SOFTWARE VERIFICATION RESEARCH CENTRE
SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT
No. 02-36
Model Checking Object-Z using ASM
Kirsten Winter and Roger Duke

Version 1, October 2002

Phone: +61 7 3365 1003
Fax: +61 7 3365 1533
http://svrc.it.ug.edu.au

Published as:

Kirsten Winter, Roger Duke: Model Checking Object-Z using ASM In K.
Sere and M. Butler (eds.), 3rd International Conference on Integrated Formal
Methods (IFM 2002) , volume 2335 of Lecture Notes in Computer Science, pages
165-184. Springer-Verlag, 2002.

Note: Most SVRC technical reports are available via
anonymous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports. Abstracts and compressed postscript files
are available via http://svrc.it.uq.edu.au

Model Checking Object-Z using ASM

Kirsten Winter and Roger Duke

Software Verification Research Centre
School of Information Technology and Electrical Engineering
University of Queensland
phone: +61 7 3365 1638 fax: +61 7 3365 1533

kirsten@svrc.uq.edu.au rduke@Qitee.uq.edu.au

Abstract. A major problem with creating tools for Object-Z is that
its high-level abstractions are difficult to deal with directly. Integrat-
ing Object-Z with a more concrete notation is a sound strategy. With
this in mind, in this paper we introduce an approach to model-checking
Object-Z specifications based on first integrating Object-Z with the Ab-
stract State Machine (ASM) notation to get the notation OZ-ASM. We
show that this notation can be readily translated into the specification
language ASM-SL, a language that can be automatically translated into
the language of the temporal logic model checker SMV.

Keywords: Object-Z, Abstract State Machines, language transforma-
tion, model checking, automated tool support.

1 Introduction

High level declarative specification languages such as Z [20] and Object-Z [3, 19]
are ideally suited for capturing state-based system properties. A major obstacle
to the wider adoption of such languages, however, is the lack of tool support.
If the full potential of such languages is to be realised, they need to be supple-
mented with software tools to assist with the more taxing mathematical aspects
such as the detection of specification errors and the verification of system prop-
erties.

In this paper we introduce an approach to model-checking Object-Z speci-
fications based on first integrating Object-Z with the Abstract State Machine
(ASM) notation [8] and then, through an automated process, translating this in-
tegrated notation (which we call 0Z-ASM) into the temporal logic model checker
SMV [16].

We chose this integrated approach for several reasons. First, when faced with
the task of model checking Object-Z specifications it seemed wise to see if we
could make maximum use of existing model-checker technology rather than re-
inventing the wheel.

Next, the problem with Object-Z by itself is that, based as it is on logical
predicates and set theory, its high-level abstractions are difficult to deal with
directly. Most model checking tools do not provide a language that is expressive

enough to represent the operators and data structures that can be used in Object-
Z. An automatic transformation of the full language of Object-Z into a simple
model checker language would be hard to achieve. However, if we re-use an
existing interface from ASM to the SMV language [1] we only need to provide
a transformation from Object-Z into ASM in order to automatically generate
SMYV code from Object-Z models.

Third, for an algorithmic transformation from Object-Z into ASM, we have
to ensure that operation predicates are given in a canonical form: the transition
relation that relates pre- and post-states must be given in such a way that primed
variables (denoting post-state values) depend only upon unprimed variables (de-
noting pre-state values). To provide this canonicity, we integrate Object-Z with
ASM syntax. The resulting integrated language is easy to read and understand
for anybody who is familiar with Object-Z.

Our work has similarities to that of Valentine [21] who introduces a restricted
version of Z, called Z--, which has a similar canonicity of predicates. However,
Valentine aims to provide a computational subset of Z, and the language restric-
tions required to do this are stronger than those required for model checking. In
contrast to Valentine’s approach, we use the concept of language integration to
give a simple definition for the restricted scope of the language.

Based on Jackson’s work on the automatic analysis of a subset of Z [12],
Jackson et. al. have developed a new language, Alloy [13], which can be auto-
matically analysed through SAT solvers. The language Alloy, created to avoid
working with an ‘ad hoc restriction’ of Z, satisfies the necessary conditions for be-
ing translated into boolean formulae (a format that SAT solvers can deal with).
In accordance with the SAT solver approach, Alloy is a declarative language.
In contrast, our language focuses on operational models as required for model
checkers.

The use of SMV to model check Z specifications has been suggested by Jacky
and Patrick [14]. Their approach is to translate the Z specification directly into
SMV, a process that involves considerable simplification of the specification. In
contrast, our approach is to first integrate Object-Z with ASM. The OZ-ASM
notation that results can be readily translated into the specification language
ASM-SL and this can be automatically translated into SMV. Furthermore, ASM-
SL is an ideal starting point for the application of other tools (although in this
paper we will consider only SMV model checking).

Other researchers have approached the problem of model-checking Object-Z
using tools based on process algebras such as FDR [6] or SPIN [11]. For example,
Fischer and Wehrheim [5] integrate Object-Z with CSP and apply the model-
checker FDR. Kassel and Smith [15] investigate an alternative approach for plain
Object-Z but also exploit the CSP semantics for their mapping into CSPy; (the
language of FDR). Although CSPy; is sufficiently expressible to cover many
language constructs provided for Object-Z predicates, neither object referencing
nor operation operators are supported. Moreover, the compilation effort within
the FDR tool is enormous even for small examples. Similarly, Zave [25] has looked
at model-checking Z by combining Z with Promela [10] (the language of SPIN).

However, although Promela is designed for model checking, it is not suited for
representing system state or for manipulating global data.

Yet another approach to the checking of Z is to animate the specification.
Essentially, Valentine’s work mentioned previously [21] follows this strategy. An-
other computational approach is given by Grieskamp [7] who constructs a com-
putational model for Z that allows the combination of the functional and logical
aspects of Z.

In this paper we begin (in Section 2) by introducing the OZ-ASM speci-
fication notation integrating Object-Z and ASM. It is specifications written in
0Z-ASM that we will be model checking. We emphasise, however, that we do not
see OZ-ASM as yet another independent formal specification notation. Our un-
derlying wish is to model-check Object-Z specifications, and ideally a first step in
fulfilling such a wish would be to convert an Object-Z specification into the OZ-
ASM notation. In practice, however, although such a conversion is in most cases
straightforward, as it involves (among other things) various non-deterministic
choices about the cardinality of underlying set structures, it would be difficult
if not impossible to perform such a conversion automatically. For this reason, in
this paper we take the OZ-ASM notation as our starting point.

Specifications written in ASM-SL can be automatically translated to SMV
for model checking [1]. In our case the starting notation is OZ-ASM rather than
ASM-SL, but the process of translation to SMV is essentially the same. In Sec-
tion 3 we outline the principle issues behind the conversion from OZ-ASM into
ASM-SL. Once this conversion is completed, the translation into SMV is auto-
matic. We believe that it would be straightforward to automate the conversion
from OZ-ASM into ASM-SL; we leave that for future work.

In Section 4 we illustrate how to apply the given transformation rules to
convert a complex OZ-ASM operation into ASM-SL code. We discuss future
directions and conclude the paper in Section 5.

2 The Integrated Language OZ-ASM

Object-Z [3,19] is a high-level specification language based on Z [20]. It supports
object-orientation through the concept of class, inheritance between classes and
object referencing. Object-Z models of complex systems can be nicely structured
into a set of smaller sub-systems or components. Each component is modelled as
a class that contains its local definitions: a state, an initialisation and operations.
Object instances are accessed through referencing.

Most of these concepts are not supported by a simple model checker language,
which is in most cases designed to describe hardware circuits, and a transforma-
tion from Object-Z into a model checker language is difficult to build. In order
to ease this task we propose to make use of an existing transformation, the in-
terface from the high-level language ASM to the SMV language ([1]). In doing
S0, it only remains to develop a transformation from Object-Z into ASM, a task
that is easier to achieve since most Object-Z concepts can be simulated with
ASM.

ASM [8] is a formal specification language that models state transition sys-
tems at a high level of abstraction. However, object orientation with its benefits
for modular design is not facilitated. The concept of classes and, especially, the
reuse of classes via inheritance and object instantiation is not supported.

The transition relation of an ASM model is given through a set of transition
rules for which ASM provides a minimal set of rule constructors. These rule
constructors are sufficient to model any kind of state machine or (sequential) al-
gorithm [9]. The core concept of an ASM transition rule involves locations which
become updated in a transition step, i.e. loc := wal_term. Similar to guarded
command languages, updates can be conditional in the sense that the update
is fired only if the corresponding guard is satisfied in the current state, i.e. if
guard then loc := val_term. Clearly, a location resembles a state variable and
the concept of guarded updates coincides with the notion of a transition rela-
tion in the model checker languages we are targeting. Note, however, that the
two terms, guard and wval_term, depend only on the evaluation of terms in the
current state; no next-state value can occur.

Whilst the structuring mechanisms of Object-Z are very close to concepts of
object-oriented programming languages, the modelling paradigm for operations
is essentially the same as in Z. That is, operations are modelled in a declarative
way rather than operationally. The model represents what are the requirements
of a system. The set of acceptable behaviours is thus specified implicitly by
means of predicates that define a relation between pre- and post-states. How-
ever, in many cases, an operational modelling approach is adopted in which
operations are seen as a transition in a state machine that describe an actual
step, or sequence of steps, between pre- and post-states. The specification can
present some information on how the requirements are met by the system. The
user of Object-Z is basically free to choose a modelling style and the degree of
abstraction of the model. No restrictions are given by the language.

If we want to provide an interface between Object-Z and ASM, we have to
transform the definition of operations (i.e. the relation between pre- and post-
states) into the canonical form of a transition relation that is supported by ASMs,
i.e. each primed variable depends only on unprimed variables. For arbitrary Z
or Object-Z predicates this transformation would be difficult (if not impossible)
to perform automatically. Therefore, we restrict the appearance of predicates in
an operation schema to a form that can be treated algorithmically. To do so, we
integrate Object-Z with ASM.

For our integration of Object-Z and ASM, which we call OZ-ASM, we borrow
the following ASM transition rule constructors!:

— skip
The skip rule specifies an empty transition in which the state does not
change.

1 We do not allow the use of import or extend rules since these cannot be treated by
the model checking approach ([1]).

— loc := val_term
A simple update rule that specifies the assignment of a value to a location.
val_term is a term whose value depends only on the current state.

— if guard then Ry else Ry
The if-then-else rule specifies a boolean expression guard (which may include
also existential and universal quantification) and a rule that is to be fired in
the case when the guard is satisfied, i.e. the then-case, as well as an optional
rule for the case when the guard is not satisfied, i.e. the else-case.

— block Ry R ... R, endblock
The block rule allows the user to combine several rules into one. All rules
R1, Ro, ..., R, contained in the block rule are fired simultaneously.

— do forall v in A [with G] R(v) enddo
The do-forall rule allows the user to parameterise a transition rule. The inner
rule R is instantiated for all specified values v in set A and all rule instances
are fired simultaneously. The optional boolean expression G allows the user
to further restrict the possible values for v.

— choose v in A [with G 1 R(v) endchoose
The choose rule allows the user to model non-determinism.

The listed ASM rule constructors replace ordinary predicates within opera-
tion schemas of OZ-ASM. Primed state variables do not occur anymore. Instead
we use the variable assignment ‘:=’ with a next-state variable as its left hand
side. Thus, the use of predicates and their appearance in operation schemas is
restricted in the intended way. The restriction, however, is only syntactical since
any operation predicate (we could think of) can be ‘simulated’ by an ASM rule
construct. Naturally, some expressions become more verbose but the semantics,
adopted from Object-Z, will essentially be the same. The only significant seman-
tic distinction between Object-Z and OZ-ASM is to do with the occurence of
operations. In Object-Z an operation can occur if and only if it is applicable, i.e.
its pre-conditions are satisfied and there exists a valid post-state. In OZ-ASM
however, an operation can always occur; if it is not applicable (i.e. if the guard on
the update rule is not true or if there is no valid next state) then the operation
can skip, i.e. do nothing. Both non-occurrence and skip, however, have the same
effect; they do not change the state of the systems.

As a consequence, operations that contain only a guard (i.e. a predicate over
non-primed variables, e.g. accessGranted of class Key in the example on the
following page) have the same effect if they are applicable or not. They do not
change the state in both cases. These operations only become meaningful when
combined with other operations (e.g. operation insertKey in class KeySystem).
They restrict the applicability of the overall operation since their guard con-
tributes to the overall guard (which is a conjunction of the guards of combined
operations, see Section 3).

The benefit we gain from the syntactical adaption of ASM rules is a simpler
language definition. Instead of listing a set of rules that define the predicates
we can support, we provide (for Object-Z users) a new syntax of transition

rules. These rule constructs will be easier to learn (and to keep in mind while
modelling) than restrictions on predicates.

As an illustration of OZ-ASM we specify a simple key system (for the original
Object-Z specification see [3] Chapter 3). This system consists of a set of keys
and a set of rooms. Each key has access rights to (i.e. can unlock) a subset
of the rooms, and these access rights can be modified, either by extending the
access rights of a key to a room which the key cannot currently access, or by
rescinding access rights to a room which the key can currently access. A key can
attempt to access a room; if that room is locked and the key has access rights
to the room, the room unlocks, otherwise nothing happens. An unlocked room
can non-deterministically lock (in practice this would probably be realised by a
timeout).

— Key
_IniT
rooms : F Room rooms = &
_extendAccess _rescindAccess
A(rooms) A(rooms)

rm? : Room

if rm? & rooms
then rooms := rooms U {rm?}

rm? : Room

if rm? € rooms
then rooms := rooms \ {rm?}

_accessGranted
rm? : Room

if rm? € rooms

_accessDenied

rm? : Room

if rm? & rooms

then skip then skip
__Room
INIT

locked : B (locked
_supplyld

rm! : Room

if rm! = self then skip
_unlock _lock
A(locked) A(locked)
if locked if —locked
then locked := false then locked := true

__ KeySystem

INIT
keys : F Key Vk: keys o k.INIT
rooms : F Room Y r:rooms e r.INIT
Vk: keys ® k.rooms C rooms

extendAccess = [k? : keys] e k?.extendAccess
rescindAccess = [k? : keys] o k?.rescindAccess
lock = [r: rooms e r.lock
insertKey = [r? : rooms; k7 : keys] e
r?.suppyld || (k?.accessGranted /N r?.unlock
[| k?.accessDenied)

Note that apart from predicates in operation schemas all the other constructs
of Object-Z are not affected by our integration. State schema, state invariants,
initialisation schema, and the definition of operations by means of operation
operators can be used in OZ-ASM as in Object-Z. We claim that these constructs
can be automatically mapped into a canonical representation that can be model
checked. This mapping will be introduced and discussed in the next section.

3 Mapping OZ-ASM into ASM-SL

Castillo and Winter [1, 23] have shown that ASM models in general can be auto-
matically transformed into a simple intermediate format for transition systems
(namely, ASM-IL) which can in turn be readily mapped into languages like the
SMV language ([16]). In particular, this transformation has been implemented
for ASM-SL which is a specification language that provide a machine readable
syntax for ASM.2

Our intention is to make use of this existing work by mapping OZ-ASM into
ASM-SL. Because of the existing automatic transformation from ASM-SL into
SMV, effectively we will have a transformation from OZ-ASM into SMV code. In
the following we use the symbols = and |} to denote the mapping from OZ-ASM
into ASM-SL expressions that provides the basis of the transformation algorithm
to be implemented.

3.1 Types

Since the model checking approach that is utilised here is limited to systems
with a finite state space, we have to assume that all types of an OZ-ASM system
are finite. Moreover, any given type needs to be enumerated, i.e.

2 ASM-SL is supported by the ASM-Workbench ([2]) and the transformation from
ASM-SL into SMV code implements an interface from the ASM-WB to the SMV
model checker.

[GivenType] = datatype GivenType == {e1,...,en} (1)

where the number n of elements is explicitly defined. An approach for checking
systems with given types is proposed in [24] but so as to be able to make use of
an existing model checking tool we follow here the simpler approach introduced
in [1].

3.2 Classes

As a general and readily implemented approach for simulating OZ-ASM by ASM-
SL, we propose here a transformation that flattens the modular structure of
OZ-ASM. In OZ-ASM, the concept of class provides a local name space for
attributes and operations. These local name spaces are ‘simulated’ in an ASM-
SL specification by identifiers that include the class name. Any types, constants
or attributes that are local within a class are mapped into corresponding types or
functions whose identifiers are extended by the class name. The use of functions
allows us to deal easily with object referencing. For example, an attribute attr
in a class A which is of type AttrType becomes a function A_attr : AType —
AttrType. Referencing of the attribute attr of an object a is then realised by
the function application A_attr(a). To achieve this we have to generate an ASM
type for each class. Note that the number of instances of a class must be finite
and fixed if we want to apply model checking.

Since ASM-SL is a strongly typed language we need to distinguish between
types and sets. Types are used in the declaration of functions; sets, modelled
as static functions, are used within terms. Due to this restricted use of declared
types, we have to introduce for each OZ-ASM class both a type and a constant
set, with both containing the same elements.

A

=

4 (2)

datatype AType == {obj,...,0bj,}
static function A == {obji,...,0bj,}

Constant attributes are mapped into static functions in ASM-SL. All at-
tributes that are declared in the state schema are mapped into dynamic func-
tions. Input attributes become external functions (which in ASM-SL correspond
to the notion of input). Instead of the ‘?” decoration we add the extension ‘_in’
to the name of the corresponding external function; similarly, the decoration ‘!’
is replaced by the extension ‘_out’.

Suppose in the following that Types, Types, and Typey are already declared
types and AType is given as above. Then the class A and its attributes as given
below are mapped in the following way:

_A
Typer == 1 ’ to ‘ ‘ tm
| attry : Typeo

attry : Types — Typey

4 (3)

datatype A_Typey == {A_t1,..., Atn}
static function A_attry : AType — Types
dynamic function A_attrs : AType — (Types — Typey)

Attributes of a set type are mapped into a characteristic function which maps
each element that is a member of the set to true and each element that is not a
member of the set to false.

A

INIT
attrs : F Typeo ’7 ..

Y (4)

dynamic function A_attrs : AType — (Types — BOOL)
initially {...}

The initialisation of a dynamic function is derived from the INIT schema of
the OZ-ASM model. We give an example:

__ Room
_IniT
locked : B locked
— Key
_IniT
rooms : PRoom rooms = &
_ extendAccess
A(rooms)
rm? : Room

4 via (2), (3), (4)

datatype RoomType == {r1,..., 14}
datatype KeyType == {ki,...,ks}
static function Room == {ri,..., 11}
static function Key == {ki,...,ks}
dynamic function Room_locked : RoomType — BOOL
initially MAP_TO_FUN {r+ true|r € Room}
dynamic function Key_rooms : KeyType — (RoomType — BOOL)
initially MAP_TO_FUN {(k,r)+ false |
Union ({{(k,r) |k € Key} | r € Room})}
external function Key_rm_in : KeyType — RoomType

3.3 Operations

When mapping OZ-ASM into ASM-SL we have to take into account that the
underlying semantics of operation execution in OZ-ASM is different to the se-
mantics of running an ASM program. In ASM all transitions fire simultaneously;
in OZ-ASM one operation is selected for execution by angelic choice. This pro-
vides an asynchronous execution model.

As the target language SMV supports the notion of asynchronous processes, a
semantic-preserving mapping from OZ-ASM into the SMV language can be given
by the following scheme. Each OZ-ASM operation is transformed into a single-
step ASM which we call the corresponding operation-ASM. An operation-ASM
consists of one (possibly nested) transition rule that ‘simulates’ the operation.

Figure 1 illustrates the mapping Cassl d ass2
from OZ-ASM operations into a set of
operation-ASMs. Applying the results
from [23], each operation-ASM can in 2 o4
turn be automatically transformed into
an SMV process. In the correspond-
ing SMV code all processes are tied
together asynchronously by using the
keyword process (see [16]). Semanti-
cally, in each state exactly one of the / 4

Opl 3

transition Qlez/ transition Op3:7

L4
. . transition 2== t iti A==
asynchronous processes is active and q)' B ransition
can proceed with one state change (or
no state change if no progress is possi- Fig.1: The mapping schema

ble).

In the remainder of this section we introduce how OZ-ASM operations are
mapped into operation-ASMs (in ASM-SL). We describe a mapping for oper-
ation schemas, the conjunction operator, the general choice operator, and the
treatment of state invariants. The mapping for all the other operation operators,
namely o, ||, ||, and § can be derived from these basic operators (see [3,19] for
definitions).> However, in order to show the transformation on an example (see

3 The sequential operator 9 , however, should be restricted to the composition of two
operations only.

10

Section 4), we extend this section by outlining the rules for promotion, scope
enrichment, and parallel composition.

We assume in the following that the state space for any resulting operation-
ASM has already been generated by making appropriate use of the global defi-
nitions described above.

Mapping Set Expressions Since in OZ-ASM operation predicates are ex-
pressed in the syntax of ASM transition rules, the mapping of these OZ-ASM
transitions into ASM-SL is reduced to a mapping of expressions and locations
that occur within the transitions. We introduce the function (.)) as a shorthand
for the results of the transformation application, i.e. ((A)) = B holds if A = B,
and give an (incomplete) set of rules for handling expressions. Assume that
E, E,, By, F5 are sets where By C E, E, C E,and F5 C E. xp; (for i € {1,2,3})
denotes the characteristic function for the set F;.

{(if ¢ then wupds)) = if ((g)) then ((upds)) (5)
(e € EY) = xgr(e) = true (6)
{(Ey C E») = forall ein E: (7)
xz1(e) implies xma(e)
{Ey := E»)) = block (8)

do forall e in F
with (xmz2(e) = true)

xg1(e) = true

enddo

do forall e in F
with (xmz2(e) = false)

xs1(e) := false

enddo
endblock
(B := By U{e}) = xmi(e) := true 9)
(E1 = E1\ {e}) = xg1(e) = false (10)
<<E1 = E2 n E3>> = block (11)

do forall e in F
with (xgm2(e) = true and xgs(e) = true)
xEe1(e) := true
enddo
do forall e in F
with not(xgz2(e) = true and xgs(e) = true)
xg1(e) := false
enddo
endblock

Although this set of rules is incomplete, it illustrates how set operations and
expressions in OZ-ASM can be transformed into ASM-SL transition rules and

11

expressions over characteristic functions. Similarly, rules for operators on other
data types, such as sequences, can be defined.

Following the results in [23], all ASM rule constructs (apart from the extend
and import rules) can be mapped into a set of simple rules of the form ‘if guard
then updates’. For such a straightforward rule we can readily determine its
guard, its locations and its updates. The guard is simply a boolean expression
over variables, while locations are the variables that are changed by the rule
(i.e. the left hand sides of updates). For updates we consider a set of assignment
expressions of the form loc := wval. We reference these entities in the following
discussion with guard(rule), locs(rule) and upds(rule) respectively.

Operation Schema Given the mapping for OZ-ASM transitions, we can now
define rules for mapping OZ-ASM operations into operation-ASMs (in ASM-SL).
We start with the rule for mapping operations that are defined simply in terms
of an OZ-ASM operation schema. Due to the integration of ASM syntax into
OZ, this rule is straightforward:

A
—op
A(attributes)
transition
) (12)
transition A_op == ((transition))

Similarly, this rule applies to any operation definition, i.e. op = op; =
transition op == ((op1)).

Conjunction Operator In OZ-ASM the conjunction op; /A ops of two oper-
ations is applicable if the preconditions of both op; and ops are satisfied and for
both operations there exists a valid post-state. The precondition is given by the
conjunction of the guards of the mapped operations {(op1)) and {op2)) together
with any given state invariant that affects the operation.

The effect of the conjoined operation is basically given as the union of the
updates upds({{op1))) and upds({{op2))), assuming that no conflicts occur. No con-
flict occurs if for any location that is addressed in both operations the different
updates deterministically assign the same value to the location, or if the updates
are non-deterministic but the intersection of both sets of possible update-values
is not empty. No conflict occurs also in the mixed case, i.e. if the assigned value
of a deterministic update falls into the range of a non-deterministic update.

In Object-Z, examples of the second situation arise quite frequently, e.g. (n’ €
{1..10}) A (n’ € {5..15}). The result of this conjunction is clearly (n’ € {5..10}),
i.e. n' is a member of the intersection of both update-ranges. In OZ-ASM we
model such non-deterministic updates by means of the choose-rule: choose v
in {1..10} N {5..15} n := v endchoose. The possible update-values of this rule
are given as the range of v.

12

Let the function upd_vals provide for each rule R and each location loc that
is addressed within R the set of possible update values that can be assigned
to loc. For a deterministic update, upd_vals(R, loc) is a singleton that contains
exactly the right hand side of the update, i.e. val for the update loc := val. (Note
that val is the evaluation of the right hand side expression in the current state.)
For a non-deterministic update we get more than one possible update value, so
upd_vals(R, loc) is a set. For example, for the rule

transition R ==
choose v in {1,...,10}
n:=ov+1
endchoose

we get upd_vals(R,n) ={1+1,...,10+ 1} ={2,...,11}.

In general, we can conjoin two operations that address the same location by
selecting as the update value an element from the intersection of all the update-
value sets for that location. All other updates that address locations that are
not referenced in both operations can be fired simultaneously.

We denote the set of conflicting updates by means of a function conflict_upds:

(if ¢ then loc := exp) € conflict_upds({op1)), {op2)))
< loc € (locs({op1))) N locs({op2))))
A (if g then loc := exp) € (upds({op1))) U upds({op2))))

The set of non-conflicting updates of operations op; and ops is then deter-
mined by (upds({{ops))) U upds({{opa))) \ conflict_upds({op1), (op2)-

Putting this all together we get the following rule for the conjunction of
operation ASMs. (Note that sets of updates denote the simultaneous firing of
these updates. The treatment of state invariants is discussed later in this section.)

op1 N\ opz
3 (13)

if guard({{op1))) and guard({{op2))) and ((state_invariants))
then
if forall loc in (locs({{op1))) intersect locs({(op2))))
(upd_vals(op1, loc) intersect upd_vals(ops,loc)) # emptyset
then
(upds({(op)) U upds((ops))) \ conflict_upds({(opr), (op2))
do forall loc in (locs({{op1))) intersect locs({op2))))
choose val in (upd_vals(op1,loc) intersect upd_vals(ops, loc))

loc := wval
endchoose
enddo
else skip
endif
endif

13

Choice Operator The choice operator models an angelic choice between two
operations. That is, depending on the applicability of the operations, either one
or the other is executed. Only if both operations are not applicable in the current
state is the choice operation not applicable.

We map a choice operation opl [| 0p2 into an ASM that models the same
behaviour. Generally, an operation-ASM is applicable if its guard is satisfied
and the state invariant is satisfiable in the next state (see the discussion of
state invariants later in this section). If operations opl and op2 in OZ-ASM are
both applicable then one of them is chosen non-deterministically. This choice is
simulated in the corresponding operation-ASM by a toggle variable which_op. If
only one of the operations is applicable, the ASM chooses that one. If none of
the operations is applicable the ASM does nothing, i.e. skips.

op1 || op2

4 (14)

if guard({{op1))) and guard({{op2))) and ((state_invariants))
then
choose which_op in {first_op, scd_op}
if which_op = first_op
then upds({{op1)
else if which_op = scd_op
then upds(({op2)
endif
endif
endchoose
else if guard({{op1))) and ((state_invariants))
then upds({{op1)
else if guard({{op2))) and ((state_invariants))
then upds(({ops)
endif
endif
endif

Operation Promotion A class may contain an operation that models the
application of an operation of an object instance of another class. For example,
a.op invokes the operation op on the object a. Assume that op is already mapped
into an operation-ASM, then the invocation a.op effects that the first parameter
in all dynamic/external functions that are declared in op are instantiated with
object a. These functions are local to the object a.

a.op = ((op))(a) (15)

Scope Enrichment Scope enrichment, op; @ ops, introduces an additional level
of scope for the operation ops. As the modular structure of OZ-ASM is flattened

14

in our mapping, a new ASM-SL function is introduced for each attribute. These
functions are globally accessible within each operation-ASM. Therefore, scope
enrichment can be reduced to the conjunction of both operations.

opl e op2 = ((opl N op2)) (16)

Parallel Operator The parallel composition operator is similar to the conjunc-
tion operation, but additionally models communication between both operations.
op1 || ope2 models an operation that executes op; and ops in parallel and matches
similarly named (i.e. matching apart from the ‘?” or ‘I’ decoration) input and
output variables of both classes. Additionally, all input/output name-matched
variables of the composed operation are hidden. Hiding of a variable means that
it is not visible to the environment.

The mapping of this operator is defined by its semantical definition as in-
troduced in [19]. It is given in terms of the conjunction operator that is defined
earlier (see mapping 13) plus an additional renaming of the matching input and
output variables and hiding of the latter. Hiding of variables in Object-Z can be
simulated in ASM by means of fresh variables that do not occur elsewhere in
the specification.

Assume, we have functions in(op) and out(op) that provide, with the ‘?’
or ‘I decoration removed, all name-matching input and output variables of an
operation. We introduce new variables, 21, ... z,1m, that do not appear as free
variables elsewhere in the OZ-ASM model. These are used as hidden output
variables. Since we do not distinguish in ASM between output variables and
internal variables, the z; are declared, as is usual, as dynamic functions. We get

op1 || op2
3 (17)
((oprlm!/aa?, .zl /2] N op2n!/1a?, ..o ym!/Ym?])
[21/331!,...,zn/xn!,znﬂ/yl!,...,zn+m/yml] >>

where in(opl) N out(op2) = {z1,..., 2}
in(op2) Nout(opl) = {y1,.--, Ym}

State Invariants OZ-ASM state invariants enable system behaviour to be mod-
elled abstractly. Invariants allow certain states to be avoided without having to
explicitly include the required constraints in the specification of the operations.

Basically, invariants involve attributes and are predicates that need to be
satisfied by the pre- and post-state of any operation. One of their effects is to
help determine if an operation is applicable or not.

If we can show that the specified initial state satisfies the invariant then
it is sufficient to show that for each operation the invariant is not violated in
the post-state. If this is guaranteed, we can be sure that all pre-states (i.e. all
reachable states) satisfy the invariant too.

15

To guarantee that the post-state of an operation satisfies the invariant, we
add an extra guard to each operation-ASM. In both Object-Z, and OZ-ASM,
this extra condition is implicitly expressed in terms of pre-values (unprimed)
and post-values (primed) of attributes; however, within the operation-ASM any
guard that models the extra condition may not depend on post-values. Therefore,
we simply substitute each primed attribute with the update-value that will be
assigned when the transition is fired. This is illustrated in the following example:

A

_increase
n:N A(n)
n < 10 n:=n+1

The invariant on the post-state of every operation is given as (n’ < 10). Each
primed variable has to be substituted by its post-state evaluation, i.e.
(n’ <10)[n +1/n'] = (n+ 1 < 10). Therefore, we get

transition increase ==
if (n+1<10)
then n:=n+1
endif

In general, we get an additional guard for each operation in the class (in the
example above the extra guard is (n + 1 < 10)). In the next section we illustrate
the application of the mapping rules introduced above.

4 The Operation Transformation, an Example

In this section, we show how the given mapping rules can be applied to trans-
form OZ-ASM operations (which are defined via operation operators) into an
operation-ASM. As an example we use the operation insertKey of class KeySystem
that is introduced in Section 2. We assume that an algorithm for substitution is
given and that the variable self within a class is equal to the object it refers to,
i.e. {(obj.self)) = self (obj) = obj.

To begin, we show how to map the state invariant of the class KeySystem,
namely V& : keys e k.rooms C rooms. This invariant can be transformed into
the following ASM-SL expression:

forall k in Key:
Key_rooms(k,r) = true implies KeySystem_rooms(r) = true

As discussed in Section 3.3, it is sufficient to show that the invariant is satisfied in
the initial state and for all post-states of the operations. The operation insertKey
comprises the operations supplyld and unlock of class Room and operations
accessGranted and accessDenied of class Key. Of these only the operation unlock

16

has a non-empty update, namely lock := false. Since this update does not affect
the state invariant given above, we do not have to add an additional guard to
the operation-ASM insertKey to ensure the satisfiability of the invariant.

For the sake of readability, in the following we omit the brackets ((.)) within
the intermediate steps of the transformation.

insertKey = [r? : rooms; k7 : keys] o
r?.supplyld
I (k?.accessGranted N r?.unlock
[| k?.accessDenied)

(3 via (17)

insertKey = [r? : rooms; k7 : keys] o
r?.supplyld
A\ (k?.accessGmnted N r?.unlock
[k?.accessDenied) [rm!/rm?]

(3 via (15), (12)

insertKey = [r? : rooms; k7 : keys] e
if rm! = self (r?) then skip
A (k?.accessGmnted N r?.unlock
[k?.accessDenied) [rm!/rm?]

(! via (self (z) =)

insertKey = [r? : rooms; k?: keys] o
if rm! = r? then skip
N (k?.accessGranted[rm!/rm?] A r?.unlock[rm!/rm?]
] k?.accessDenied[rm!/rm?))

(! via (15), (12), (substitution)

insertKey = [r? : rooms; k7 : keys] o
if rm! = r? then skip
A ((if key_rooms(k?,rm!) = true then skip
A if room_locked(rm!) = true then room_locked := false)
[(if key_rooms(k?,rm!) = false then skip))

(3 via (13)

insertKey = [r? : rooms; k7 : keys| e

(if rm!=r? and
key_rooms(k?, rm!) = true and room_locked(rm!) = true

then room_locked := false)

[

(if rm!=r? and

key_rooms(k?, rm!) = false
then skip)

17

U via (3), (12), (16), (14)

external function k_in : KeyType
with k_in in Key

external function r_in : RoomType
with r_in in Room

transition insertKey ==
if rm_out = r_in and
key_rooms(k_in, rm_out) = true and room_locked(r_in) = true
and key_rooms(k_in, rm_out) = false
then
choose which_op in {first_op, scd_op}
if which_op = first_op
then room_locked(r_in) := false
else if which_op = scd_op
then skip
endif
endif
endchoose
else if rm_out = r_in and
key_rooms(k_in, rm_out) = true and room_locked(r_in) = true
then room_locked(r_in) := false
else if rm_out = r_in and
key_rooms(k_in, rm_out) = false
then skip
endif
endif
endif

5 Conclusion and Future Work

We have shown in this paper how language integration can be used to define a
subset of a specification language in order to tailor it for automated tool support.
We introduced the integrated language OZ-ASM, which combines Object-Z with
ASM transition rules. OZ-ASM enables the user to model systems in a state
transition based fashion, a style that can also be adopted by Object-Z users
if operation predicates are modelled in a canonical form. The syntax of ASM
transition rules provides a clear definition of this canonical form, which ensures
that primed attributes (i.e. variables in the next state) depend only on non-
primed attributes (i.e. variables in the current state). State transition systems
can interface with various analysis tools, such as state transition based model
checkers like SMV.

We showed by means of a set of mapping rules how OZ-ASM can be trans-
formed into a set of ASMs which in turn can be automatically compiled into

18

SMV code. The interface from ASM and the ASM Workbench tool environ-
ment to the SMV model checker is already available. Therefore, the results of
this paper provide the theoretical basis for an interface from the integrated lan-
guage OZ-ASM to the model checker SMV. Clearly, the interface needs to be
implemented in order to provide automated tool support; this is future work.

Our approach complements the work of others in which either a process-
algebra based model checker or SAT solvers are interfaced with a Z-based lan-
guage. Each of these approaches have their special merits for particular applica-
tions.

Future work involves the completion of the list of mapping rules for op-
eration operators (e.g. the distributed operation operators) and OZ-ASM ex-
pressions and data structures (e.g. sequences). Based on the mapping rules, a
transformation algorithm needs to be implemented. We will also investigate the
use of other analysis tools that deal with state transition systems. Especially,
other model checkers could be interfaced using ASM as an intermediate language
(e.g.NUSMV [18], VIS [22], MDG-Tool [17])%. Abstraction and decomposition
techniques have to be developed which target the limitations of model checking
with respect to the model size. Furthermore, we will attempt to develop (infor-
mal or formal) rules for mapping Object-Z into OZ-ASM so that model checking
based on transition systems can be directly available for Object-Z.

Acknowledgements Thanks to Graeme Smith for his initial inspiration of this
work and his useful comments on earlier drafts of this paper.

References

[1] G. Del Castillo and K. Winter. Model checking support for the ASM high-level
language. In S. Graf and M. Schwartzbach, editors, Proc. of 6th Int. Conference
for Tools and Algorithms for the Construction and Analysis of Systems, (TACAS
2000), vol. 1785 of LNCS, Springer-Verlag, 2000.

[2] G. Del Castillo. The ASM Workbench. PhD thesis, Department of Mathematics
and Computer Science of Paderborn University, Germany, 2000.

[3] R. Duke and G. Rose. Formal Object-Oriented Specification Using Object-Z.
Macmillan Press, 2000.

[4] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 996-1072. Elsevier Science Publishers,
1990.

[5] C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with FDR. In
K. Araki, A. Galloway and K. Taguchi editors, Proceedings of the 1st International
Conference on Integrated Formal Methods (IFM’99), pages 315-334. Springer-
Verlag, 1999.

[6] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User Man-
ual, Oct 1997.

4 As shown in [23], the transformation from ASM-SL into the SMV language can be
easily adapted to interface other tools that are based on transition systems.

19

[7]

8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]
[17]

18]

[19]
[20]
[21]
22]
23]

[24]

[25]

W. Grieskamp. A computation model for Z based on concurrent constraint res-
olution. In ZB2000 — International Conference of Z and B Users, September,
2000.

Y. Gurevich. May 1997 Draft of the ASM Guide. Technical report, University of
Michigan EECS Department, 1997.

Y. Gurevich. Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic, 2000.

G. Holzmann. Design and validation of protocols: A tutorial. In Computer Net-
works and ISDN Systems, volume XXV, pages 981-1017, 1993.

G. Holzmann. The SPIN model checker. IEEE Transactions on Software Engi-
neering, 23(5):279-295, May 1997.

D. Jackson. Nitpick: A checkable specification language. In Proc. of the First ACM
SIGSOFT Workshop on Formal Methods in Software Practice, pages 60—-69, 1996.
D. Jackson, I. Schechter and I. Shlyakhter. Alcoa: the Alloy constraint analyser.
In Int. Conf. on Software Engineering, 2000.

J. Jacky and M. Patrick. Modelling, checking and implementing a control program
for a radiation therapy machine. In R. Cleaveland, D. Jackson, editors, Proc. of the
First ACM SIGPLAN Workshop on Automated Analysis of Software(AAS’97),
pages 25-32, 1997.

G. Kassel and G. Smith. Model checking Object-Z classes: Some experiments with
FDR. In 8th Asia-Pacific Software Engineering Conference (APSEC 2001), IEEE
Computer Society Press, 2001 (to appear).

K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

F. Corella, Z. Zhou, X. Song, M. Langevin and E. Cerny. Multiway Decision
Graphs for automated hardware verification. In Formal Methods in System De-
sign, 10(1), 1997.

A. Cimatti, E.M. Clarke, F. Giunchiglia and M. Roveri. NUSMV: a new Sym-
bolic Model Verifier. In N. Halbwachs and D. Peled, editors, 11th Conference
on Computer-Aided Verification (CAV’99), vol. 1633 of LNCS, Springer-Verlag,
1999.

G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers,
2000.

J.M. Spivey. The Z Notation - A Reference Manual. Prentice Hall, 1992.

S. Valentine. The programming language Z--. Information and Software Technol-
ogy, volume 37, number 5-6, pages 293-301, May-June, 1995.

The VIS Group. VIS: A System for Verification and Synthesis. In R. Alur and
T. Henzinger, editors, 8th Int. Conf. on Computer Aided Verifaction, (CAV’96).
vol. 1102 of LNCS, Springer-Verlag, 1996.

K. Winter. Model Checking Abstract State Machines. PhD thesis, Techni-
cal University of Berlin, Germany, http://edocs.tu-berlin.de/diss/2001/win-
ter_kirsten.htm, 2001.

K. Winter. Model checking with abstract types. In S. Stoller and W. Visser,
editors, Flectronic Notes in Theoretical Computer Science, volume 55. Elsevier
Science Publishers, 2001.

P. Zave. Formal description of telecommunication services in Promela and Z. In
Calculational System Design, Proc. of the Nineteenth International NATO Sum-
mer School. I0S Press, 1999.

20

A Model checking OZ-ASM: an example

The following example shows that model checking can provide useful support
even for small systems.

A

upperBound : N
upperBound = 10

INIT
lower, upper : 1..upperBound |7l0wer =1
=10
lower # upper upper

__move
A(lower, upper)

if lower < upper
then lower := lower + 1
upper := upper — 1

Suppose that we suspect that the predicate lower < upper is a system invari-
ant. An informal argument by structural induction in support of this hypothesis
is as follows:

Initial step: as declared in the INIT schema, lower < upper is true initially.

Induction step: lower < wupper is declared to be a precondition of the only
operation, move. Furthermore, lower # upper is declared in the state schema
as a given invariant. Hence if the move operation is applicable and occurs, as
the values of both lower and upper change by exactly 1 (the value of lower
is increased by 1, the value of upper is decreased by 1), and as the invariant
lower # upper must be true after the operation (else the operation would
not have been enabled and could not have occurred), after the operation
lower < upper must still be true. Hence by structural induction the predicate
lower < upper is a system invariant.

The flaws in this reasoning might be revealed by careful thought and reflec-
tion; however, tool support by means of a model checker is an excellent way to
confirm or refute such hypotheses.

Applying the transformation steps introduced in Section 3, we generate the
following ASM-SL model. (Because there is only one class in our example spec-
ification, we don’t bother to add the class name to the local names.)

21

static function upperBound == 10

dynamic function lower : INT
with lower € {1..upperBound}

initially 1

dynamic function upper : INT
with upper € {1..upperBound}

initially 10

transition move ==

if (lower < upper)
and (lower # upper)
and (lower + 1 # upper — 1)
then lower := lower + 1
upper := upper — 1

endif

This ASM-SL model can be automatically transformed into SMV code. Using
this code we can now check if lower < upper is a system invariant, or as specified
in CTL (see [4]), (AG lower < upper). The result is a counter-example given as
a sequence of states of the system that lead to a violation of the CTL formula.

-- specification AG s.

-- as demonstrated by

state 1.1: s._lower =
S._upper =
state 1.2: s._lower =
s._upper =
state 1.3: s._lower =
S._upper =
state 1.4: s._lower =
S._upper =
state 1.5: s._lower =
S._upper =
state 1.6: s._lower =
S._upper =

resources used:

_lower < s._upper is false
the following execution sequence
1

—
o

OO0 N 00w oOoN

user time: 0.04 s, system time: 0.02 s

BDD nodes allocated: 2241

Bytes allocated: 1245184

BDD nodes representing transition relation: 161 + 10

22

