
Integrating Requirements: The Behavior Tree Philosophy

Kirsten Winter Ian J. Hayes
School of ITEE,

The University of Queensland,
Brisbane, Qld 4072, Australia

email: kirsten, ianh@itee.uq.edu.au

Robert Colvin
The Queensland Brain Institute,
The University of Queensland,
Brisbane, Qld 4072, Australia
email: robert@itee.uq.edu.au

This paper is dedicated to the memory of our friend and colleague
Professor R. Geoff Dromey (1946 – 2009).

Abstract—Behavior Trees were invented by Geoff Dromey
as a graphical modelling notation. Their design was driven
by the desire to ease the task of capturing functional system
requirements and to bridge the gap between an informal
language description and a formal model. Vital to Dromey’s
intention is the idea of incrementally building the model out
of its building blocks, the functional requirements. This is
done by graphically representing each requirement as its own
Behavior Tree and incrementally merging the trees to form a
more complete model of the system.

In this paper we investigate the essence of this constructive
approach to creating a model in general notation-independent
terms and discuss its advantages and disadvantages. The result
can be seen as a framework of rules and provides us with a
semantic underpinning of requirements integration. Integration
points are identified by examining the (implicit or explicit)
preconditions of each requirement. We use Behavior Trees as
an example of how this framework can be put into practise.

Keywords-Requirements, modelling, analysis, integration, Be-
havior Tree

I. REQUIREMENTS

In engineering, a set of requirements is understood as
what is needed as a system’s behaviour from the customer’s
perspective. To develop a specification from requirements
different activities can be distinguished [1], [2]:

• elicitation (gathering, understanding, reviewing, and
articulating the needs of the customer),

• analysis (checking for consistency and completeness),
• specification (building a model) and verification (check-

ing the model against requirements), and
• validation (making sure the specification reflects the

intention of the customer).

In the context of this paper we are not concerned with is-
sues of elicitation of requirements. We assume requirements
are given as natural language descriptions and focus on
modelling of the requirements (i.e., building a specification),
analysis and verification of the resulting model.

R1 If the oven is idle and you push the button, the oven
will start cooking (that is, energise the power-tube for
one minute).

R2 If the button is pushed while the oven is cooking it will
cause the oven to cook for an extra minute.

R3 Pushing the button when the door is open has no effect
(because it is disabled).

R4 Whenever the oven is cooking or the door is open the
light in the oven will be on.

R5 Opening the door stops the cooking.
R6 Closing the door turns off the light. This is the normal

idle state prior to cooking when the user has placed
food in the oven.

R7 If the oven times-out, the light and the power-tube are
turned off and then a beeper emits a sound to indicate
that the cooking is finished.

Figure 1. The requirements of a Microwave Oven

The requirements are usually given as a set of individual
statements:

R = {r1, . . . , rn}.

As an example, we reproduce the requirements for the
Microwave Oven as published in [3] in Figure 1.

The set R serves as an input for developing a model
M of the system. Modelling can be informal, i.e., using a
notation for which the meaning of its syntactic elements is
not formally defined. This can serve well for the purpose of
documentation and clarification. However, creating a formal
model (using a formal notation) has the benefit that the
analysis of the model (and its properties) as well as the
development of an implementation from the model can be
supported by tools and formal techniques.

The model needs to be verified against the requirements to
ensure their intention is preserved. Verification can be done
on an informal basis, if M and R are not given formally. If
M is a formal model and the requirements are formalised
(individually) then validation can be pursued by verifyingc© c©2010 IEEE. Personal use of this material is permitted. Permission from IEEE

must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.
SEFM 2010, 13-18 September 2010 Pisa, Italy 978-1-4673-0269-2/12/$31.00
c© 2012 IEEE

that M satisfies R:
M |= R.

The model M can also serve as a basis for the analysis
of R, such as checking consistency and completeness. If
changes to the requirements are made (e.g., due to the results
of the analysis) the model has to be adjusted to accommodate
these and once again the new model has to be validated and
analysed.

In the following we are aiming at a reasoning approach
that will hold for informal as well as formal models, for
some notion of satisfiability. In the formal approach satis-
fiability can be checked on the basis of formal techniques
and potentially using tool support.

We structure the rest of the paper as follows: Section II
summarises aspects of requirements modelling which then
leads on to a constructive approach for modelling by build-
ing the model out of the requirements. Integrating the
requirements is discussed in Section III. In Section IV
we introduce Behavior Trees as an example notation that
supports the integration of requirements and explain the
integration steps by means of an example in Section V. In
Section VI we provide the basis for a formal framework for
integration as a set of abstract rewriting rules and show how
these can be interpreted on the example of Behavior Trees.
Section VII concludes our work with a discussion.

II. REQUIREMENTS MODELLING

Models can be created in various ways. The standard
approach is to posit a modelM based on the understanding
and interpretation of (a sub-set of) the requirements. This
often goes hand-in-hand with a partitioning of the require-
ments based on the components that are identified as parts
of the system. Subsequently, the modeller has to show or
prove that M meets the individual functional requirements
ri. This is summarised as the “posit and prove” approach.

The advantage of this approach is that M might (de-
pending on the capability of the modeller) have a certain
elegance and neatness. It might contain suitable abstractions
that support the subsequent analysis and it often already
includes sensible design decisions.M is most likely already
in the shape of a model that can be used for the further
development of the system.

The disadvantages of this approach, however, can be
summarised by the following points.

1) Checking M |= ri for each i is expensive for a large
set R. In a formal approach to verification this requires
one to formalise each ri and to provide a proof that
each ri is satisfied. In an informal approach validating
M can be approximated by testing, which is known
to be incomplete and time consuming, thus expensive
as well.

2) Traceability of individual requirements withinM may
be lost for two reasons: firstly, abstractions built into

M cause the loss of the original detail and sec-
ondly, the design often combines behaviours based on
components rather than based on the client-focussed
functionality which usually defines the structure of the
requirements.

3) Due to the lack of traceability it may be difficult to
cope with requirements change. If ri changes to r′i, it
is unclear how this affects the model M.

4) For the customer, who is ultimately involved in the
validation of the model, interpreting and understanding
the model M becomes more challenging the further
the structure of M is removed from the structure of
the requirements. Moreover, the use of a specialised
formal notation that is not derived from the customers
domain may be a barrier to understanding.

These disadvantages may be addressed by taking a con-
structive approach to building M instead of the “posit and
prove” approach, that is, by constructing M out of R as
advocated by Geoff Dromey [3], [4]. The advantage of
design and abstraction may be lost in this construction;
however, as we will discuss in Section III-B, the best of
both worlds may be possible. We have taken the approach
of interpreting requirements as specifying behaviour, as
distinct from specifying a condition, such as a predicate. The
predicate-based approach has been considered as the basis
of constructing models by others [5], [6], [7], [8], [9], but
results in models that lack the advantage of visual control
flow as exemplified by graphical languages and process
algebras.

The individual requirements collected in R typically de-
scribe (desired) behaviour. For a model that captures each
ri as a predicate it suffices to build the conjunction of all ri
to express that all requirements are satisfied by the model
(see e.g., the work in [10] and [6]). However, capturing
requirements that describe a sequence of steps as predicates
is not a trivial task and often leads to a model that is not
easily understood by the customer. Alternatively, we might
attempt to construct a trace-based model out of the set of
individual requirements ri. For the sake of presentation,
assume the behaviour requested by ri is given as a trace
of actions. A naive approach might use parallel composition
to represent the conjunction of all traces ri:

M = r1 ‖ r2 ‖ . . . ‖ rn.
For nontrivial ri this is clearly not suitable, as requirements
are interdependent. This interdependency may be accounted
for by giving each requirement ri a precondition, p(ri),
which is the condition required to ensure ri behavaves as
expected. We abbreviate p(ri) as pi.1 If pi has not been
established the execution of ri would lead to a behaviour
that would not match the intention of requirements in R.

1The term precondition is used here in the specific context of Behavior
Trees and comes with a particular interpretation that might not coincide
with interpretations given to the term in other contexts.

The precondition can be understood as a condition over
the system’s state that has to be established by (the execution
of) a behaviour before another behaviour is enabled. Pre-
conditions are often implied or only partially stated by the
requirements because each requirement is not stand-alone
but has to be understood in the context of the complete set
of requirements. For instance, the behaviour of requirement
R5 in Figure 1 has the implicit precondition that the door is
closed and the oven is cooking.

To convey our concept we use the notation pi ri to
mean that when the behaviour that establishes the condition
pi has occurred, then ri may occur, i.e., pi enables ri. Let
us furthermore assume the preconditions are made explicit
in R.

R = {p1 r1, p2 r2, . . . , pn rn}

This gives the constructed model

M = (p1 r1) ‖ (p2 r2) ‖ . . . ‖ (pn rn).

Assuming it is possible to define and track it appro-
priately, this model addresses points 1, 2 and 3, but it does
have some fundamental problems:
• It is difficult to comprehend the overall system be-

haviour, as the flow of control is not represented
by the structure of M but is hidden in the parallel
construction.

• There is no notion of choice between behaviours, i.e.,
in a state in which both conditions pi and pj hold both
behaviours ri and rj can occur (in parallel), but the
intended meaning may be for one or the other but not
both behaviours to occur.

Clearly, constructing a reasonable model from the require-
ments is a nontrivial task.

III. INTEGRATING REQUIREMENTS

Let us examine integrating the requirements, in order to
gain a model that makes control flow more explicit: instead
of only using the parallel operator to combine require-
ments we also describe rules for incorporating sequential
and parallel composition, nondeterministic choice between
alternatives, and iteration. These rules are an attempt at a
simple framework and are incomplete. We will refine them
in Section VI.

Sequential Composition: If behaviour ri establishes the
precondition of another behaviour rj , denoted as ri pj ,
then one possible way to integrate the requirements, pi ri
and pj rj , is as a single sequential behaviour, pi
(ri; rj).

Rule (1) describes this step and it reads as follows. The
hypothesis above the line specifies the necessary condition
to apply the rule, i.e., pi ri establishes pj . The conclusion
below the line shows the transformation relation →. On the
left hand side of → we can find the original term, the tuple

(pi ri, pj rj), which is transformed into the single
term shown on the right hand side of →.

pi ri pj

(pi ri, pj rj)→ (pi (ri; rj))
(1)

Figure 2 depicts this rule graphically: the behaviours ri
and rj are shown as bars, paraphrasing that their execution
proceeds from left to right. On the left side of the behaviour
the preconditions required for execution are given, e.g.,
pi, and to the right the condition that is established after
executing the behaviour is shown. Linking the two bars into
one long bar symbolises the sequential composition of the
behaviours.

pj

ri rjpi
pi pjri

rj

Figure 2. Rule (1) for sequential composition graphically

Branching Composition: If both requirements ri and
rj have the same precondition, i.e., pi = pj , then both
behaviours can occur when this precondition has been
established. In this case the modeller must use their do-
main knowledge to decide if parallel (‖) or alternative ([])
behaviour models the requirements appropriately. Rule (2)
captures both cases, letting the symbol ⊕ stand for either ‖
or [].

pi = pj

(pi ri, pj rj)→ (pi (ri ⊕ rj))
(2)

This rule is depicted in Figure 3. Two requirements with
the same precondition (on the left) can be integrated into a
construct in which the common precondition is followed by
both behaviours combined in the tree-like fashion of either
parallel or choice (on the right).

pk

ri
rj

pm
pi

pk

pmpi

pi

ri

rj

Figure 3. Rule (2) for branching composition graphically

Iteration: If a requirement r with precondition p,
establishes its own precondition, i.e., r establishes p, then
we extend the behaviour with iteration such that the flow
of control loops back to the beginning once behaviour r
has terminated. The following rule captures the introduction
of loops. The notation µx.r;x denotes a recursive term in
which x is replaced by µx.r;x when the term is unfolded
into behaviour.

p r p

p r → (p (µx.r;x))
(3)

Graphically, this rule can be depicted as in Figure 4. A
requirement that establishes its own precondition (on the
left), leads to iterated behaviour (depicted using a looping
back arrow on the right).

rp p rp

Figure 4. Rule (3) for iteration graphically

The rules we have presented in this section are simple
cases of more general rules that are presented in Setion VI.

A. Degrees of freedom in integration

In general for any requirement pi ri there might be
many places with which it may be integrated, since the
precondition might be established more than once through
other requirements. This might imply ambiguities of the re-
quirements (see also Section III-B). Some requirements may
need to be integrated multiple times. Moreover, the order in
which the integration takes place ultimately determines the
possibilities of integration. The modeller must also decide
whether to interpret the operator ⊕ as parallel or alternative
composition.

All these choices define the degree of freedom in the
modelling phase, and with this the modelling space. They
will ultimately impact on the form of the full model. They
depend on the modeller’s understanding and interpretation of
the given requirements and may have to be discussed with
the customers to ensure that the correct intention is captured.

The modelling process in the constructive integration ap-
proach is therefore human-centered because many decisions
have to be made by the modeller in consultation with the
customer. However, the process is more constrained than the
“posit and prove” approach, and tool support can potentially
be provided to rule out integrations that while syntactically
valid (the precondition is established) lead to inconsistencies
in the resulting model.

B. Full integration

The process of integration continues until a single struc-
ture remains which constitutes the full model. If a require-
ment is not able to be integrated then this indicates either that
it is incomplete or inconsistent with the other requirements
in that its precondition is never satisfied. We refer to this as
a defect in R that must be corrected by consultation with the
client. The integration process might also reveal ambiguity
in the requirements R which needs to be resolved with the
client in order to create a model that captures their intention.
Detection of defects and ambiguities in the requirements are
valuable feedback for the client.

Assume that all requirements in R have been integrated
(possibly after fixing defects and resolving ambiguities in
the requirements). The resulting model “satisfies” the re-
quirements in the sense that the behaviour of each occurs

explicitly as part of the model. CheckingM |= ri is reduced
to verifying that ri has been successfully integrated and
we have thus addressed the problem of validating a model
(point 1 in Section II). Traceability (point 2) can be achieved
straightforwardly; since each requirement ri maintains its
integrity within the model, it may be syntactically tagged
with the corresponding label in the client’s original require-
ments document. Handling requirements change (point 3) is
similarly supported due to the localised nature of require-
ments in the constructed model. The readability of the model
by the client (point 4) is improved as the structure of the
requirements is preserved in the structure of the model.

The main disadvantage, however, is the converse of the
advantage of standard modelling approaches. The model is
not abstract. It reflects the structure of the requirements
document which is most likely not the desired structure of
the system. Hence the initial model that is constructed from
the requirements has to be transformed to incorporate design.

For example, we might be interested in a model with
a component-based structure that highlights the behaviour
of each individual component and the interaction between
components. This requires restructuring the initial model
into a model consisting of parallel behaviours each of which
specifies the behaviour of one component only. Conse-
quently, we have to introduce communication mechanisms
between components, in order to maintain the correct se-
quencing of steps. We argue that these refactoring steps can
be undertaken in a structured fashion and (in the case of
a formal model) can be potentially supported by tools and
formal techniques, once an initial model has been created
and validated. Most importantly, defects in the requirements
have been addressed and ambiguities resolved beforehand.

IV. BEHAVIOR TREES

In Section II we presented rules for a constructive ap-
proach of building a system model out of its requirements.
The approach of Behavior Engineering, as it was termed by
Geoff Dromey, was created out of this core idea. Underlying
this philosophy is a graphical notation that takes the shape
of trees and thus accommodates the proposed integration
steps. In this section we describe the notation of Behavior
Trees and in particular show how the syntax-directed inte-
gration approach of Geoff Dromey [3] relates to the abstract
integration we outlined in the previous section.

A. Syntax of Behavior Trees

The notation of Behavior Trees resembles some aspects of
flowcharts. A flowchart is a type of diagram that can be used
to represent an algorithm or a process. It depicts the steps of
the algorithm as nodes of various kinds, and their order of
their execution by connecting arrows. Behavior Trees have
in common with flowcharts the concept of nodes (of various
types) to symbolise behaviour or conditions, and connecting
arrows to denote control flow.

Behavior Trees aim at the specification of a system’s
behaviour. Beyond simple sequential and alternative control
flow Behavior Trees allow the user to model concurrent
behaviour. The concept of conditioned alternative is ex-
tended to a more general nondeterministic choice (guarded
or unguarded). Moreover, each single behaviour, as specified
in a node, is dedicated to one particular component. That
is, in a Behavior Tree the modeller can piece together
behaviours from various components in one tree of actions,
thus taking a global perspective on the system’s behaviour.
These features enable the modeller to capture sets of (indi-
vidual) requirements and integrate them into a model of the
system as a whole.

Figure 5 shows the syntax for basic node types. (In this
paper we present the core of the notation only; for a full
description we refer the reader to [11]). Each node carries

CName
[s]

CName
? p ?

CName
??? p ???

CName
> m <

CName
< m >

t

t

t

t

t

f

f

f

f

f

state realisation

selection

guard

input event

output event

Figure 5. Basic node types

the component name CName to indicate which component
in the system is subject of the action or condition.

1) State realisation denotes an update on the state of
component CName to a new state s.

2) Selection specifies a condition under which the control
flow continues; if condition p is not satisfied the
execution terminates at this point (i.e., we have non-
blocking behaviour).

3) Guard models the concept of a blocking wait. If p
holds the flow of control continues, otherwise the
behaviour is blocked and the system waits until p
holds.

4) Input and output events model communication be-
tween components where the component in the out-
put event node is the sender of message m and the
component in the input event node is the reader of
m (multicast communication with several readers is
possible).

We say that two nodes are matching if they are iden-
tically labelled, i.e., if they refer to the same compo-
nent, are of the same type, and specify the same new
state/condition/message.

Nodes also carry a tag, t, which specifies the (set of)
requirements label(s) to indicate from which requirement
this node was derived to provide traceability of individual
requirements in the model.

A set of flags, f in a node, allows the modeller to manipu-
late the control flow. For instance, the reversion flag, marked
by ‘ˆ’, leads to a looping behaviour back to the closest
matching ancestor node and all behaviour started after the
matching ancestor node is terminated. The reversion flag can
only be set for leaf nodes. Another example is the thread kill
flag, marked by ‘−−’. It has the effect of killing the thread
that starts with the matching node. The synchronisation flag,
marked by ‘=’, enforces the control flow to wait until all
other synchronisation points (matching nodes that also have
the synchronisation flag set) are reached.

The control flow is syntactically specified by the ar-
rows between the nodes. A single arrow that links two
nodes denotes sequential composition. Nodes with two or
more outgoing arrows indicate a branching flow of control.
Branching can either denote alternative or parallel compo-
sition of behaviour. Figure 6 shows the syntax of the two
concepts.

CName
BehSpec

CName
BehSpec

tt

t

...

CName
BehSpec

CName
BehSpec

CName
BehSpec

tt

t

...

(a) (b)

[] CName
BehSpec

[]

Figure 6. Branching control flow: (a) alternative; (b) parallel

Note that the leading nodes of alternative behaviours
have to be either all selections (i.e., of the form ?p?) or
none of them selections. Semantically, it provides us with a
nondeterministic choice, and it can be additionally guarded.

The Behavior Tree notation has been formalised [12] by
translating the notation into a variant of CSP, CSPσ [13]. The
process algebra CSPσ allows interprocess communication
through synchronisation, as well as mutable state (to model
the components of the system). The meaning of a Behavior
Tree may be interpreted via its operational semantics.

B. Modelling with Behavior Trees

We provide some examples from the microwave oven as
given in Figure 1 to demonstrate how the syntax of Behavior

Oven

User

Door

Light

Oven

UserUser

Button

Oven

Door

Button LightButton

Powertube

Oven

Oven

[CookStop][Cooking]

[ExtraMin] [Off]

[Disabled]

[Open][Pushed]

???PushButton??? ???DoorOpen???

[On]

[Idle]

[Off]

[Enabled]

[Closed]

???DoorClosed???

[Open]
R6
+

R6
+

R6

R6

R6

R3 R4

Oven
[Open]

R2
+

R2

R2

R2
+

R5
+

R5

R5

R5
-

R5
+

R3

Door
[Closed]

R3

Door
[Open]

R4

Oven
[Cooking]

R2 Oven
[Cooking]

R5

Door
[Open]

R3

R2

R3 R4

R5

R6

Light
[On]

R4

Oven
[Cooking]

R4

User

Button

Powertube

Oven
[Cooking]

[Energised]

[Pushed]

???PushButton???
R1

R1

R1

R1

Oven

[Idle]
R1

Beeper

Light Powertube

Oven

Oven
???TmeOut???

[Off]

[Sounded]

[CookFinish]

[Off]

Oven ^
[Idle]

R7

R7

R7

R7

R7

R7
-

Oven
[Cooking]

R7

R7

R1

Figure 8. Individual Behavior Trees for each of the given requirements R1 - R7

Trees is utilised to capture individual requirements.

Consider requirement R1:
If the oven is idle and you push the
button, the oven will start cooking
(that is, energise the power-tube for
one minute).

To model R1 we create a Behavior Tree
as shown in Figure 7. The first node
models the condition that the Oven
component has to be in the state Idle.
The second node models the guard
that is satisfied when and if component
User has pushed the button – until
the guard is satisfied the control flow
cannot proceed past this point. As a
consequence a sequence of further

User

Button

Powertube

Oven
[Cooking]

[Energised]

[Pushed]

???PushButton???
R1

R1

R1

R1

Oven

[Idle]
R1

Figure 7.Behavior Tree
for R1

state changes in other components occurs, namely in the
Button, the Powertube, and in the Oven which starts
cooking. We refer to a Behavior Tree that originates from a
single requirement as an individual requirement tree.

The Behavior Tree in Figure 7 (as suggested by Geoff
Dromey [3]) is close to a literal translation of the require-
ment (apart from adding the state change in component
Button which was not explicit in the description). A
notable decision was made however, to model the first node
as a state realisation, where in fact a selection may have

sufficed, that is, the root node could possibly have been a
test on whether the oven is idle. The reason for this choice is
explained in the next section. Figure 8 shows how the other
requirements can be captured by individual requirement trees
(again these are taken from Geoff Dromey’s work [3]).

V. INTEGRATING BEHAVIOR TREES

The Behavior Tree approach to integrating requirements
(represented as Behavior Trees) is to look for common
nodes through simple syntactic matching. As examples we
demonstrate how to integrate some of the individual require-
ment trees from Section IV-B. In the following we denote a
Behavior Tree that captures requirement Ri by Ri.

Figure 9 shows the integration of R2 and R5. Both
sequences have the same the root node, Oven[Cooking],
which is the matching node, and we merge one of the
Behavior Trees (say R5) into the other (R2) at this point.
The root node is common to both R2 and R5 and hence is
tagged with both R2 and R5 in the merged tree. This results
in a branching construct which can be either alternative or
parallel flow of control. In this case the modeller has to
make a design decision which of those captures the intention
of the requirements. In our case we want both behaviours
be a possibility. That is, if cooking for an extra minute
(R2) is requested it should not disable the functionality
of opening the door to interrupt the cooking. Hence, we
model the behaviours as being concurrent. The intermediate

result is the Behavior Tree that we denote as R25. (Note
that further analysis will reveal safety violations due to race
conditions between the two threads since any interleaving
of the behaviour is possible. The model will have to be
modified to solve this problem.)

User

Button

Oven

Oven

[Cooking]

[ExtraMin]

[Pushed]

???PushButton???
R2
+

R2

R2

R2
+

User

Door

Powertube

Oven
[CookStop]

[Off]

[Open]

???DoorOpen???

Oven
[Open]

R5
+

R5

R5

R5
-

R5
+

Oven
[Cooking]

R2,R5
@

Figure 9. Integration of R2 and R5 into R25

The individual requirement tree R6 can be integrated with
R1 because R6 establishes the situation where the Oven
is Idle, which matches the root node of R1. This exact
syntactic matching on nodes is why the root node of R1

was modelled as a state realisation and not a selection (see
Section IV-B). In the latter case, the matching would not
occur and the trees would remain unintegrated. This would
lead to a re-examination of the interpretation of R1 and
changing its root node to a state realisation.

The second behaviour of R4 can be integrated with R1 at
the matching node Oven[Cooking]. However, we might
decide that it is more suitable for the microwave oven if
the light comes on as soon as the button is pushed, and
consequently choose Button[Pushed] inR1 as the point
of integration.

The leaf node in requirements tree R2 matches the root
node of R2. That is, the behaviour of R2 establishes its
own precondition. This indicates the possibility for looping
behaviour. A reversion flag ‘ˆ’ added to R2’s leaf node
captures the iteration.

Figure 12 shows Geoff Dromey’s fully integrated Behav-
ior Tree (from [3]). What can be seen in this example is that
the concept of matching nodes provides support to locate
possible points of integration. The modeller can then still
deviate from the exact points or modify the Behavior Trees
to achieve an integration that reflects his/her interpretation
of the requirements. The potential ambiguities of integra-
tion stem from the requirements and are identified by the
integrative approach.

A. Behavior Tree integration in the formal framework
The Behavior Tree approach to integration is to identify

integration points through matching nodes. To relate this to
our framework we must describe the meaning of r p and
p r, and relate the syntactic integration to the integration
rules in Section III.

In the Behavior Tree context, a precondition p is a
predicate on the state of the components in the system, and a
behaviour r is a sequence of operations on the components
(tests and updates), and possibly communication between
components. Hence, r p holds if r modifies the compo-
nents in some way that makes p true. Similarly, p r if
the state of the components identified by p enables r.

In the following we note that R contains both the pre-
condition and the required behaviour, that is R = p r.
Furthermore, we reduce the precondition p to one single
node, the matching root node. For instance, the precondition
part in R1 is that the oven is idle (P1), while the rest of
the requirement specifies the sequence of the button being
pressed and the button state, power tube, and oven being
modified (S1). We have R1 = P1 S1. It becomes quite
clear thatR6, i.e., the leaf node ofR6, establishes P1, hence,
R6 P1. The requirements may be integrated at the leaf
node of R6.

More specifically, the following relationship relates the
structure of individual requirement trees to the requirements
framework we have outlined (we assume that behaviour
pi ri is modelled by a Behavior TreeRi, which is usually
a sequence).

leaf (Ri) = root(Rj) =⇒ ri pj

The condition ri pj is the antecedent of Rule (1), and
hence the syntactic matching of a root node to a leaf node,
as with R1 and R6 in our example, justifies integrating them
via a sequential composition of Behavior Trees.

The integration of two Behavior trees to form a branching
tree, as with integrating R2 and R5, has the following
relationship:

root(Ri) = root(Rj) =⇒ pi = pj

That is, if the root nodes are identical, the preconditions are
identical. The condition pi = pj is exactly the antecedent of
Rule (2). The resulting integrated Behavior Tree introduces
a branching construct after the matching root nodes, i.e.,
following the notation used in Rule (2), pi (ri ⊕ rj).

Finally, we consider iteration, which is achieved in Be-
havior Trees through reversion tags. As described in the last
section, reversion is added to the tree when a matching node
of a leaf appears as a root. For example, reversion was added
to R2.

root(R) = leaf (R) =⇒ r p ∧ p r

That is, the behaviour r of tree R establishes its own
precondition if it finishes where it started. The condition

gives the context for applying Rule (3). As a result the
behaviour of R iterates back to r.

Of course, the relationships listed above will not always
hold. The Behavior Tree philosophy is that they hold suffi-
ciently often to form the basis of constructive modelling
(without needing to explicitly collect all preconditions).
This notion provides us with rules for a purely syntactic
integration. The situations where the relationships do not
hold are candidates for ambiguity or inconsistencies in the
original requirements, and hence worth identifying.

We have shown how syntactic matching works in the
simple case of integrating two individual requirement trees
in the Behavior Tree notation. However, as the integration
process continues, the trees involved become larger and will
have more complex structure. In the next section we provide
a more general version of the rules to handle full integration.

VI. MODELLING WITH TREE STRUCTURES

In this section we generalise the earlier rules to accom-
modate more complex integrations. This generalisation leads
to tree rewriting rules which allow us to incrementally
integrate a number of requirements. Assume therefore that
the requirements are given as a set of tree terms (e.g.,
abstract syntax trees of expressions representing behaviour).
Syntactically, trees can have the following form where ‘∅’
denotes the empty tree and ‘;’ the sequential composition of
a single node and a tree. µx.Tree denotes the recursive tree
term and x an identifier which is bound by the µ operator,
i.e., it is only defined in the context of a tree t which occurs
in the term µx.t.

Tree ::= ∅ | Node;Tree | x
| Tree ‖ . . . ‖ Tree
| Tree [] . . . [] Tree

| µx.Tree

Note that with the introduction of recursive loops the struc-
ture is no longer strictly a tree, i.e., our concept of Tree as
defined above has a special form that suits our purposes.

In the following let t and ti be (sub-)trees, n a node, s
and si sequences of nodes and 〈〉 the empty sequence (of
nodes). The concatenation of sequences is marked by ‘a’,
and with ⊕ we denote a operator that can be either ‖ or [].

Tree terms can be graphically depicted as directed, rooted
trees for which we can define the notion of paths of a tree
as follows. Each path is a sequence of nodes.

paths(∅) = {〈〉}
paths(n; t) = {s : paths(t) · 〈n〉as} ∪ {〈〉}

paths(t1 ⊕ . . .⊕ tn) = paths(t1) ∪ . . . ∪ paths(tn)

paths(µx.t) = paths(t).

Note that paths can not contain the identifier x and as a
consequence do not include loops. We also assume that the

sets of paths of different sub-trees are disjoint since each
node can be distinguished by tagging it with its location in
the tree (even if nodes may be syntactically identical).

Within a tree we can use indexing by a path to refer to
a particular point in the tree where a particular sub-tree is
located. Indexing on trees is defined inductively as follows.

t[〈〉] = t

(〈n〉; t)[〈n〉as] = t[s]

(t1 ⊕ . . .⊕ tn)[s] = ti[s] if s ∈ paths(ti)
(µx.t)[s] = t[s]

A. Tree rewriting rules
To define the rules for integrating tree terms we use the

notion of substituting sub-trees in a (super-) tree. Let T be
a tree and s a path from the root node of T down to some
node within T . We denote with T [s 7→ t] the tree in which
the path s leads to a point at which we substitute a sub-
tree (possibly the empty tree ∅) with the new sub-tree t.
That is, we insert t at a particular point in T , namely the
point to which s leads. This leads to the following inductive
definition. Assume si ∈ paths(ti) as above then

T [〈〉 7→ t′] = t′

(n; t)[〈n〉as 7→ t′] =n; (t[s 7→ t′])
(t1 ⊕ . . . ti . . .⊕ tn)[s 7→ t′] = t1 ⊕ . . . ti[s 7→ t′] . . .⊕ tn

if s ∈ paths(ti)
(µx.t)[s 7→ t′] =µx.t[s 7→ t′]

This tree notation allows us now to generalise Rules (1)
and (2) in Section III into a single rule. If a path s in the
tree T establishes the precondition of a tree t2, then t2 can
be integrated into T by substituting sub-tree t1 = T [s] by
a branching structure t1 ⊕ t2. The modeller chooses either
parallel or nondeterministic choice between the sub-tree t1
and the behaviour t2 and graft the branching structure at the
end of path s. This is formalised in the following Rule (4).

p s p2 s ∈ paths(T) t1 = T [s]
(p T , p2 t2) → p T [s 7→ (t1 ⊕ t2)]

(4)

Note that this syntactic operation preserves the super-
structure T at all other places.

t2,

t2t1 t1

T Tp2

p2p p

s s

Figure 10. Rule 4 for integrating tree structures assuming s p2

Figure 10 graphically depicts the integration of tree struc-
tures. Here we assume a top-to-bottom flow of control. Path

s is followed by some sub-tree t1. Note that the leaf nodes of
this sub-tree line up with the leaf nodes of the super-structure
T (the outermost triangle). Integration with t2 results again
in a sub-tree within T (shown on the right) which has further
branching at the point of integration. Note that t2 might be
either a simple sequence or a tree structure.

Rule (4) collapses to the case for simple sequential
composition (Rule (1)) by choosing T = ri, s = ri, t2 = rj
and t1 = ∅, and choosing ⊕ as the parallel operator ‖. On
the right-hand side of the transition we have ri; (∅ ‖ rj), in
which case we may eliminate the ∅ to obtain ri; rj .

Rule (4) also collapses to Rule (2) (choosing s = 〈〉 and
p = pj), and is more general in that it allows the integration
of rj into the middle of a behaviour ri (if s 6= 〈〉).

Iteration: A second tree rewriting rule introduces iter-
ation into a tree structure. Assume a tree T1 in which the
path s1 leads to the sub-tree T2 and establishes precondition
p2. In T2 the path s2 which leads to a leaf node of T2, also
establishes precondition p2. Then we can replace T2 with
the recursive term µx.T2[s2 7→ x] that loops back from the
leaf node that is reached via paths s2 to the root of T2.

p s1 p2 p2 s2 p2

s1 ∈ paths(T1) T2 = T1[s1]
s2 ∈ paths(T2) T2[s2] = ∅

p T1 → p T1[s1 7→ µx.T2[s2 7→ x]]

(5)

Note that we have introduced a binding, and scope, to the
recursive variable x. The name must be chosen such that it is
unique in the super-structure T1, i.e., a fresh variable name
for each recursive term is necessary. Figure 11 graphically
depicts this step that results in a looping tree structure.

T1 T1

T2T2

s1 s1

s2s2

p p

p2 p2

Figure 11. Rule (5) for iteration graphically
,

Note that any integration into a recursive sub-tree T2
(i.e., within s2) will be part of the recursion. Thus, the
effect of this step must be carefully checked, particularly
if concurrency is introduced. Ideally, recursion is introduced
last during the integration process so that side-effects on
other parts of the (integrated) tree are visible.

B. Relating to Behavior Trees
We now have the framework of rules that allows us to

iteratively integrate a consistent set of individual requirement

trees to form a single tree. We show by means of examples
how Rules (4) and (5) can be applied to achieve this.

Assume we want to integrate R1 with R2. That is, we
choose T = s = R1 and p2 t2 = R2 such that p2 is the
node Oven[Cooking] and t2 is the sub-tree that follows
this node in R2. R1 establishes precondition p2. Thus the
condition for applying Rule (4) is satisfied (with t1 = ∅)
and we can transform the tuple (R1,R2) into the sequence
R1; t2 = R12.

In a second step, we might want to integrate treesR12 and
R5. Again Rule (4) applies: R12 = T , s = R1, t1 = R2,
and R5 = p2 t2, with p2 = Oven[Cooking] and t2 is
the sub-tree that follows, similarly to the example above. p2,
the precondition for R5, is established by sequence s. Thus,
we can apply the rule and transform the tuple (T , p2 t2)
into the tree T [s 7→ (t1 ‖ t2) = R125.
R125 can be integrated with R7 using Rule (4) with

R125 = T and s = R1. This time t1 is a branching tree
rather than a simple sequence. Furthermore, R7 = p2 t2,
with p2 as above, the oven is cooking, and t2 being the sub-
tree that follows p2. The rule applies similarly to the cases
explained above.

Figure 12 shows the fully integrated Behavior Tree (cho-
sen from the modelling space of possible integrations) as it
was published by Geoff Dromey in [3]. Note that this tree
includes an additional requirement, R8, that was identified
as missing from the original requirements document during
the model construction phase. Moreover, multiple points of
iteration have been introduced using reversion nodes. Firstly,
the reversion at the end of individual requirement tree R2

back to the branching point Oven[Cooking]. Secondly,
the reversion at the leaf node of R7 which leads back to
the node Oven[Idle], and last the reversion at the leaf
node of R5 which reverts back to the root of the whole tree.
Note that the iterations introduced first are contained in the
sub-terms.

VII. DISCUSSION

In this paper we have discussed a constructive approach
to modelling a system, treating individual requirements as
the building blocks. In the complete system model the in-
dividual requirements are preserved, facilitating traceability,
and providing a clear mechanism for tracking and adapting
to requirements change. The downside of the approach, in
comparison with the usual posit and prove approach, is
that the constructed model may be lacking in abstraction
and design, since its structure will reflect the structure
of the requirements document. However, using refactoring
techniques, the constructed model may be transformed to
have a better design, while tools and formal techniques may
be employed to ensure that the new model is a faithful
implementation of the constructed model, which is itself
faithful to the original requirements.

Oven

User

Door

Light

User

Oven

Button

Powertube

User

User

Oven

Door

Oven^

User

Button

Oven ^

Door

Beeper

Light

Button

Light Light

Button

Button

Powertube

Powertube

Oven Oven

Oven

Oven
???TmeOut???

[Off]

[Sounded]

[CookFinish][CookStop][Cooking]

[ExtraMin] [Off] [Disabled]

[Off][Open][Pushed]

???PushButton??? ???DoorOpen???

[Open][Cooking]

[On][Disabled][Energised][On]

[Pushed] [Open]

???DoorOpen??????PushButton???

[Idle]

[Off] [Enabled]

[Closed]

???DoorClosed???

[Open]
R6
+

R6
+

R6, R3
 @

R6

R6,R1
@

R3

R1

R1,R4
 @

R8
-

R8.R4
 @

R1

R1,R2
R5,R7

R8
-

R8
-

R4 R4

Oven ^
[Open]

Oven ^
[Idle]

R2
+

R2

R2

R2
+

R5
+

R5,R3
 @

R5

R5
-

R5
+

R7

R3

R7

R7

R7

R7

R7
-

@

Figure 12. Fully integrated Behavior Tree model of the microwave oven

This constructive approach was based on the Behavior
Engineering methodology [3], [4], [14], designed by Ge-
off Dromey to tackle problems encountered in large-scale
system development associated with requirements capture.
It has been applied with success in industry [15] to identify
problems with large requirements documents. The methodol-
ogy employs a relatively simple scheme to use syntactically
matching nodes as the basis for integration, and thereby un-
covering inconsistencies, ambiguities, and incompleteness.
We have shown how this syntax-driven integration process
relates to the more general task of constructing a model out
of a set of smaller sub-models. While a pure syntax-driven
approach cannot suffice in general to build a completely
consistent model, it is a useful, fast and effective basis
for guiding modellers to an integrated system model that
faithfully, and traceably, preserves the original requirements,
and is in a form readable by the client.

With our rules we intended to give a flavour of how a
framework for integration could be defined. The rules given
are general rules that work for the most common cases but
they need to be customised to cater for the specialities of
the notation they are applied to.

ACKNOWLEDGMENT

This work was undertaken with the financial support
from the Australian Research Council Linkage Project grant
LP0989363.

REFERENCES

[1] J. A. McDermid, Software Engineer’s Reference Book. New-
ton, MA, USA: Butterworth-Heinemann, 1991.

[2] I. Sommerville, Software Engineering, 8th ed. Pearson
Education, 2006.

[3] R. G. Dromey, “From requirements to design: Formalizing
the key steps,” in Proc. of Int. Conf. on Software Engineering
and Formal Methods (SEFM 2003). IEEE Computer Society,
2003, pp. 2–13.

[4] ——, “Genetic design: Amplifying our ability to deal with
requirements complexity,” in Models, Transformations and
Tools, ser. LNCS, vol. 3466. Springer-Verlag, 2005, pp.
95–108.

[5] P. Zave and M. Jackson, “Conjunction as composition,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 2, no. 4, p. 411, 1993.

[6] E. Brottier, B. Baudry, Y. L. Traon, D. Touzet, and B. Nico-
las, “Producing a global requirement model from multiple
requirement specifications,” in Proc. of IEEE International
Conference on Enterprise Distributed Object Computing
(EDOC 2007). IEEE Computer Society, 2007, pp. 390–404.

[7] A. Goknil, I. Kurtev, and K. van den Berg, “A metamod-
eling approach for reasoning about requirements,” in Proc.
of European Conference on Model Driven Architecture -
Foundations and Applications (ECMDA-FA 2008), ser. LNCS,
I. Schieferdecker and A. Hartman, Eds., vol. 5095. Springer,
2008, pp. 310–325.

[8] A. Goknil, I. Kurtev, K. van den Berg, and J.-W.
Veldhuis, “Semantics of trace relations in requirements
models for consistency checking and inferencing,” Software
and Systems Modeling, 2009. [Online]. Available: http:
//dx.doi.org/10.1016/j.ic.2007.12.004

[9] G. Perrouin, E. Brottier, B. Baudry, and Y. L. Traon, “Com-
posing models for detecting inconsistencies: A requirements
engineering perspective,” in Proc. of International Confer-
ence on Requirements Engineering: Foundation for Software
Quality (REFSQ 2009), ser. LNCS, M. Glinz and P. Heymans,
Eds., vol. 5512. Springer, 2009, pp. 89–103.

[10] L. Wildman, “Requirements reformulation using formal spec-
ification: a case study,” in Workshop on the use of Formal
Methods in Defence Systems, C. Lakos, R. Esser, L. Bris-
tensen, and J. Billington, Eds. Australian Computer Society,
2002, pp. 75–83.

[11] “Behavior engineering,” http://www.behaviorengineering.org.

[12] R. Colvin and I. J. Hayes, “A semantics for Behavior Trees,”
The University of Queensland, Tech. Rep. SSE-2010-03,
May 2010. [Online]. Available: http://espace.library.uq.edu.
au/view/UQ:204809

[13] ——, “CSP with hierarchical state,” in Proc. of Int. Conf.
on Integrated Formal Methods (IFM 2009), ser. LNCS,
M. Leuschel and H. Wehrheim, Eds., vol. 5423. Springer,
2009, pp. 118–135.

[14] P. Lindsay, “Behavior Trees: from systems engineering to
software engineering,” in Proc. of Int. Conference on Software
Engineering and Formal Methods (SEFM 2010), 2010, this
volume.

[15] D. Powell, “Behavior Engineering: A scalable modeling and
analysis method,” in Proc. of Int. Conference on Software
Engineering and Formal Methods (SEFM 2010), 2010, this
volume.

