound
on the clock drift error and factor this into the refinement.

We also assume we are dealing with a real-time program that has sole control of the processor
for the duration of its execution. There is no allowance for interrupts, task swapping, etc. See
[1] for discussion of these issues.

Our refinement begins from the specification given in Section 2. We repeat the specification
here, but remind the reader that the environment of the specification, as detailed in Section 2
is necessary to be able to interpret the specification.

out :

[
τ ≤ st − c,

(∀ i : 0 . . #msg − 1 • chout(i) = {msg(i)}) ∧
τ ≤ st + chsep ∗#msg

]
(6)

Separate out the finishing time constraint The general approach that we take is to factor
out explicit time constraints when they arise in the development. Otherwise the refinement is
similar to a standard non-real-time refinement.

The first step in our refinement is to separate out the finishing time requirement. This
is necessary because a local variable n is required to step through the characters, and the
deallocation of the variable may take time.

(6)
v separate out the time constraint (Law 7){

τ ≤ st − c
}

out : [true, (∀ i : 0 . . #msg − 1 • chout(i) = {msg(i)})] ; (7)
[τ ≤ st + chsep ∗#msg ] (8)

The final time limit corresponds to a deadline directive.

(8)
v Definition 4

deadline st + chsep ∗#msg

We introduce a variable, n, to step through the characters of the message. The effect is
strengthened so that on termination, n is the size of the input message.

(7)
v Law 8; Law 2
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varn : N •

n, out :

[
true,

(∀ i : 0 . . #msg − 1 • chout(i) = {msg(i)}) ∧
n = #msg

]
(9)

Set up for loop The loop invariant states that the characters up to n−1 have been success-
fully sent. Our goal is achieved when n = #msg . We split into an initialisation to establish
the invariant, and a loop which maintains it.

(9)
v Law 6

let INV == 0 ≤ n ≤ #msg ∧ (∀ i : 0 . . n − 1 • chout(i) = {msg(i)}) •
n, out : [true, INV ]; (10)
n, out : [INV , INV ∧ n = #msg ] (11)

As there are no occurrences of τ0 or τ , the local constant u used in Law 6 is redundant.

Initialisation The invariant is established by setting n to 0.

(10)
v Law 9

n := 0

Introduce loop Note that the invariant does not make explicit reference to τ , as required
by Law 10. It does, however, make reference to times relative to st . The variant for the loop
is #msg − n, which from the loop invariant is guaranteed to be a natural number.

(11)
v Law 10

don 6= #msg →
n, out : [n 6= #msg ∧ INV , INV ∧ #msg − n < #msg − n0] (12)

od

Loop body The body of the loop outputs a single character and increments n. Incrementing
n guarantees the variant is decreased.

(12)
v Law 6; Law 9

out : [n 6= #msg ∧ INV , INV [n\n + 1]]; (13)
n := n + 1

10



Output nth character To maintain the invariant, the nth character is output by assigning
it to the output buffer and ensuring that it is stable for the period from st + chsep ∗ n until
st + chsep ∗ n + chdef .

(13)
v expanding INV

out :

[
n 6= #msg ∧ 0 ≤ n ≤ #msg
(∀ i : 0 . . n − 1 • chout(i) = {msg(i)}) ,

0 ≤ n + 1 ≤ #msg ∧
(∀ i : 0 . . n • chout(i) = {msg(i)})

]
v Law 2; Law 1

out : [0 ≤ n < #msg , chout(n) = {msg(n)}]
v Law 6; Law 9; Definition of chout

out := msg(n);
out : [out = msg(n), out(| interval(n) |) = {msg(n)}] (14)

The nth character must remain stable in the output buffer from st +chsep ∗n through until
st + chsep ∗ n + chdef . We achieve this goal by ensuring that it remains stable for an interval
encompassing this range.

(14)
v Law 2

out :
[
out = msg(n), out(| τ0 . . τ |) = {msg(n)} ∧ interval(n) ⊆ (τ0 . . τ)

]
v Law 2

out :
[
out = msg(n), stable(out , τ0 . . τ) ∧ interval(n) ⊆ (τ0 . . τ)

]
v Law 5; Law 1

[true, interval(n) ⊆ (τ0 . . τ)]
v Definition of interval

[true, τ0 ≤ st + chsep ∗ n ∧ st + chsep ∗ n + chdef ≤ τ ]
v Law 7

[true, τ0 ≤ st + chsep ∗ n]; (15)
[st + chsep ∗ n + chdef ≤ τ ] (16)

A deadline directive is used to guarantee the transmission begins on time.

(15)
v Definition 4

deadline st + chsep ∗ n
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The character must remain stable until st + chsep ∗n + chdef . This is achieved by delaying
until the time has elapsed.

(16)
v Definition 3

delay until st + chsep ∗ n + chdef

The collected final program is shown in Figure 1 in Section 3.
The approach employed to refine the transmitter program was to separate out timing con-

straints using Law 7 whenever the timing constraints become explicit. Otherwise the refinement
process is like that for a non-real-time development. The very first step in refining the specifi-
cation (6) was to separate out the overall time constraint on the program. The steps after that
were just like normal refinement steps down to the refinement of (14), which separated out the
timing constraints on the output of each character.

6 Conclusions

To be able to express real-time constraints in a high-level programming language we have added
a deadline directive to existing real-time features such as delays. While the deadline directive is
a simple syntactic extension to a programming language, supporting it fully within a compiler
is non-trivial:

• the high-level programs need to be analysed to determine timing constraints on execution
paths, as was done for the transmitter example in Section 3; and

• the machine code generated for each of these execution paths needs to be analysed to
determine whether it meets the constraint [2].

However, timing constraints are essential for genuine real-time program development, and it is
just these sorts of analyses that are required to ensure that real-time constraints are met in any
language. The use of the deadline directive allows the timing analysis to be deferred until after
compilation, when more information is available (register allocations, memory addresses, etc.),
which enables tighter timing bounds to be obtained. This can be compared with the approach
of Shaw [9], which performs the timing analysis at the high-level language level and hence is
only capable of looser timing bounds.

The inclusion of a deadline directive in a programming language allows real-time constraints
to be expressed in a high-level language, but our overall goal is the development of real-time
programs from specifications with time constraints via a process of stepwise refinement. The
approach we have taken is based on the timed refinement calculus [3] as adapted for developing
sequential real-time programs [10]. The main advance in this paper over [10] is that the deadline
directive allows simpler expression of timing deadlines, and most importantly, it allows the
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separation out of timing constraints during the development process. That allows many of the
development steps to appear just like standard non-real-time refinement steps. For example,
in the transmitter example only the refinement steps from (6), (8), (14), (15) and (16) involved
real-time constraints. The remaining steps were essentially standard sequential refinements.

For the purposes of this paper we have limited our language and laws to those required
to present the essential ideas and to express the transmitter example. The timed refinement
calculus is also capable of supporting other real-time features such as reading from a real-time
clock, and reading from an external input variable, whose value changes over time independently
of the control of the program.
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