
Path-Sensitive Data Flow Analysis Simplified

Kirsten Winter1, Chenyi Zhang1, Ian J. Hayes1, Nathan Keynes2,
Cristina Cifuentes3, Lian Li3

1 School of ITEE, University of Queensland, Australia
2 Oracle Brisbane, Australia

3 Oracle Labs, Brisbane, Australia

Abstract. Path-sensitive data flow analysis pairs classical data flow
analysis with an analysis of feasibility of paths to improve precision.
In this paper we propose a framework for path-sensitive backward data
flow analysis that is enhanced with an abstraction of the predicate do-
main. The abstraction is based on a three-valued logic. It follows the
strategy that path predicates are simplified if possible (without calling
an external predicate solver) and every predicate that could not be re-
duced to a simple predicate is abstracted to the unknown value, for which
the feasibility is undecided. The implementation of the framework scales
well and delivers promising results.

1 Introduction

Data flow analysis (DFA) [Kil73,NNH99] is a static analysis technique for com-
piler optimisation and program verification that scales to large code bases. In
classical DFA, efficiency is achieved by conservatively over-approximating the
behaviour of a program, taking all possible paths into account. When the frame-
work is applied on static program analysis, the result is not precise: firstly, it
loses information at join points of the program when data flow values from
different paths are merged, and secondly, it may report bugs that arise from
infeasible paths. This can lead either to a large number of false positives (i.e., a
tool reports non-existing bugs) if the analysis reports all bugs that might occur
on some paths, or a large number of false negatives (i.e., bugs that are missed
by the analysis) if the analysis reports a bug only if it is encountered on all
paths. On large code bases a high rate of reported false positives obstructs the
debugging process whereas generally, a high rate of false negatives renders the
analysis ineffective.

In order to detect most existing bugs with a low false positive rate, several
approaches have been proposed to make DFA path-sensitive. Path-sensitive DFA
collects path information which indicates feasibility or infeasibility of a path, and
only reports bugs from feasible paths. Path information is given through the flow
predicates that determine the flow of control in a program. During the analysis
the flow predicates are combined to larger predicates, the satisfiability of which
is in general undecidable if all path information is taken into account. Hence,
full path sensitivity is hard to scale.

L. Groves and J. Sun (Eds.): ICFEM 2013, LNCS 8144, pp. 415-430.

c©Springer-Verlag Berlin Heidelberg 2013

2

In this paper we propose a theoretical framework for a path-sensitive back-
ward DFA which we enhance with an abstraction mechanism. The framework
utilises Dijkstra’s weakest preconditions and assertions added to the code to rep-
resent preconditions that are required for correctness. As such, assertions are a
general means to indicate violations in the code and in our context they play
the role of data flow facts. A feature of our approach is that path information
and data flow facts are both encoded in the same predicate domain. Hence, they
can be merged and the resulting predicate simplified. The abstraction is defined
on the predicate domain to abstract from predicates that are too complex and
to let the DFA procedure manipulate simple predicates only. We base this ab-
straction on a 3-valued logic which includes unknown as a third truth value. The
abstraction maps each complex predicate onto a special predicate ∆, which is
semantically unknown and hence can be either true or false.

The predicative backward DFA is implemented in the Parfait tool [CS08]
which is a bug-checker built on top of LLVM [LA04]. We use the analysis to
detect bugs such as memory leaks, use-after-free, double-free and free-of-non-
allocated-pointer in sequential code. The results are encouraging and show that
with the abstraction the analysis scales to code bases of over 6 million lines of
code with a precision that delivers a false-positive rate of less than 5%.

The paper is organised as follows. Sections 2 and 3 recount the basic concepts
of data flow analysis. The framework for a predicative backward DFA is intro-
duced in Section 4 and its application is demonstrated in Section 5. Section 6
introduces our abstraction mechanism on the predicate domain and justifies the
soundness for the approach. Section 7 reports on the experimental results when
applying the implementation in the Parfait tool to the Solaris ON B20 source
code. Section 8 discusses related work of path sensitive approaches in DFA. Sec-
tion 9 concludes the paper.

2 Data flow graphs

We define a flowchart language that consists of states and a transition relation
on states. The states and the transition relation are represented as a flow graph
G = (N,E, n0, nx) where N is a set of nodes, E ⊆ N ×N a set of edges, n0 ∈ N
a distinguished start node, and nx ∈ N a distinguished exit node. For an edge
e = (n, n′) ∈ E we say n is the source of e, written as src(e), and n′ is the
destination of e, written as dst(e). A path π is a sequence of consecutive edges
e1e2 . . . satisfying dst(ei) = src(ei+1) for all i. The set of immediate predecessors
of a node n is defined as pred(n) = {n′ | (n′, n) ∈ E}, and the set of immediate
successors of a node n is succ(n) = {n′ | (n, n′) ∈ E}. A program is a tuple
Prog = (G,Var, effect), where G is the flow graph of the program, Var is the
set of variables of the program, and edge labelling effect : E → Φ where Φ is
the set of statements (or their semantics) in the program. As usual, we define a
program state as a mapping from variables to values.

For the analysis we enhance the program code with assertions (also called
assumptions in the literature) which are specific to the analysis performed. They

3

void example(char *file){

int err = 0, fd;

int *tmp = malloc(..);

if(tmp == Null) {

err = 1;

goto cleanup;

}

close(fd);

free(tmp);

cleanup:

if(err != 0) {

free(tmp);

}

}

entrystart

n1 n2

n3

n4

n5

n6

n7

n8exit

err := 0

tmp :=malloc(..)

[tmp 6= Null] [tmp = Null]

close(fd) err := 1

free(tmp)

[err6= 0][err = 0]

free(tmp)

Fig. 1. An example program and its flow graph

are added to the code at particular points which are also specific to the problem
to be analysed. We consider assertions as a type of statement in the program.
Hence, the set of statements Φ includes assignment statements, guards (or flow
conditions), and assertions.

Example 1. In Figure 1 we give an example flow graph on the right where the
edges are labelled with the effects that correspond to the C code on the left. �

3 Data Flow Analysis

The classical data flow analysis (DFA) framework for forward and backward
directed analysis, is defined as a tuple L = (D,t,v,>,⊥, Tb, Tf), where we have
(D,t,v,>,⊥) a complete semi-lattice with > ∈ D the top element and ⊥ ∈ D
the bottom element, t : D × D → D a join operator, and v a partial order
on D (with x v y iff x t y = y). Informally, D is a set of data flow values
which abstractly represent the states of a program with respect to some specific
characteristics. The set D together with an abstraction function α, which maps
each concrete state onto an element in the abstract domain, constitutes the
abstract domain (as defined in [CC77,RM07]). The function Tb : Φ → (D → D)
is a backward transfer function that defines for each side effect the impact on the
data flow values. Similarly, Tf : Φ→ (D → D) is a forward transfer function.

Given a program Prog and a DFA framework L, a data flow problem is to
compute a mapping D : N → D that assigns a data flow value to each node in
the flow graph of Prog such that each node is labelled with the data flow value
that is “achievable” at that point. To compute this mapping requires a fixpoint
computation that is bound by the height of the semi-lattice in L. For each node
(simultaneously) the algorithm iteratively computes the following constraint:

4

(1) in the forward analysis and (2) in the backward analysis.

Di+1(n) =

 ⊔
n′∈pred(n)

Tf (eff (n′, n))(Di(n
′))

 (1)

Di+1(n) =

 ⊔
n′∈succ(n)

Tb(eff (n, n′))(Di(n
′))

 (2)

for any i ≥ 0, where D0(n) = ⊥ for all n ∈ N . This leads to a sequence of values
D0(n) v D1(n) v . . ., which terminates when a fixpoint is reached. As can be
seen, the forward analysis requires the information from all predecessor nodes
n ∈ pred(n) and uses the function Tf , whereas the backwards analysis builds on
the information of the successor nodes, n′ ∈ succ(n), and uses Tb.

The interpretation of the semi-lattice and the join operator t depend on the
analysis problem and the chosen approach. In the context of this paper, we target
a so called may analysis which collects information that may be true on some
paths and computes an over-approximation of the behaviour. The join operator
t is interpreted as set union ∪, and v is the subset relation ⊆.

Example 2. As an example we use the DFA approach to solve the problem of
memory leak detection of the local pointer variable tmp in the program of Fig-
ure 1. (Note that there might be other violations in the code that might be
analysed at a later stage, e.g., an attempted closing of a file pointed to by fd

which has not been opened). In a path-insensitive DFA (without information
about the control flow) a violating path through nodes entry-n1-n2-n5-n6-n7-
exit will be reported as a potential memory leak. This path, however, is a false
positive for two reasons: firstly, the path is infeasible due to the test on err, and
secondly it also requires tmp to be Null (i.e., malloc to fail) in which case no
memory is allocated and hence no leak has occurred. In this case, the informa-
tion necessary to identify this report as a false positive is given through the flow
condition err = 0 that is falsified by the preceding assignment err := 1. �

4 Predicative Backward DFA

In a backward DFA, the function D provides a conservative over-approximation
of the program’s state (in terms of its achievable data flow values) at each node.
To achieve a more precise result and to rule out infeasible paths we are aiming
at a path-sensitive analysis that collects control flow information along the paths
through the flow graph. This leads us to a predicative backward DFA, in which
D becomes the domain of predicates Pred and D : N → Pred . Pred is the set
of predicates that capture the states from which there exists a feasible path
(usually as a conservative over-approximation) along which the data flow value,
we aim to calculate, is achievable. We refer to Pred as the predicate domain.

5

The predicative data flow framework instantiates the simple DFA framework
by choosing a particular abstract domain D, transfer function Tb (in the back-
ward case) and join operator t. In the following we provide detailed definitions
of these constituents.

Predicate Domain. We define the predicate domain Pred as a set of predicates
over program variables. We write var(p) to denote the variables in predicate
p. The set of predicates forms a lattice in which p v q is defined in terms of
entailment: the logical implication of predicates that holds for all states, written
(p V q). We let true be the top element of the lattice which is satisfied by all
states, and false the bottom element, representing the empty set of states.

Transfer Function. The transfer function for the predicative backward DFA is
given as the predicate transformer wp : Φ→ (Pred → Pred). We define this func-
tion based on the dual of Dijkstra’s weakest precondition (wp) [Dij76,HFL01],
namely wp(eff)(p) = ¬wp(eff)(¬p). The dual of the weakest precondition,
wp(eff)(p), intuitively computes the set of pre-states from which there exists
a possible execution of the statement eff such that p is satisfied after the state-
ment. This leads us to the following rules:

wp({A})(p) = def (A)⇒ ¬A ∨ p (assertion)
wp([g])(p) = def (g)⇒ g ∧ p (guard)

wp(v := E)(p) = def (E)⇒ p[E/v] (assignment)
wp(S;R)(p) = wp(S)(wp(R)(p)) (sequential composition)

wp(S uR)(p) = wp(S)(p) ∨ wp(R)(p) (non-deterministic choice)

where p[E/v] denotes the predicate in which all free occurrences of variable
v are replaced by expression E, (S;R) denotes the sequential composition of
statements S and R, and (S uR) denotes the non-deterministic choice between
the two statements. With def (A), def (g) and def (E) we denote the requirement
that A, g and E, respectively, must be well-defined. In the following we assume
the well-definedness of assertions, variables and expressions, which is subject to
another analysis. An assertion is a condition that must be satisfied at a node,
in the sense that condition ¬A ∨ p is used to tag paths that lead to states that
violate A. Note that this transfer function allows us to collect path information
(when conjoining a path predicate with the guard) as well as information of
potential violations of assertions (when disjoining the path predicate with the
negation of the encountered assertion).

Join Operator. Since the predicate transformer wp.eff provides the computation
along one path, one computes the disjunction of predicates at join points which
effectively models the non-deterministic choice of paths. Thus, we establish a
simultaneous solution by computing for all n ∈ N the weakest precondition
D(n) that satisfies the following data flow constraint in which the join operator
becomes disjunction.

Di+1(n) =
∨

n′∈succ(n)

wp(eff (n, n′))(Di(n
′)).

6

Initialisation. We start the analysis with the bottom element and initialise the
labelling of each node with false, i.e., D0(n) = false for all n ∈ N . Hence,
for all n ∈ N , the fixpoint algorithm computes a sequence of values which
are ordered by entailment, i.e, D0(n) V D1(n) V . . . A fixpoint is reached
if Di+1(n) = Di(n), for some i ≥ 0. Note that a fixpoint may not be reachable
within finite number of iterations in the presence of loops given the infinite do-
main Pred , nevertheless, we construct a prototype for the algorithm that quickly
converges under the abstraction and simplification rules introduced in Section 6.
The iterative application of the transfer function during the algorithm will re-
sult in a predicate at each node which represents the set of states that lead to
erroneous paths ending at a final state where not all assertions are satisfied.

5 Applying the predicative backward DFA

We are using the predicative backward DFA as introduced above in the context of
the static analysis tool Parfait [CS08] in which a potential bug list is established
prior to the analysis. Each of these potential bugs is analysed in turn to decide if
it is a real bug or a false positive. For each run of the analysis we instrument the
analysis for the particular bug in focus. Instrumentation refers to formulating and
automatically adding assertions to the code, as well as abstracting the statements
that are specific to the potential bug. We demonstrate this using our example.

n5

n6n4

n7

n8exittmp 6= Null false

(err = 0 ∧ tmp 6= Null)

(err = 0 ∧ tmp 6= Null)

false

false

tmp:=Null

err := 1

[err6= 0][err = 0]

tmp:=Null

Fig. 2. Labelling the flow graph during memory-leak analysis

Example 3. We consider a potential memory leak in the code fragment intro-
duced in Example 1 (see Figure 1). This example focuses on the pointer variable
tmp which is allocated memory through the statement tmp := malloc(). To
analyse this potential memory leak we assume that malloc has not failed (if

7

it fails memory cannot leak). We abstract this statement by tmp := NonNull .
Similarly, we abstract any occurrence of free(tmp) to tmp := Null to capture de-
allocation. We replace the edge labelling in the flow graph in Figure 2 according
to this abstraction.

The postcondition of this function is that the allocated memory has been
freed at the end of the procedure. Using our abstraction, this is specified as
tmp = Null. Since we want to find memory leaks, we label the exit node with the
inverse of the postcondition specifying that memory has leaked, i.e., tmp 6= Null

(see Figure 2).
The predicative backward DFA labels each node n with a predicate D(n)

characterising the states at that node for which it is possible for a memory leak
(i.e., a violation of the postcondition) to occur. A label of false at the entry
node indicates that there are no paths leading to the exit where tmp 6= Null is
satisfied, and hence the code is free of memory leaks.

Initially, all nodes (except the exit node) are labelled with the predicate
false and we start the analysis at the exit node. Applying wp along a backward
traversal through the graph we label the nodes as indicated in Figure 2. At nodes
n4 and n5 the analysis results in the predicate false which terminates the analysis
(i.e., all nodes preceding n4 and n5 in Figure 1 are also labelled with false) as
there are no more assertions added above those points. The result indicates that
no memory leak is possible along any paths through the program. �

Another type of bug to be investigated is free-of-non-allocated-pointer. This
can indicate a path on which double-free occurs or an attempted free after the
allocation has failed. In this case we need to consider all possible outcomes of the
memory allocation and hence a different kind of abstraction is required than for
memory leak detection. We demonstrate the analysis in the following example.

Example 4. For an analysis to detect all paths along which a free-of-non-
allocated-pointer occurs, we abstract the assignment tmp := malloc() by the
non-deterministic choice between the successful and the unsuccessful allocation
of memory to the pointer tmp, i.e., (tmp := NonNull) u (tmp := Null). The
call free(tmp) is abstracted to {tmp 6= Null}; tmp := Null. We modify the edge
labelling in the flow graph to incorporate the abstraction. The assertion to be
added to the code requires that memory space must be allocated to tmp in or-
der to have a correct call to the free operation. We replace free(tmp) with an
abstraction that includes the assertion {tmp 6= Null} which must hold before
the call to free(tmp). The assertions can be found in the sequential composition
labelling the edges (n4, n7) and (n8, exit) in Figure 3.

Initially, all nodes (including the exit node) are labelled with false. Applying
wp along a backwards traversal of the program graph in Figure 3 leads to a
labelling of nodes as shown: Every node is labelled with a predicate characterising
the states from which there is a possible violation. The resulting true labelling
of the entry node indicates that there exists a path along which the assertion is
violated and a free has been called on a non-allocated pointer.

Generally, a labellingD(entry) 6= false indicates that there is a path that that
starts with a state satisfying D(entry) and leads to the bug in question through

8

entrystart

n1 n2

n3

n4

n5

n6

n7

n8exitfalse tmp = Null

err 6= 0 ∧ tmp = Null

err 6= 0
∧ tmp = Null

tmp = Null

err 6= 0
∨ tmp = Null

err 6= 0
∨ tmp = Null

(err 6= 0 ∧ tmp 6= Null)
∨ tmp = Null

true

true

err := 0

(tmp := NonNull) u (tmp:=Null)

[tmp 6= Null] [tmp = Null]

close(fd)

{tmp6= Null};
tmp:=Null

err := 1

[err6= 0][err = 0]

{tmp6=Null};
tmp:=Null

Fig. 3. Labelling the flow graph during the free-non-allocated-pointer analysis

the path entry-n1-n2-n5-n6-n7-n8-exit. In this particular case, we may further
split the nondeterministic side effect of malloc(..) into (tmp := NonNull) and
(tmp := Null), and apply the two parts of the transfer function on the predicates
separately. This gives wp((tmp := NonNull))((err 6= 0 ∧ tmp 6= Null) ∨ tmp =
Null) which is the predicate (err 6= 0), and wp((tmp := Null))((err 6= 0 ∧ tmp 6=
Null)∨ tmp = Null) which is just true. As the predicate (err 6= 0) is made false
by the assignment edge (entry, n1), this reveals that it is the failed malloc(..)
that has caused the free-of-non-allocated-pointer bug. �

As mentioned in Section 4, in the presence of loops, the iterative method may
not converge to a fixpoint. In practice this can be handled by an abstraction that
computes a less precise solution, which is introduced in the following section.

6 Simplifying the predicate expression

In practice the treatment of large predicates is costly in particular if an external
predicate solver is invoked to simplify expressions. To avoid this complexity, we
propose an abstraction that maps all predicates that cannot be easily simplified
to a special predicate ∆ representing unknown. Hence, the granularity of the

9

abstraction is (inversely) related to the notion of simplification: the more pred-
icates are simplified within our implementation, the less predicates will need to
be abstracted.

As a first step we create an embedding of our 2-valued predicate domain Pred
by defining a homomorphism h (i.e., h is injective and structure-preserving) that
maps predicates into a 3-valued predicate domain, Pred3. Apart from 2-valued
predicates, Pred3 also contains the symbol ∆. As a second step we define an
abstraction function α from the 3-valued predicate domain into an abstract
domain PredA which contains predicates that are simplified into a disjunctive
form (see Definition 3 in Section 6.2) as well as ∆. The two steps are depicted
in Figure 4.

Disjoint
Predicates

∆
Predicates

α
Pred3

PredA

Predicates

Pred

h

Fig. 4. Embedding and abstracting the predicate domain

Formulas over the embedding Pred3 are captured by L∆, the logic with un-
known, which is defined in Section 6.1. The definition of the abstraction α is
given in Section 6.2.

6.1 The Logic with Unknown

Let P be the set of primitive predicates (e.g., relations representing flow condi-
tions of a program). We define the syntax of the logic L∆ as follows:

ϕ := true | false | p | ∆ | ¬φ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

with p ∈ P and ∆ as the special symbol for unknown. We use the 3-valued
semantic domain D = P1({tt ,ff }) (the powerset of Booleans excluding the empty
set4) and the interpretation φ : L∆ → D, such that φ(true) = {tt}, φ(false) =
{ff }, φ(p) ∈ {{tt}, {ff }} for all p ∈ P , and φ(∆) = {tt ,ff } (either tt or ff , we
don’t know).

Remark 1. L∆ may be regarded as a restricted form of Kleene’s three-value logic,
it is different, however, in the following aspects.

– We have ∆ in the syntax in addition to the three-value semantic domain.
– Every known primitive predicate p is always assigned with a definite mean-

ing, i.e., a singleton in D. Only the special symbol ∆ remains unknown.

4 The domain D′ = P({tt ,ff }) includes the empty set {} which would represent con-
tradiction, the top element in Ginsberg’s smallest non-trivial bilattice [Gin88].

10

– In Kleene’s system there is no (nontrivial) tautology, but in our specialized
logic L∆ we have valid formulas. For example p⇒ p is valid for any p ∈ P ,
simply because p cannot be unknown.

Semantics. Let ⊕ be a binary Boolean operator and 	 an unary Boolean oper-
ator. We lift these operators into D using the notation [[⊕]] : D × D → D and
[[]] : D → D, respectively. The semantics is defined as point-wise application
of the corresponding Boolean operator on the elements in the Boolean set, i.e.,
φ(ϕ1 ⊕ ϕ2) = {[[⊕]](b1, b2) | b1 ∈ φ(ϕ1) ∧ b2 ∈ φ(ϕ2)} (the set of values b1 ⊕ b2
for any b1 and b2 that are possible interpretations of ϕ1 and ϕ2, respectively),
and φ((ϕ)) = {[[]](b) | b ∈ φ(ϕ)} (the set of values 	b for any b that is a
possible interpretation of ϕ). In particular, for any d ∈ D, φ(true ∧ d) = φ(d)
and φ(false ∧ d) = {ff }. On ∆ the lifted operators are resolved as follows

φ(∆ ∧ true) = {tt ,ff }[[∧]]{tt} = {tt ∧ tt ,ff ∧ tt} = {tt ,ff } = φ(∆)
φ(∆ ∧ false) = {tt ,ff }[[∧]]{ff } = {tt ∧ ff ,ff ∧ ff } = {ff } = φ(false)
φ(∆ ∨ true) = {tt ,ff }[[∨]]{tt} = {tt ∨ tt ,ff ∨ tt} = {tt} = φ(true)
φ(∆ ∨ false) = {tt ,ff }[[∨]]{ff } = {tt ∨ ff ,ff ∨ ff } = {tt ,ff } = φ(∆)
φ(¬∆) = [[¬]]{tt ,ff } = {ff , tt} = φ(∆)

and similarly, φ(∆ ∧∆) = φ(∆ ∨∆) = φ(∆). With the standard predicate logic
rules ((c∧d)⇔ c) ≡ (c⇒ d) and ((c∨d)⇔ d) ≡ (c⇒ d), we can conclude from
the above that false ⇒ ∆ and ∆⇒ true, hence false ⇒ ∆⇒ true.

Information Order. Predicates are partially ordered by implication. We have
false ⇒ p⇒ true for all predicates p, including ∆. However, ∆ is incomparable
to any other predicate in P in this ordering. To relate results in the embedding
domain (and later on the abstract domain) with results in the concrete domain,
we introduce an information order which lies orthogonal to the partial order on
truth values (see also [Gin88,SRW02]).

Definition 1 (Information Order). The information order, ≤i, is a re-
lation over formulas in L∆ such that for any formulas ϕ1, ϕ2 ∈ L∆,
ϕ1 ≤i ϕ2 ⇔ φ(ϕ1) ⊇ φ(ϕ2).

Intuitively, ∆ provides less information to an analysis than any def-
inite formulas, and from this definition it follows that ∆ ≤i ϕ for
any formula ϕ ∈ L∆. As can be shown, the information order ≤i is
a partial order over Pred3 and all the logical operators are monotone
with respect to ≤i. In particular, for any predicates p and q, we have
∆ ≤i (∆ ∨ p) ≤i q ∨ p and ∆ ≤i (∆ ∧ p) ≤i q ∧ p.

Simplification. Simplification is crucial for an effective path-sensitive DFA as
it allows one to collapse predicates that otherwise grow very complex, but it is
computationally expensive. Formulas in Pred3 can be simplified using the rules of
standard predicate logic. In our implementation some simplifications are realised,
namely those that do not require expensive reasoning power. In particular, we
restrict the simplification to base predicates, which commonly occur in programs
where simple flags are used to control the flow.

11

Definition 2 (Base Predicate). A base predicate is either true or false
or a term of the form “x op c” where “x” is a variable, “c” is a constant
value, and “op” is a binary operator from the set {=, 6=, <,≤, >,≥} (tests) or
{&all,&any,&all,&any} (bit-field tests).

The set of base predicates, denoted by BasePred, is a subset of the set of
flow conditions, i.e, BasePred ⊆ P . From the
definition it follows that for all p ∈ BasePred the
variable set var(p) refers to at most one variable.
Bit-field tests are defined based on C’s bit-wise
and operator “&” as outlined in Figure 5, where
k is a constant bit mask.

(x &all k) ≡ (x & k) == k
(x &any k) ≡ (x & k) 6= 0

(x &all k) ≡ (x & k) == 0

(x &any k) ≡ (x & k) 6= k

Fig. 5: Bit field tests

We denote the simplification of formulas with the operator d·e : L∆ → L∆.
For any formula ϕ ∈ L∆ we have [[ϕ]] = [[dϕe]], i.e., the simplification preserves the
semantics. In particular, dϕ∧ truee = dϕe, dϕ∨ truee = true, dϕ∧ falsee = false,
dϕ ∨ falsee = dϕe, dϕ ∧ ϕe = dϕ ∨ ϕe = dϕe.

For any predicate a 6= ∆ we simplify da∨¬ae to true and da∧¬ae to false. We
exploit associativity, idempotence, and absorption of the Boolean operators to
simplify predicates, e.g., da∨(a∧b)e = a. Bit-field tests can be simplified following
the above, when taking into account the facts that (x &all k) ≡ ¬(x &any k)
and (x &any k) ≡ ¬(x &all k).

To enable further simplification, we represent the right hand side of any
p ∈ BasePred that is a test (rather than a bit-field test) as a vector of inte-
ger intervals. That is, the predicate x = k is represented as x ∈ 〈[k, k]〉 (i.e.,
k ≤ x ≤ k), and x < k as x ∈ 〈[Min, k − 1]〉, where Min is the smallest repre-
sentable integer in the machine. This allows us to compute the disjunction and
the conjunction of base predicates with the same left hand side, if they are of
the interval type, by applying interval union and intersection, respectively. That
is, (x ∈ S) ∨ (x ∈ T) simplifies to x ∈ (S ∪ T), and (x ∈ S) ∧ (x ∈ T) simplifies
to x ∈ (S ∩ T), where the operators ∪ and ∩ are defined as merging and inter-
secting, respectively, of ordered sequences of intervals. The empty interval 〈[]〉 is
simplified to false and the maximal range 〈[Min,Max]〉 to true. Note, that any
predicate whose right hand side is represented as an interval vector is considered
a base predicate.

6.2 Abstraction

The intention of our abstraction scheme is to keep only simple predicates and
map all other (complex) predicates onto ∆. By “simple” predicates we mean
predicates in disjunctive normal form (DNF) that consist of clauses of base
predicates and negated assertions only. We consider the negation of assertions
since the transfer function wp, when applied to an assertion A and postcon-
dition p, constructs the disjunction of the negated assertion ¬A and p (i.e.,
wp({A})(p) = def (A) ⇒ ¬A ∨ p). Hence the negation of the assertion will ap-
pear in the abstract predicate domain. We call the predicates in the abstract

12

predicate domain disjoint predicates and they are defined in terms of the set of
base predicates, BasePred , and the set of negated assertions, Assertion.

Definition 3 (Disjoint Predicate). The set of disjoint predicates, denoted
as DisjointPred, comprises predicates of the form p = p1 ∨ . . . ∨ pn such that
for all 1 ≤ i ≤ n, either pi ∈ BasePred ∪ Assertion ∪ {∆} or pi = b ∧ a with
b ∈ BasePred and a ∈ Assertion.

That is, the abstraction maintains base predicates as well as assertions which
take the role of data flow facts. For a particular analysis Assertion is usually
a singleton (e.g., in Example 3, Assertion = {tmp 6= Null}, and in Example 4,
Assertion = {tmp=Null}). In that sense Assertion is a parameter to the predica-
tive DFA framework that can be instrumented for a variety of analysis problems.

We define the abstract domain PredA as the set of disjoint predicates and
the unknown symbol (as shown in Figure 4). The simplification rules are applied
to the formulas whenever possible immediately after the transfer function is
applied and before abstraction is performed. We specialise the DFA computation
as follows, where DA(n) represents the predicative data flow value at node n in
the abstract domain.

DA
i+1(n) = α


∨

n′∈succ(n)

dwp(eff (n, n′))(DA
i (n′))e


 (3)

Since the result is computed as a value in PredA, the size of a disjoint predicate
is linearly bounded by the number of variables in the program. This is because a
predicate in PredA can have at most |N |+1 disjuncts (or clauses) each as a base
predicate associated with a distinct program variable, or the unknown predicate
∆ as defined in the abstraction α outlined below.

A number of specialised simplification rules are introduced for disjoint
predicates. These more complex simplifications also preserve the semantics of
the predicate. For example, for merging predicates from the true and false
branches at an if-then-else node, we apply d(p ∧ (ϕ ∨ ϕ1)) ∨ (¬p ∧ (ϕ ∨ ϕ2))e =
ϕ ∨ d(p ∧ ϕ1) ∨ (¬p ∧ ϕ2)e, i.e., we extract the common part out of the disjoint
predicates from both branches before simplifying the conjunctions. The final re-
sult of simplification is a disjoint predicate in DNF, i.e., in the form of

∨
i∈I ϕi

such that each clause ϕi is a single base predicate or an assertion, or a conjunc-
tion of a base predicate and an assertion, or predicate ∆ (see Definition 3). The
abstraction function, α : Pred3 → PredA, is defined as follows.

– α(∆) = ∆.
– For each p ∈ BasePred ∪Assertion, we have α(p) = p and α(¬p) = ¬p.
– If ϕ is a conjunction of the form a ∧ ϕ′ with assertion a, we have α(ϕ) =
a∧α(ϕ′). (Note that a clause in a disjoint predicate cannot have more than
one assertion as they can only be introduced via disjunction.)

– If ϕ is a conjunction of more than one base predicate, we have α(ϕ) = ∆. In
particular, α(p ∧ q) = ∆ if var(p) 6= var(q), since p ∧ q cannot be simplified
into a single base predicate. Similarly, if var(p) = var(q) and p ∧ q cannot
be simplified into a single base predicate, the abstraction results in ∆.

13

– An abstract disjoint predicate is given as the disjunction of the abstracted
clauses, i.e., α(

∨
i∈I ϕi) =

∨
i∈I α(ϕi).

It is obvious from this definition that α is monotone with respect to the infor-
mation order, i.e., φ(α(p)) ≤i φ(p)) for all predicates p. Moreover, in the presence
of loops the DFA on the abstract domain will in most cases converge to a simple
predicate or to ∆. If a base predicate does not converge, e.g., when it extends its
range in each iteration, the analysis exits the loop with an approximation after
a small number of iterations.

Example 5. Applying the outlined abstraction scheme to the flow graph in Ex-
ample 4 (see Figure 3) does not change the labelling. Hence we modify the
example slightly and change the flow conditions: We label the edge (n2, n3) with
[fd 6= −1] and the edge (n2, n5) with [fd = −1]. This yields a more complex
predicate labelling node n2, namely D(n2) = ((err 6= 0 ∨ tmp = Null) ∧ fd 6=
−1) ∨ (tmp = Null ∧ fd = −1) which reduces to (tmp = Null) ∨ (err 6= 0 ∧ fd 6=
−1). The abstraction simplifies this predicate to D(n3)A = (tmp = Null) ∨ ∆.
(The labelling for nodes n1 and entry remains unchanged, i.e., equals true.) The
result indicates that if (tmp = Null) then there exists a path from n3 that does
lead to a free-of-non-allocated-pointer. Otherwise, a free-of-non-allocated-pointer
might occur along some path from n3, we do not know. �

From the abstraction we require that the results computed in the abstract
domain PredA coincide with the results that are computed in the original domain
Pred , unless ∆ is reported. If the analysis results in ∆, it is inconclusive and no
statement can be made whether an assertion was violated or not. In that sense
∆ comprises both possibilities, true and false, as its semantic value suggests,
namely φ(∆) = {tt ,ff }. If the analysis results in the entry node being labelled
with p ∨∆ it indicates that there is a bug along the paths where p holds, on all
other paths, there might be a bug, we do not know. Following this observation,
soundness can be stated on the basis of the information order.

Theorem 1 (Soundness). The predicative DFA on the abstract domain PredA

is sound with respect to the information order ≤i, i.e., for all nodes n ∈ N , we
have DA(n) ≤i D(n).

The proof of this result follows straightforwardly from the monotonicity of the
abstraction with respect to the information order and the fact that the simpli-
fication is semantic-preserving, i.e., dϕe = ϕ. We conclude that the final result
DA(n) iteratively computed from Equation 3 is either a precise answer, or an
unknown.

7 Experimental Results

The path-sensitive framework has been implemented in the static bug checking
tool Parfait [CS08]. Parfait is currently used for the detection of memory leaks,
use-after-free, double-free, free-of-non-allocated, and other bug-types. During the

14

bug checking procedure, Parfait first populates a list of potential bugs generated
by a path-insensitive DFA, and then applies the path-sensitive backwards DFA
to verify whether the reported bugs in the list are real bugs (i.e., occurring along
a feasible path). The form of disjoint predicates with simple disjuncts in the
analysis is the key to scalability, which enables Parfait to spend a relatively short
amount of time processing millions of lines of code. Nevertheless, this simple
abstraction does not significantly impact the precision of the algorithm, as the
abstract domain closely mirrors the way in which programmers typically manage
control flow in practice, i.e., by setting up one or two constant flag variables that
are later identified in the cleanup phase at the end of the program.

Parfait also supports inter-procedural analysis by summarising effects of the
functions. We seed the process with predefined summaries for the common stan-
dard C library functions such as malloc and free and also generate function
summaries for other functions. These are propagated bottom-up through the
call graph. In the case of memory-leak analysis, function summaries would in-
clude information about allocation and de-allocation of pointer variables, stores
into any pointer variables, and escapes of any pointer values (by storing into
globally accessible memory or returning a pointer value). We then perform an
intra-procedural data flow analysis over each function that contains a potential
bug, making use of the summaries generated for each call site.

For each potential bug to be examined, the predicative DFA returns one
of the four cases: a non-false value (definitely a bug), false (definitely not a
bug), ∆ (unknown), and p∨∆ (definitely a bug along some paths). We observe,
however, that if a potential bug is a false alarm (i.e., not reachable), then most
of the time it is reported as false, thanks to the way in which most programmers
handle control flow with simple constant flags. Therefore, in the current version
we choose to report both the non-false and the ∆ cases as (potential) bugs,
which consequently enables the tool to report significantly more bugs, but also
permits false positives at a tolerable low rate. The large-scale experiment data,
which was manually evaluated, further justifies our decision.

The current (inter-procedural) version of Parfait has been run over 6 mil-
lion lines of the Solaris ON B20 source code in X4270 server equipped with
2× 3.3GHz Xeon X5680 CPUs and 144Gb RAM, running Solaris 11.1. Our ex-
periment spreads eight threads in parallel and completes in 24 minutes, reporting
674 memory-leak bugs with a false positive rate of 4.6% (31/674).

8 Related Work

As one of the early works on path-sensitive data flow analysis Holley and
Rosen [HR80] proposed a general approach to improve the precision by comput-
ing path feasibility under a given set of assertions on variable values, and con-
struct a new problem that contains only qualified paths. Bod́ık et al. in [BGS97]
developed a strategy to detect infeasible paths using the notion of branch cor-
relations (i.e., the dependence of a branch predicate on a previous branch or
program statement). The process is demand-driven: at branch b with predicate

15

p a query about the satisfiability of p is raised which is propagated backwards
in the flow graph until it is resolved along all paths. The resolution of the query
is then passed forward to branch b that caused the query and the flow graph la-
belled accordingly. Fisher et al. [FJM05] base their analysis on a structure called
a predicated lattice whose elements are mappings from predicates to dataflow val-
ues. In this framework dataflow values are only merged in the case when they are
associated to the same predicate. Their analysis works in a forward fashion and
hence requires a set of predicates P as input. If P is not sufficient to produce a
precise result they iteratively refine P and add more predicates according to the
false positives encountered (similar to lazy abstraction [HJMS02]). This process
is repeated until the analysis provides a precise (or precise enough) solution.

Property simulation has been proposed by Das et al. [DLS02,HYD05,DDY06]
and implemented in the ESP tool. The analysis is also performed in a forward
fashion. The framework is based on an adjustable abstraction which represents
symbolic states of the program. A property state machine specifies the property
pattern to be checked and is exercised in parallel with the program code (through
instrumentation of the program), where a simulation state represents path in-
formation. The tool applies a decision procedure to reason about feasibility of
the paths.

Rival and Mauborgne [RM07] build a general framework for trace partition-
ing which allows for path sensitivity. The idea is to extend the general data flow
analysis (following the abstract interpretation framework of [CC77]) with to-
kens which allow the partitioning of the state space, qualifying classes of states
according to the history of execution. The set of tokens T is variable in the
framework and can be set according to the analysed problem. If T is a singleton
then the analysis coincides with the classical DFA.

All existing works in the literature for path sensitive program analysis sepa-
rate the analysis on paths from the analysis on data, in a way that first explores
the correlated predicates or properties to settle feasible path flows, and subse-
quently applies the analysis only on the feasible paths. Our work integrates data
flow analysis with predicate analysis in a general weakest precondition frame-
work. This allows us to merge and simplify paths predicates and data flow values
(which are predicates here) during the analysis for better scalability.

9 Conclusion and Outlook to Future Work

This paper proposed a path-sensitive data flow analysis framework which com-
bines path predicates with data flow values. The transfer function is based on
Dijkstra’s weakest precondition to reason about data flow values or violations via
assertions. This approach supports the analysis of a large variety of bug patterns,
such as locking-not-followed-by-unlocking and use-after-free, which can be sim-
ply described as a relationship between two distinct program points along a feasi-
ble path. We also introduced effective simplification and abstraction to facilitate
the efficiency of the analysis. The work has been implemented in the static bug
checker Parfait and the result scales to programs with millions of lines of code.

16

As further experiments, we are interested in refining the abstraction to in-
clude more complex predicates (e.g., allow for disjoint predicates with clauses
with more than two conjuncts). This would enable us to relate the trade-off
between efficiency and preciseness to the granularity of the abstraction.

In comparison to flow-sensitive forward analysis, predicative backward DFA
has the advantage of being able to discover relevant predicates at an early stage
(i.e., by selecting predicates that guard bug related assertions). However as many
DFA problems can only be encoded in a forward analysis, it is of interest to
explore forward DFA in the future, taking advantage of strongest postconditions
and effective ways to extract predicates related to the problem.

References

[BGS97] R. Bod́ık, R. Gupta, and M. L. Soffa. Refining data flow information using
infeasible paths. In Proc. of ESEC/FSE, pages 361–377. ACM, 1997.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proc. of POPL, pages 238–252. ACM, 1977.

[CS08] C. Cifuentes and B. Scholz. Parfait – designing a scalable bug checker. In
Proc. of the Static Analysis Workshop, pages 4–11. ACM, 2008.

[DDY06] D. Dhurjati, M. Das, and Y. Yang. Path-sensitive dataflow analysis with
iterative refinement. In Proc. of SAS, LNCS 4134, pages 425–442. Springer,
2006.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
[DLS02] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification

in polynomial time. In Proc. of PLDI, pages 57–68. ACM, 2002.
[FJM05] J. Fisher, R. Jhala, and R. Majumdar. Joining dataflow with predicates. In

Proc. of ESEC/FSE, pages 227–236. ACM, 2005.
[Gin88] M. Ginsberg. Multivalued logics: A uniform approach to inference in artificial

intelligence. Computational Intelligence, 4:265–316, 1988.
[HFL01] I. J. Hayes, C. J. Fidge, and K. Lermer. Semantic characterisation of dead

control-flow paths. IEE Proceedings—Software, 148(6):175–186, 2001.
[HJMS02] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In

Proc. of POPL, pages 58–70. ACM, 2002.
[HR80] L. Howard Holley and Barry K. Rosen. Qualified data flow problems. In

Proc. of POPL, pages 68–82. ACM, 1980.
[HYD05] H. Hampapuram, Y. Yang, and M. Das. Symbolic path simulation in path-

sensitive dataflow analysis. In Proc. of PASTE, pages 52–58. ACM, 2005.
[Kil73] G. A. Kildall. A unified approach to global program optimization. In Proc.

of POPL, pages 194–206. ACM, 1973.
[LA04] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation. In Proc. of the International Symposium
on Code Generation and Optimization (CGO’04), pages 75–86, 2004.

[NNH99] F. Nielson, H.R. Nielson, and C. Hankin. Principles of program analysis.
Springer, 1999.

[RM07] X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM
TOPLAS, 29, August 2007.

[SRW02] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. ACM TOPLAS, 24(3):217–298, 2002.

