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Abstract

Most automatic systems for fingerprint identification are
based on minutiae matching. Minutiae points are
terminaisons and bifurcations of the ridge lines that
constitute a fingerprint pattern. A critical step in
fingerprint matching is to automatically and reliably
extract minutiae from the input fingerprint image. The
efficiency of minutiae detection depends on how well the
ridges and valleys are extracted. The result of this
segmentation process is a binarized image. In our present
work, we propose a multiscale Gabor wavelet filter bank
for a robust and efficient fingerprint segmentation. After a
brief presentation of the Gabor wavelet theory, we
explain how ridges and valleys are distinguished in terms
of the phase, this being the key point of our binarization
process. Moreover, the multiscale approach provides
noise elimination whilst preserving singularities that
characterize minutiae. Finally, we have evaluated the
performance of our minutiae extraction algorithm using
the accuracy of an online fingerprint verification system.

1. Introduction

Several approaches for automatic minutiae detection have
been proposed. In [1], Maio and Maltoni propose a direct
gray-scale minutiae detection based on a ridge line
following algorithm. However, the vast majority of
proposed methods consists in first detecting ridges and
valleys, providing a binarized image that is skeletonized
for automatic minutiae extraction. The binarization
process requires image enhancement, then a threshold
based decision distinguishes ridges and valleys.

In [2], O’Gorman and Nickerson present an enhancement
technique based on the convolution of the image with a
filter oriented according to the directional image. In [3],
Sherlock, Monro and Millard propose a directional
filtering process in the Fourier domain. The more precise
approach proposed in [4] takes the local frequency into
account using a local Fourier transform. The method is
efficient but time consuming. To speed up the process, the
authors have to use overlapping windows creating local

discontinuities in the binarized image. In [5], Hong, Wan
and Jain present a technique based on local projections on
an even-symmetric Gabor filter tuned to the local
direction and local frequency. Those features are
calculated in advance in each pixel neighborhood.

In our present work, we propose a Gabor wavelet filter
bank for local direction and frequency extraction. Unlike
in [5], the obtained phase is required for fingerprint
binarization. Moreover, our multiscale approach provides
noise elimination whilst preserving singularities that
characterize minutiae.

2. Brief Presentation of Gabor Wavelets

2.1- Unidimensional Gabor Wavelets

Consider a square summable function g(t) of time t,

] [+∞∞−∈ ,t , composed of local frequencies. A

localized frequency is one having a finite support. In such
a signal, the Fourier transform is not suitable for
frequency detection and localization. Indeed, the Fourier
transform consists in global projections on sinusoidal
waves having no localization parameters. We prefer
projections on Gabor wavelets h, having a frequency
parameter ω0 , a localization t0 and a scale parameter σ
that influences wavelet support size (Fig.1) [6]:
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Consider H, the Fourier transform of h :
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We remark that a Gabor wavelet is a bandpass filter
centered on the ω0 frequency (Fig.1).

Gabor wavelet functions { } σωσω ,,00 00
),,( tth do not

form a basis of square summable functions.
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Fig.1 – A Gabor Wavelet  and its Fourier transform

2.2- Bidimensional Gabor Wavelets

Consider a bidimensional Gabor wavelet ),(, yxg θω  of

frequency ω  and orientation θ.
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with )sin()cos( θθ ⋅+⋅= yxu
)cos()sin( θθ ⋅+⋅−= yxv

⊥θθ σσ , are scale parameters in the direction of the wave

and in its orthogonal direction respectively.

Real Part Imaginary Part

Fig.2 – A bidimensional Gabor wavelet

We remark that : )()(),(, uBvLvug ⋅=θω  where B(u)

is the equation of a bandpass filter, centered on the ω
frequency, and L(v) is the equation of a gaussian low-pass
filter. A bidimensional Gabor wavelet is composed of a
bandpass filter in the direction of the wave and a lowpass
filter in the orthogonal direction (Fig.2).

3. Application to Fingerprint Identification

3.1- Domain Specific Knowledge

Fingerprint images are composed of ridges and valley
creating an oriented and periodic texture.
To demonstrate that two fingerprints are from the same
finger or not, human experts detect the ridge ending and
bifurcation points of both fingerprints (Figs.3,4). These
points are called minutiae [7].

Fig.3 – Ridge Ending Fig.4 – Ridge Bifurcation

For fingerprint comparison, the two minutiae sets are
matched by superposition to count the number of common
points. Two fingerprints are considered to be from the
same finger if the number of common points is sufficient,
depending on the country's legislation.

3.2- Wavelets for Minutiae Detection

In our present work, we do not directly detect the minutiae
as done in [1]. The reason why we prefer to extract ridges
and valleys first is that we take advantage of the strong a-
priori information on the local shape of fingerprints.
Fingerprints are locally composed of an oriented and
periodic structure that we model with a Gabor wavelet.
The θ  and ω  parameters of the wavelet are given by a
local features extraction process.

3.2.1- Local features extraction

In [5], the authors propose a first detection of the local
direction θ, using Sobel masks, then a detection of the
frequency ω, by computing the x-signature. The method is
computationally efficient but an error on the estimation of
the direction generates an incorrect frequency.

We propose local projections on a bank of Gabor wavelet
filters having 8 different orientations and 3 different
frequencies. The bank respects the independence of the
direction and frequency variables. The filter that gives the
best coefficient of projection is selected and provides the
local direction θ  and local frequency ω  (Figs.5,6).

At each point ),( 00 yx ,  consider a pixel neighborhood f

of size W.W. ),( yxf  represents the image intensity at

pixel ),( 00 yyxx ++ , [ ]2W/2W/2,),( −∈yx .

• We first normalize f  to a constant energy and obtain
the function ’f :

[ ]),(),(
),(

),(’ 00
00

yxmyxf
yxv

V
yxf −⋅= , m is

the mean value and v is the variance of f.

Thus, the mean value of ’f is equal to 0 and its norm is

independent of ),( 00 yx  (Eqn.1).
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• Then, we compute the local projections of ’f  on each

of the 24 filters of the bank (Fig.5). The projection of
’f on a Gabor wave of frequency ϖ and direction α is a

complex number :
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with ]1,0[, ∈αϖA  and [2,0[, πϕ αϖ ∈

We empirically chose W=11 to have a correct noise
reduction. To speed up the process, we calculate in

advance αϖ ,g  and ’f  because of their independence

of ),( 00 yx .

Thus, for a given point ),( 00 yx , we obtain the following

features : αϖ
αϖ

θω ,
,

Argmax),( A=

Fig.5 – Scheme of Gabor filters bank

Original Image S

Local Directions smoothed Local Frequencies smoothed

Fig.6 – Outputs of the Filter bank

3.2.2- Fingerprint Segmentation

The segmentation process is divided in two steps :

å A first detection of background/noisy area and the
Region of Interest (ROI) of the print (Fig.7).

At each pixel, we calculate the local direction θ, the
frequency ω, and the associated coefficient of projection

θω ,A . We obtain three images and apply a low-pass filter

for noise reduction (Fig.6). Consider S, the smoothed
image of coefficients.

Because the energy of each pixel neighborhood is

normalized (Eqn.1), the coefficients θω ,A  (Eqn.2) are not

influenced by the local contrast of the print. Thus, we use

two global thresholds T1 and T2 )10( 21 <<< TT  to

carry out a first segmentation of the image. For each pixel

),( 00 yx ,

- if [,,0[),( 100 TyxS ∈  it means that the pixel

neighborhood does not have an oriented and periodic
structure, the point is a background point.

- if [,,[),( 2100 TTyxS ∈  the pixel neighborhood has a

weak oriented and periodic structure, the point lies in a
noisy area.
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- if ],1,]),( 200 TyxS ∈  the neighborhood of the given

point has a strong oriented and periodic structure. The
point is therefore situated in the ROI of the print.

This segmentation avoids the detection of false minutiae
in noisy areas. Moreover, the number of noisy pixels
relative to the number of ROI pixels gives a global quality
score that is used for automatic rejection of low quality
prints.

� At each point of the ROI, the binarization step consists
of deciding if the given point should belong to a ridge or a
valley on the real finger of the person. At each pixel

),( 00 yx  of the ROI, the filter having the best coefficient

of projection provides the local direction θ, the local

frequency ω, the magnitude θω ,A  and the phase

information θωϕ , . We obtain a sinusoidal model of the

local signal in the pixel neighborhood :

[ ]( )θωθω ϕθθω ,00, )()sin()()cos( cos −−⋅+−⋅⋅ yyxxA

From this model, we can decide if the given point should
belong to a ridge or a valley. Because the mean value of
each pixel neighborhood is normalized to 0 (Eqn.1), we
apply a threshold based decision at 0 : if the sign of the

model at point ),( 00 yx  is positive, the point belongs to

a ridge; if the sign is negative, the point belongs to a
valley. We remark that this decision is highly depending
on the phase information.

Unfortunately, such a binarization process can artificially
connect ridges around minutiae points (Fig.8) that can be
the cause of confusion between a ridge ending and a
bifurcation point. This information is essential for the
matching process. A combinaison of multiscale filters is
required :

- in a region containing no minutiae, the size of the filter
has to be large to eliminate noise

- in a region containing minutiae, a small filter size
preserves the singularity characterizing a minutiae.

We have no prior knowledge about minutiae location but
we know that they constitute a local discontinuity in the

periodic and oriented structure. As a consequence, θω ,A
has to be small around minutiae points (Fig.8). But, in
case of noisy pixels, we are in the same situation.

We infer the following rule : consider two thresolds T3

and T4 and a pixel ),( 00 yx  situated in a subregion of the

ROI containing a small amount of noise, such that

2300 ),(1 TTyxS >>>  ; if ),( 00, yxA θω  is lower

than a threshold T4, we apply a Gabor wavelet tuned to ω
and θ, with reduced θσ  and ⊥θσ  parameters and in a

window of size W=5. We obtain a new phase, and a new
model of the pixel neighborhood. We use the same
decision process to distinguish a ridge and a valley.

3.3- Experimental results

On Fig.7 is presented an example of segmented print. A
zoom on critical parts of the image shows the
improvements of the multiscale approach (Fig.8). From
the segmented image, a skeletonization of the black lines
provides an efficient detection of the print minutiae.

Fig. 7 - Segmented print into background (clear gray), noisy
areas (dark gray), ridges (black) and valleys (white)

The performance of the segmentation process was
numerically assessed using the accuracy of our
verification system. Indeed, we have developed a
matching algorithm [8] based on a generalized Hough
transform [9] and a similarity metric that takes the
geometric relationships between minutiae into account.
For a given database, the distribution of the matching
scores for the same fingers and for different fingers is
computed. Setting different values of the threshold on the
matching score, we obtain the curves of False Acceptance
Rate (Far) and False Rejection Rate (Frr) given by Fig.9.

For comparison to other existing systems, we tested our
system on Db1 and Db2 databases of the FVC2000
Competition [10]. We reached the second position in the
competition by achieving Equal Error Rates (EER) [10] of
3.16% and 1.85% on Db1 and Db2 respectively.
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Fig. 8 – Improvements of a multiscale approach

Db1 database
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Fig.9 – Far and Frr function of the decision threshold

Conclusion

A Gabor wavelet filter bank is efficient for fingerprint
feature extraction. Indeed, it  provides :

- a robust fingerprint segmentation into background/ noisy
area and the ROI. It avoids the detection of false
minutiae in noisy areas and gives a global quality score
that is used for the automatic rejection of low quality
prints.

- a model of the local signal in each pixel neighborhood
of the ROI. From this model, we decide if the given
point should belong to a ridge or valley and this decision
is highly depending on the phase information.

Moreover, our multiscale approach provides an efficient
noise elimination whilst preserving singularities that
characterize minutiae. The result is a segmented image
that gives minutiae points after a skeletonization step of
the extracted ridges.
Since the evaluation of our algorithms in comparison with
other verification systems is very encouraging, the results
of our researches are integrated into the THALES
Identification products. Indeed, this company plans to
produce an authentication terminal by incorporating our
algorithms onto specific embedded hardware for
fingerprint identification.

References

[1]- D. Miao and D. Maltoni, "Direct Gray-Scale
Minutiae Detection in Fingerprints", IEEE Trans.
PAMI, vol. 19, no. 1, 1997.

[2]- L. O’Gorman and J.V Nickerson , "An Approach to
Fingerprint Filter Design", Pattern Recognition, vol.
22, no. 1, pp. 29-38, 1989.

[3]- B.G Sherlock, D.M Monro and K. Millard,
"Fingerprint Enhancement by Directional Fourier
Filtering", Proc. Conf. Vision, Image and Signal
Processing, pp. 87-94, 1994.

[4]- C.I Watson, G.T Candela and P.J Grother,
"Comparison of FFT Fingerprint Filtering Methods
for Neural Network Classification", NIST technical
report no. 5493, 1994.

[5]- L. Hong, Y. Wan and A.K. Jain, "Fingerprint Image
Enhancement : Algorithm and Performance
Evaluation", IEEE Trans. PAMI, vol. 20, no. 8,
pp.777-789, 1998.

[6]- Y. Meyer, "Les Ondelettes - Algorithmes et
Applications", Armand Colin, 1994.

[7]- The Science of Fingerprints
US Department of Justice – FBI

[8]- S. Bernard, C. Nastar, N. Boujemaa, D. Vitale and
C. Bricot, "Fingerprint Image Retrieval in Very
Large Databases", IEEE Workshop on Automatic
Identification Advanced Technologies, pp. 95-98,
Summit, 1999.

[9]- N.K Ratha, K. Karu, S. Chen and A.K Jain, "A Real-
time Matching System for Large Fingerprint
Databases", IEEE Trans. PAMI, vol. 18, no. 8,
pp.799-813, 1996.

[10]-D. Maio, D. Maltoni, R. Cappelli, J.L Wayman and
A.K. Jain, "FVC2000 : Fingerprint Verification
Competition", ICPR, Barcelona, September 2000,
http://www.bias.csr.unibo.it/fvc2000.


