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Abstract

Behavior Trees (BTs) are a graphical notation used for
formalising functional requirements and have been success-
fully applied to several case studies. However, the notation
currently does not support the concept of time and conse-
quently its application is limited to non-real-time systems.
To overcome this limitation we extend the notation to Timed
Behavior Trees, which can be semantically defined by timed
automata. Based on this extension we are able to include
local timing assumptions in a BT model and can verify
system-level timing properties with temporal proof method-
ologies. We validate the use of the new notation by means
of a case study. To verify system-level timing properties we
translate the model into timed automata and use the tool
UPPAAL for timed model checking.

Keywords: Behavior Trees, real time systems, timed au-
tomata, model checking, requirements engineering

1. Introduction

For the development of complex dependable systems a
good modelling notation is essential. It should allow the de-
velopment team to capture the requirements in a traceable
manner when creating a first model. It should yield models
that are easily understood and it should provide tool support
for analysis at the early stages of development. The graph-
ical notation of Behavior Trees (BTs) provides such a mod-
elling notation [8]. A BT model has a tree-like form that
intuitively shows the flow of control of a component-based
system. The requirements are to be captured in a stepwise
manner, each single requirement leading to an individual
tree, which are then integrated into one design tree. This
approach provides effective support for the initial modelling
phase where requirements need to be reflected in the initial
model of the system and allows for collaborative team work.
The current tool support for the notation includes a graph-
ical editor, a simulator and an interface to various model

checkers enabling safety and liveness checks [15, 18, 10].
Behaviour Trees have been successfully applied to indus-
trial case studies of which some had more than 1500 system
requirements. The number of defects in the requirements
(i.e., inconsistencies, missing requirements, etc.) that were
detected through the BT model was significantly larger than
what the companies’ own analyses had revealed. The results
are unpublished due to non-disclosure agreements.

For many dependable systems the timing of behaviour is
critical for the correctness of the overall system model. We
therefore want to be able to express timing constraints when
modelling and to check if a timed model satisfies given tim-
ing requirements. However, the BT notation currently does
not support modelling of time and timed behaviour. In this
paper we describe an extension of the BT language with a
notion of time which allows us to model timing constraints
for a component’s behaviour. We base our extension on the
theory of timed automata [5]. For the extended notation,
called Timed Behavior Trees, we provide an interface to the
UPPAAL tool [4], a model checker for real-time systems.
This allows us to check if our model satisfies the given tim-
ing requirements.

The paper is organised as follows: Section 2 introduces
the BT notation as well as timed automata. In Section 3 we
introduce Timed Behavior Trees and define their semantics.
Section 4 describes a case study to demonstrate modelling
of a timed system with Timed Behavior Trees and verifying
its real-time requirements using the UPPAAL tool. Related
work is summarised in Section 5 and we conclude with an
outlook to future work in Section 6.

2. Preliminaries

As preliminaries we introduce the BT notation and the
core concepts of timed automata.
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Figure 1. BT node types

2.1. The Behavior Tree Notation

The Behavior Tree (BT) notation [8] is a graphical no-
tation to capture the functional requirements of a system
provided in natural language. The strength of the BT nota-
tion is two-fold: Firstly, the graphical nature of the notation
provides the user with an intuitive understanding of a BT
model - an important factor especially for use in industry.
Secondly, the process of capturing requirements is done in
a stepwise fashion. That is, single requirements are mod-
elled as single BTs, called individual requirements trees. In
a second step these individual requirement trees are com-
posed into one BT, called the integrated requirements tree.
Composition of requirements trees is done on the graphical
level: an individual requirements tree is merged with a sec-
ond tree (which can be another individual requirements tree
or an already integrated tree) if its root node matches one
of the nodes of the second tree. Semantically, this merging
step is based on the fact that the matching node provides
the point at which the preconditions of the merged individ-
ual requirement tree are satisfied. This structured process
provides a successful solution for handling very large re-
quirements specifications [8, 17].

The syntax of the BT notation comprises nodes and
edges. Each node is one of the types in Figure 1, and refers
to a particular component, C, and a behaviour, B. In addi-
tion, each node can be labelled by one or more flags.

As shown in Figure 1 a node type can be

(a) a state realisation. If B is a state name, this models
C realising (entering) state B. For example, the root
node of Figure 2 says initially the Torch component
is in state free . Alternatively, B can be of the form
attr := e, where attr is an attribute of component
C and e is some expression, modelling C’s attribute
being updated.
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Figure 2. Example: Four vikings over bridge

(b) a selection (or condition) on C’s state if B is a state
name, or on one of its attributes if B is an expres-
sion over the attribute; the control flow terminates if
the condition evaluates to false,

(c) a guard, where B may be of the same form as for a se-
lection (b); however, the control flow can only pass the
guard when the condition holds, otherwise it is blocked
and waits until the condition becomes true,

(d-e) an internal event modelling communication and data
flow between components within the system, where B

specifies an event; the control flow can pass the inter-
nal event node when the event occurs (the message is
sent), otherwise it is blocked and waits; the communi-
cation is asynchronous,

(f-g) an external event modelling communication and data
flow with the environment of the system, where B

specifies an event; the control flow can pass the ex-
ternal event node when the event occurs (the message
is sent), otherwise it is blocked and waits; the commu-
nication is asynchronous.

The tree-like form of Behavior Trees (BTs) allows the
user to represent the control flow of the system by either a



normal edge (for sequential flow) or a branching edge (for
concurrent or alternative flow). Figure 2 illustrates this by
means of an example (taken from the UPPAAL distribu-
tion): four vikings are about to cross a damaged bridge at
night which can hold only the weight of two people at a
time. They have to take a torch before crossing the bridge
and after reaching the safe side of the bridge they release
the torch. A viking may only claim the torch if they are on
the same side of the bridge. A viking might decide to come
back from the safe to the unsafe side of the bridge in or-
der to guide other vikings with the torch (to save space the
figure leaves out two of the viking threads using “. . .” as a
placeholder; these threads are similar to those given).

In Figure 2 the four viking threads act in parallel with
the torch thread. Taking and releasing of the torch is syn-
chronised via internal message passing. We use binary syn-
chronisation in this example to model that only one viking
at a time can take or release the torch. The position of the
torch is modelled by variable L, for simplicity it is either 0
or 1. The torch might be taken by either one or two vikings.
An alternative branching in the torch thread (marked by the
black box) indicates this. Initially, the vikings are in an un-
safe state and the torch is free. If nodes are grouped together
(i.e., without an edge between them), like in the initialisa-
tion step, they model an atomic step (which cannot be inter-
rupted). The model in Figure 2 uses the simple BT notation
and thus timing behaviour is not modelled yet. We will ex-
tend this model in Section 3.

A flag in BT node can specify (a) a reversion ˆ in case
the node is a leaf node, indicating that the control flow loops
back to the matching node (i.e., a node with same compo-
nent name, type and behaviour), (b) a macro node ∼, indi-
cating that the flow continues from the matching node, (c)
killing of a thread−−, which kills the thread that starts with
the matching node, or (d) a synchronisation point =, where
the control flow waits until all other threads with a match-
ing synchronisation point have reached the synchronisation
point. We also introduce a flag for binary synchronisation,
=2, which models that exactly two matching nodes may
participate in the synchronisation. This is useful in com-
bination with input and output events when modelling a bi-
nary channel. In this case the matching nodes are one input
and one corresponding output node. Each node has also a
tag which allows the user to relate the BT nodes to the orig-
inal requirement specification. This tag is omitted in the
example in Figure 2.

2.2. Timed Automata

Timed automata is a formalism to model and verify real-
time systems. Originally, timed automata were defined as
finite-state Büchi automata extended with a set of real-timed
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Figure 3. A simple lamp as timed automaton

variables to model clocks [2]. Clock constraints on the
transitions enable the user to restrict the behaviour of the
automaton. Progress properties are enforced by Büchi ac-
ceptance conditions. Timed Safety Automata are a simpli-
fied version of timed automata in that progress properties
are specified using location invariants. These simpler au-
tomata build the basis of several verification tools, amongst
them the model checker UPPAAL [4]. In this paper we re-
fer to these automata as timed automata (as is often done
in the literature). For an introduction to timed automata we
recommend the work by Bengtsson and Wang [5].

Figure 3 shows a simple example with two timed au-
tomata modelling a lamp and a user operating the lamp
by pressing a button. The lamp is bound by timing con-
straints in that it switches itself off after some time. Both
automata work in parallel and communicate via a synchro-
nisation channel press. To model the timing constraints we
introduce a clock x. Initially the lamp is on and the user is
idle. If the user sends a press the lamp is switched on and
the clock is reset to zero. The lamp can stay in location on
as long as the clock satisfies the given location invariant,
x ≤ 5. If the user presses the button again within 5 time
units the clock is reset and the light stays on. When 5 time
units have elapsed, i.e., x = 5, the automaton must leave
the location on and takes a transition to its initial location
off.

Formally, guards and location invariants in a timed au-
tomaton range over clock constraints of the form x ∼ n or
x − y ∼ n where x and y are clocks, n ∈ N , and ∼ can be
<,≤, =,≥, or >. In UPPAAL, location invariants are re-
stricted to be “downward closed”. That is, the invariant has
to be of the form x < n or x ≤ n. A location can also be
marked as urgent or committed enforcing the next transition
to be taken without delay. An urgent location can be inter-
leaved with other states from parallel automata. Whereas
a committed location allows interleaving only with other
committed locations.

In the following, C denotes a set of clocks and B(C) a
set of clock constraints. The powerset over C, 2C , models
a set of clock resets. Σ is a set of actions comprising vari-
able updates and sending and receiving of synchronisation
events.

A timed automaton is defined as a tuple 〈N, l0, E, I〉



where

• N is a finite set of nodes

• l0 ∈ N is the initial node

• E ⊆ N ×B(C)×Σ× 2C ×N is the set of edges and

• I : N → B(C) describing location invariants.

The notation l
g,a,r
→ l′ is used if (l, g, a, r, l′) ∈ E.

An operational semantics of timed automata is defined
as a timed transition system. A state is given as a pair 〈l, u〉
of location l and clock assignment u. The transitions are
defined by two rules:

• 〈l, u〉
d
→ 〈l, u + d〉 if the clock assignment before and

after the transition (u and u + d) both satisfy the loca-
tion invariant for l, I(l);

• 〈l, u〉
a
→ 〈l′, u′〉 if there exists a transition from l to

l′ with action a such that u satisfies the guard of this
transition and u′ satisfies its clock resets.

The UPPAAL tool allows the user to label a transition
with any number of actions, but at most one of them can be
a synchronisation event. That is, if Σs ⊆ Σ is the set of
synchronisation events, then in the above definition a set of
actions a ⊆ Σ must satisfy #(a ∩ Σs) ≤ 1.

3. Timed Behavior Trees

Our extension of BTs with a notion of time is based on
the concepts used in timed automata [5]. Timed automata
provide a well developed theory and also tool support, e.g.,
model checking [4, 6].

A timed BT model is equipped with a number of clocks
which evaluate to a real number. All clocks progress simul-
taneously. A clock can be reset to zero or can constitute a
guard on a transition or an invariant on a location.

Nodes in a Behavior Tree describe transitions from one
location to the next as they describe a state change, a guard
or message passing. Correspondingly, locations are located
between the nodes in a BT. To introduce the notion of timed
behaviour we extend ordinary BT nodes with three addi-
tional slots: a guard G over clock values, a reset R of
clocks, an invariant I over clocks.

The timed BT node in Figure 4 on the left corresponds to
a timed automaton fragment of the form shown in Figure 4
on the right. Let S0 and S1 be the pre- and post-location of
the BT node in the figure. The node’s (un-timed) behaviour,
component behaviour, relates to action a ∈ Σ (e.g. an up-
date, a guard or a synchronisation) of the transition between
location S0 and S1 in the timed automaton. Guard G and

Component
behaviour
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tag
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S1

x < 10
x := 0
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S0

S1

x<10
x:=0
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component_behaviour

Figure 4. Timed BT node (left) and corre-
sponding timed automaton (right)

reset R also label the transition modelling the timing con-
straints. The invariant I provides the location invariant of
the location the transition leads to, i.e., S1.

We use this notation to extend our model of the four
vikings crossing a bridge (as given in Figure 2). The vikings
take 5, 10, 20 and 25 time units, respectively, to reach the
other side. The problem is to find the shortest amount
of time required for all vikings to reach the safe side of
the bridge. The obvious solution is to use a greedy strat-
egy, where the fastest viking (5 time units) guides all other
vikings over the bridge and always brings the torch back. In
total, this would sum up to 65 time units (10 +20+25 +2*5
time units). However, it is also possible that the four vikings
will cross the bridge in 60 time units as we will prove in sec-
tion 4.

We introduce the timing constraints into our model util-
ising timed BTs. Figure 5 shows two threads: the thread of
the fastest viking (all other vikings are modelled similarly
with different timing constraints) and the thread of the torch
process.

The viking behaves as follows: if the torch is on the right
side of the river (torch is unsafe, L = 0) and the torch syn-
chronises on the event take then the process resets its clock
y and transits to the next state. After 5 time units (as spec-
ified in the guard of the second atomic block of timed BT
nodes) the viking transits to a state where he is safe and re-
leases the torch when possible. As a result the variable L

which represent the position of the torch will be inverted.
From here the viking might move back to the unsafe side
taking and releasing the torch within another 5 time units.

The torch process (see Figure 5 on the right) is extended
with clock x in order to enforce that no time is spent when
the torch is taken (by either one or two vikings). We model
a reset on clock variable x in the first timed BT node and
enforce an invariant on the location that is reached after the
first transition. Otherwise the timing of the torch is unre-
stricted.
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3.1. Semantics

The semantics of timed BTs can be defined through a
mapping to timed automata. We show for each language
concept of timed BTs an equivalent automaton or a network
of automata. This mapping builds the basis of the interface
from timed BTs to the UPPAAL tool which allows us to
model check given timing requirements.

Generally, a timed BT without parallel threads can be
envisaged as a single timed automaton if we explicitly insert
edges for reversions and macros. We add an initial location
that we call disabled. From this location the initial BT node
provides an edge to a start location which models the timed
BT after initialisation. The leaf nodes in the BT lead from
a last location back to either the disabled state if the tree
terminates (i.e., has no reversion flag) or to a location where
a reversion points to. If a timed BT has parallel threads,
we model each thread as an individual timed automaton,
operating in parallel.

Node Types. The different BT node types (as introduced
in Section 2) translate into actions a ∈ Σ that label the tran-
sitions of a timed automaton. Component name and be-
haviour constitute the variable name. (Further on we will
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Figure 6. Mapping of atomic block with at
most one synchronisation

refer to both simply as behaviour of a BT node.)

- a state realisation maps onto an update a ∈ Σ where
the component’s name becomes a variable name;

- a selection becomes a guard; it also produces an al-
ternative transition (from the same pre-state) labelled
with the negation of the selection and leading to a loca-
tion disabled (each process has such a location where
it stays until it gets “invoked”);

- a guard maps to a timed automaton guard;

- input and output events are mapped to communica-
tion variables that can be set and unset; i.e., an output
event is mapped to an update that sets the correspond-
ing variable and an input event is mapped to a guard
that is satisfied if the communication variable is set and
an update to unset the variable; in the case of external
communication the environment is modelled as a par-
allel process, setting and unsetting the communication
variable;

- a binary synchronisation is mapped into a synchroni-
sation event in timed automata; a synchronisation with
n threads involved is mapped using boolean variables
synch1, . . . , synchn. Each synchronisation partner
i that reaches the synchronisation point sets its vari-
able synchi to true; the transition from the next lo-
cation (i.e., the next step) is labelled with a guard
synch1 ∧ . . . ∧ synchn and updates synchi to false.

Sequential Flow. Figure 4 shows the mapping of a sin-
gle node into a single transition. A sequence of timed BT
nodes maps into a sequence of transitions in similar fashion.
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Atomic block. If two or more timed BT node are
grouped together in an atomic block we have to capture
that the block cannot be interrupted. In most cases, we can
utilise the fact that transitions in a timed automaton can be
labelled with guards and a set of actions containing at most
one synchronisation. If the atomic block satisfies this re-
striction it can be mapped into one transition as shown in
Figure 6.

Atomic blocks with more than one synchronisation are
excluded from the timed BT notation for the following rea-
son. We could translate these block by introducing com-
mitted locations for each synchronisation into the timed
automaton which enforce a priority to the actions of the
atomic block. Figure 7 shows the idea of this translation.
Since transitions to committed locations can be interleaved
with transitions to other committed locations, however, this
model does not provide a faithful translation. The atomic-
ity is violated. Moreover, more than one synchronisation
in an atomic block easily leads to deadlocking behaviour of
the overall system and is seen as an unclear modelling style
that should be avoided.

Alternative Branching. Alternative branching in a
timed BT is simply mapped to a location with more than
one outgoing edge, with each edge corresponding to the root
node of one of the alternatives. Behaviour, guard and reset
of the first timed BT node in each branch label one transi-
tion. Figure 8 depicts this notion.

Concurrent Branching. A timed BT can be mapped
into a number of parallel timed automata each representing
a concurrent branch in the timed BT.

At each concurrent branching point in the timed BT
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we introduce a new process for each branch that follows.
Figure 9 depicts this mapping. The last BT node be-
fore the branching is translated into a number of transi-
tions (in the parent process Proc0) each invoking one of
the new processes. The locations between these transitions
are labelled as committed locations. Each (child-) process
(Proc1, . . . , P rock) contains an initial state disabled, from
which a single invocation transition leads to the first enabled
state of the process.
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Figure 9. Mapping of branching nodes

Killing of Threads, Reversion and Macros.
Killing of a thread is realised by means of synchronisa-

tion. Each process Proci has transitions from each location
back to the location disabled which are labelled with the
action killProci ?. Since a kill event can be received at any
time we have to introduce transitions from each location.
Reversion and macros can be mapped in a similar fashion
using transitions from the location disabled and the loca-



tion last to the location the reversion or macro is directed
at.

4. Verification of Timing Properties

Based on the extension of the BT notation we are able
to integrate local timing assumptions into a system model.
An example of such an assumption is the minimum time in
which one of the four vikings is able to cross the bridge.
These assumptions can be specified as constraints over lo-
cal clocks and state invariants. Consequently, they provide
an upper or lower bound for the execution of one specific
local action. The benefit of integrating these local timing
assumptions into the system model is the ability to reason
about global timing properties with a timed model checker
[1, 3, 4, 6]. Since timed BTs are based on timed automata,
we can utilise UPPAAL as our timed model checker. The
objective of this section is to describe the basic ideas be-
hind the verification of global timing properties with timed
model checking. Consequently, we describe first how to
specify these global timing properties with real-time tempo-
ral logical formulae and afterwards we illustrate how to en-
rich the model with the required local timing assumptions.
Finally, we present our tool support for the complete verifi-
cation process.

4.1. Specification of Real-Time Properties

To specify system-level real-time properties, real-time
temporal logics such as metric temporal logic (MTL) [12]
and timed computational tree logic (TCTL) [1] are used
[3]. These real-time temporal logics extend standard tempo-
ral logics with operators that allow reasoning over discrete
(such as N

+) or continuous/dense (such as R
+) time do-

mains [11]. One interesting property for the viking-bridge
problem can be formulated by the following temporal logi-
cal formula:

∃ ♦≤60(Viking1 = safe ∧ Viking2 = safe∧
Viking3 = safe ∧ Viking4 = safe)

This formula queries whether there exists a trace of the
system where the system gets into a state where all four
vikings are safe and the total time is less than or equal to
60 time units, i.e., can all four vikings cross the bridge in
60 or less time units. The query notation is rather cum-
bersome, so to make it easier for non-experts to specify
TCTL queries we propose using the real-time specification
patterns of Konrad and Cheng [11] which extends the pat-
tern system of Dwyer et al. [9] toward the formalisation
of critical system properties with real time temporal logics.
The idea behind these specification patterns is (a) to create
a repository and a classification scheme of commonly spec-
ified properties in terms of a specific (real-time) temporal

logic and (b) to provide a structured natural language gram-
mar. Consequently, these (real-time) specification patterns
provide templates for the specification of system properties
and thus guide requirements analysts in expressing (real-
time) system requirements directly in a (real-time) temporal
logical formula.

4.2. Integration of Local Timing Assump-
tions

When the requirements or high level design decision re-
quire a timing constraint on a particular local behaviour, we
introduce a new local clock and place the constraint as a
guard on the new clock, using the syntax explained in Sec-
tion 3. This will typically also require the local clock to be
reset at an earlier node in the tree. The exact point at which
to reset the clock must be determined from the requirement.
For instance, in Figure 5, we know that at least 5 time units
must have passed between Viking1 taking and releasing the
torch, hence we initialise the new local clock y to 0 when
the torch is taken, and provide the lower bound on y when it
is released. If the requirements specify a timing constraint
on the state of the system, this is typically expressed using
a location invariant. For example, in Figure 5, we ensure
that the action of taking a torch takes no time by constrain-
ing the local clock x to satisfy the invariant x == 0 when
the take action is complete. In real-time systems it is of-
ten the case that not every behaviour is given a specified
timing constraint. In some cases this can lead to unrealistic
behaviour, where certain actions appear to take no time at
all, whereas in reality there is some non-zero lower bound
on the time the behaviour must take (e.g., the pressing of a
button). In such circumstances, assumptions must be made
about the length of time required for the relevant behaviours
and the constraints must be added to the model as above; of
course, such assumptions must be thoroughly documented.

4.3. Tool Support

To validate the feasibility of the presented concepts, the
software package Integrare [15] has been extended to allow
the specification of timed BTs, i.e., guards, invariants and
clock resets may be associated with each node. To enable
the verification of global timing properties, the extended
version of the tool contains the facility to generate UPPAAL
code from a timed BT. The translation follows the map-
ping between timed BTs and timed automata as described
in Section 3. To improve the visual representation of the
generated timed automata, the translator also adds layout
information. Fig. 10 is a screen-shot of the Integrare soft-
ware package. The open document represents the timed BT
of the viking example. Also shown is the UPPAAL trans-
lation dialog, displaying the XML code that can be used as



Figure 10. The tool Integrare with a timed BT model of the viking example

an input for the model checker. In Fig. 11 the XML code
has been opened with UPPAAL and the timed automaton
for the fastest viking is shown.

UPPAAL’s query language includes state and path ex-
pressions. State expressions cover properties of a single
state, e.g., Viking1 = safe , or y <= 5. Path expressions,
of which UPPAAL contains five types, cover properties of
execution paths, and are classified as reachability, safety, or
liveness properties. For instance, the TCTL formulae given
earlier, that there exists a path where all four vikings are
safe and the total time is less than or equal to 60 time units,
is an example of reachability and is specified as follows.

E<> Viking1==safe and Viking2==safe
and Viking3==safe and Viking4==safe
and globaltime<=60

Although UPPAAL does not allow nesting of path ex-
pressions, the five types allowed give an adequate coverage
of TCTL for most real-world problems. UPPAAL can re-
turn a yes or no answer automatically for these queries, and
provide either a witness (reachability) or counter-example
(safety, liveness) as appropriate. By model checking our
example, we were able to prove that the model is deadlock
free and that the four vikings are able to cross the bridge in
60 time units. The given diagnostic trace, which can also
be viewed step by step in UPPAAL’s simulator, can be in-
terpreted as follows:

• step 1: the fastest (5 time units) and the fast (10 time
units) viking cross the bridge. (total time = 10 time
units)

• step 2: the fastest (5 time units) viking brings the torch
back to the unsafe side. (total time = 10 +5 time units)

• step 3: the slow (20 time units) and slowest (25 time
units) viking cross the bridge. (total time = 10+5+25
time units)

• step 4: the fast (10 time units) viking brings the torch
back to the unsafe side. (total time = 10+5+25+10 time
units)

• step 5: the fastest (5 time units) and the fast (10
time units) viking cross the bridge. (total time =
10+5+25+10+10)

After executing this trace all four vikings are safe and only
60 time units have been used. Even though this is a very
simple example with a relatively small state space, the ben-
efit of timed model checking to verifying timing require-
ments becomes clear. The initial solution (65 time units),
which was describe in Section 3 is suboptimal and by using
timed model checking we could find a better solution.



Figure 11. The tool UPPAAL with the timed
automaton for one viking process

5. Related Work

Our work can be categorised under the topic of “inte-
grating formal methods” in that we integrate the concepts
of timed automata into the BT notation. In related work,
other languages have been extended by a timed notation,
e.g. Object-Z with the Timed Interval Calculus [16] or
Object-Z with timed automata [7].

In general, an integration can be “conservative”, main-
taining the syntax of both notations and defining a seman-
tical link between them, or “non-conservative”, by intro-
ducing new syntax into one language to capture the con-
cepts of the other. Since both our notations, the BT nota-
tion and timed automata, are graphical, we follow a non-
conservative approach which can be done with a simple
extension to the BT syntax that can still be easily read by
somebody who is familiar with the BT notation. The se-
mantics of the timed notation is mapped onto one of the
formalisms, namely the timed automata semantics. We gain

the benefit of an interface to the tool support for timed au-
tomata (here we use UPPAAL). Examples of other “non-
conservative” approaches are timed CSP [14] and timed
Petri Nets [13]. An example of a “conservative” approach
to extend a languages by a timed notation is the integration
of Object-Z and timed automata as given by Dong et al. [7].

6. Conclusion and Future Work

In this paper we have extended the requirements formali-
sation notation Behaviour Trees with timing constraints, al-
lowing the notation to concisely express real-time systems.
The extensions are based on timed automata [2, 5], since
this is a well-established and elegant formalism for captur-
ing timing constraints. This also allows us to translate a
Behaviour Tree representation of a problem into a timed
automata representation, which we can then simulate and
model check using the tool UPPAAL [4]. A timed automata
model in UPPAAL may be checked against safety or live-
ness properties expressed in a subset of TCTL [1], incorpo-
rating constraints on global or local (process) time.

We have thus provided Behaviour Trees with a straight-
forward extension of timing constraints, based on an expres-
sive formalism for real-time systems which is supported by
a mature verification tool. We have demonstrated the tim-
ing extensions and the translation process on a system that
incorporates standard features of the Behaviour Tree no-
tation in combination with constraints on both global and
local time, and used UPPAAL to automatically check the
system satisfies several timing constraints as well as graph-
ically simulate the correct traces.

In future work, we will apply the extended notation to
larger real-time examples, in particular a system which con-
trols the raising and lowering of a large metal press. This
system contains many potentially hazardous situations; us-
ing Timed Behaviour Trees, which provides both lower and
upper bounds on global and local clocks, we can develop
a comprehensive Failure Mode Effect Analysis (FMEA) of
the system, extending earlier work in this area [10].

Additionally, we are working towards a probabilistic ex-
tension of BTs which would allow us to use probabilistic
model-checking for the above described FMEA process.
Based on this probabilistic extension random failures could
be modelled and analysed conveniently.
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