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Abstract

We propose a feature-based method of correcting ra-
dial distortion for image mosaicing. Unlike conven-
tional methods, our method does not require any cali-
bration pattern or non-linear minimization. It can es-
timate the distortion parameter from images of natural
scenes. Compared with previous methods not requir-
ing a calibration pattern, our method computes the ra-
dial distortion parameter faster because it is based on
feature correspondence. After establishing the feature
correspondences by using optical flow estimation, we
estimate the radial distortion coefficient in the process
of estimating the homography between the images.

We show the effectiveness of our method by experi-
ments both on real images and synthetic images. The
accuracy of our method is comparable to the previous
methods using a colibration pattern. The processing
time is about four times faster than the previous meth-
ods which do not require a calibration pattern.

1. Introduction

Image mosaicing has become an active research area,
because its ability to construct a large, high-resolution
panoramic image from a collection of standard images.
Applications include the construction of aerial and
satellite photographs, photo editing, and the creation
of virtual environments. Previous methods can be cate-
gorized into three types: direct methods, feature-based
methods, and others.

Direct methods have been actively explored to esti-
mate parametric transformations between images, [1],
to create 2D and 3D aligned video mosaics, [16, 7, 9,
10], and to create full-view mosaics, [17].

Feature-based methods have been introduced to
manage very large differences between images, [21], and
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to reduce the computational cost of estimating homo-
graphies between images with super resolution, [3].

The other type includes a real-time method using a
simple transformation, [18], a method considering the
forward movements of the camera, [19], and a phase-
based method for the presence of moving objects, [5]

Radial distortion must be corrected for the lenses
used on recent digital still cameras. The low cost of
the lenses leads to significant distortion. In particu-
lar, zooming lenses and wide-angle lenses tend to con-
tain severe distortion. This paper proposes a method
of automatically correcting radial distortion for image
mosaicing,.

1.1. Related work

Conventional techniques for estimating lens distor-
tion parameters can be categorized into three types.
The first type uses special calibration patterns. Tsai
[14] proposed a method using calibration patterns for
providing 3D coordinates to estimate not only radial
distortion parameters but also camera parameters such
as focal length, image center and aspect ratio. This
method requires careful operation to provide exact 3D
locations. A recent method proposed in [20] is more
flexible, because the images can be taken with a hand-
held camera. This method, however, still requires a
planar calibration pattern.

The second type requires straight lines in the im-
age, although it does not require calibration patterns.
Brown [2] uses a number of parallel plumb lines to
compute radial distortion parameters using an itera-
tive gradient-descent technique. Since the extraction of
points on the plumb lines is manual-intensive, Swami-
nathan and Nayar proposed a method with a user-
guided self-calibration approach in [11]. This method
uses points picked by the user, along projections of
straight lines in the image.
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Figure 1. Planar projective transformation

The third type uses a set of images. Since it does
not require calibration patterns, the images can be nat-
ural scenes. Stein has proposed a method which uses
only images of the scene[12]. This method, however, re-
quires a computer-driven rotating table to provide the
rotating angle between images. Stein has also proposed
a method which does not need calibration patterns nor
rotating tables [13]. This method, however, cannot be
applied directly to image mosaicing because its pur-
pose is for 3D reconstruction. Another problem of this
method is that the computational cost is high because
it is based on a non-linear minimization framework.

Sawhney and Kumar have proposed a method for
image mosaicing[15]. This method is an extension of
direct methods for image mosaicing, and incorporates
the radial distortion parameter into the homography
computation between images. The problem of this
method is that its computational cost is high. Since
the method is based on iterative non-linear minimiza-
tion, it requires iterative image warpings to estimate
both homography and distortion parameters.

We propose a feature-based method for image mo-
saicing that has the following advantages. First, the
method does not require any calibration pattern. Sec-
ond, it is faster than previous methods.

2 Image mosaicing using homography

Given two images taken from the same viewpoint,
or images of a planar scene taken from different view-
points, the relationship between the images can be de-
scribed by a planar projective transformation called
homography [6]. This is the most accurate geometric
transformation between images, and considers perspec-
tive effects.

Figure 1 illustrates the principal of the planar pro-

jective transformation for image mosaicing. When we
observe a point M on a planar surface from two differ-
ent viewpoints C1 and Cs, we can transform the image
coordinates m; = (x1,y1,1)! to mg = (z2,y2, 1) us-
ing the following 3 x 3 planar projective transformation
matrix H.

km2 = Hm1 (1)

where k is a non-zero arbitrary scale-factor and image
coordinates m; and mg are represented by homoge-
neous coordinates. This relationship can be rewritten
using the following equations.

To — hoz1t+hiyi+ho
2 hez1+hryi+1 (2)

Yo = hsz1+hayiths
2 hezi+hry1+1

When a point on the planar surface is invisible from
Cs but visible from C}, we can generate the correspond-
ing point on image I» by this transformation.

To compute a homography from images, a lot of
methods have already been proposed for direct meth-
ods, [16, 9, 17, 15], feature-based methods, [21, 3], and
a phase-based method, [5]. Most of the methods ex-
cept [3] are slow in computing homography. We pro-
pose a feature-based method whose computational cost
is lower than previous methods, not only for computing
homographies, but also for computing radial distortion
parameters.

3 Radial lens distortion

3.1 Error function for distortion parame-
ter

Let (u¢, vt) be the true (distortion-free) pixel image
coordinates, and (u4,v,) the corresponding actual (ob-
served) image coordinates. We then have the following
equations:

g = ug + (up — ug)kr?

Ve = v + (vs — vo)kr? (3)

r? = (ug — uo)® + (vs — vo)?
where k is the coefficient of the radial distortion and
(w0, vo) are the center coordinates of the distortion [2].

When we have points p; in the first image and their

corresponding points pl ; in the second image related by
the homography H, we define the sum of reprojection
errors F as follows:

E = Z(Pz - lei)2' (4)

If we have a perfect lens without any lens distortion
and with accurate feature correspondences, the error



should be zero. In fact, the error is not zero due to
the lens distortion. We redefine the error function con-
sidering lens distortion. If we assume that the lens
distortion k& does not change between images with con-
stant center coordinates (ug,vp) , we can rewrite the
error E as follows:

E(k) = (pi(k) — Hp ;(k))>. (5)

2

After estimating the homography matrix H with the
actual image coordinates, we can estimate the corre-
sponding coeflicient k& by minimizing the error E.

We use the Newton-Raphson method to solve the
error E in terms of k. When the change dk of the
coeflicient k is small, we have the following equation
by Taylor expansion.

E(k + 0k) = E(k) + 6kE (k) (6)

where E is the first derivative of the error E. Since
we need to find 6k to minimize the error E, we obtain
the following equation.

E(k + 6k) =0 (7)

By substituting the equation (7) into (6), we can esti-
mate 6k as follows:

E(k)
0k = ——-=. 8
To improve the accuracy, we can estimate k iteratively
as follows:

E(k;)
B (k) ©)

We re-estimate the homography matrix from the
corrected image coordinates by using the estimated dis-
tortion parameter k during this iteration. While the
initial estimate of the homography might include the
distortion effect, this re-estimation can gradually sepa-
rate the initial homography into a homography for real
image coordinates and the distortion parameter. Con-
sult the appendix to investigate how to compute the
derivative of error E.

kip1 =k —

3.2 Feature correspondence

We establish feature correspondence automatically
by using optical flow estimation. We show the algo-
rithm as follows:

1. Rough alignment
We use correlation with low-resolution images.

2. Feature selection
We select prominent features such as corners.

3. Coarse-to-fine optical flow estimation
We use the Lucas-Kanade method for resolution
pyramids

4. Feature correspondence
We establish feature correspondence by using the
flow estimate in subpixels.

Readers can find the details in [4].

We compute the homography between the two im-
ages from four or more feature correspondences with
a least-squares method. To exclude false correspon-
dences, we use a robust technique, the M-estimator.
We can determine whether a feature point p has false
correspondence or not, by measuring the re-projected
error E, as follows:

E.=(p-H(p))> (10)

If the error E,. is above the pre-determined thresh-
old, the corresponding point may have false correspon-
dence. After excluding this point from the set of fea-
ture correspondences, we then compute the homogra-
phy H again with the remaining features. We repeat
this process until the errors of all points are smaller
than the threshold value. This simple implementation
works well, although many variations have been pro-
posed as M-estimators.

To increase the accuracy, we use a multi-resolution
pyramid of images. After computing a homography at
some level, we warp the image at the next finer level by
using the estimated homography. At each level, we es-
tablish feature correspondence to estimate the homog-
raphy. After estimating the homography at the finest
level, we use the homography and the feature corre-
spondences to compute the radial distortion coeflicient
k as well.

4 Experiments

We conducted experiments on both synthetic im-
ages and real images. We show the performance anal-
ysis with regard to noise by computer simulation. On
real images, we show the effectiveness of our method
in accuracy and efficiency.

4.1 Computer simulations
We conducted two experiments on synthetic data.

The image size of the simulated camera is 640 by 480
pixels. The focal length is 640 in pixels. We placed
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Figure 2. Error analysis in simulation.

points in 3D at equal distance from the optical center.
The points were aligned 50 pixels apart on the first im-
age plane. Setting the distortion parameter to -3.0e-7
as the ground true value, we projected the 3D points on
the first image. The distortion value was determined
by experiments with an actual zooming lens. Then
we rotated the camera horizontally around the optical
center by 30 degrees for the second image. This gives
us the true homography between the images. Half of
the image plane was overlapped with the first image.
We obtained 37 pairs of corresponding points in the
overlapping region between the images. These corre-
spondences contain radial distortion.

In the first experiment, we evaluated the perfor-
mance with regard to the noise level in feature corre-
spondence. We added gaussian noise with 0 mean and
o standard deviation to the point coordinates on the
second image. We varied the noise level, o, from 0.1
pixel to 1.2 pixels. For each noise level, we performed
100 independent trials, and the results were shown in
an average. We compared the estimated lens distortion

coefficient with the ground truth. In the experiments,
the homography was also estimated from the feature
correspondences. Figure 2 top shows the errors at dif-
ferent noise levels. As we can see from the figure, the
errors were less than 5 % until the 0.5 noise level.

In the second experiment, we evaluated the perfor-
mance with regard to the deviation of the center coor-
dinates of the radial lens distortion. Figure 2 bottom
shows the errors. Fixing the noise level at 0.3 pixel, we
varied the center coordinates from -32.0 to 32.0 pix-
els in both directions, horizontal 40 and vertical v0.
Although our method assumes that the center of the
distortion equals the center of the image, the errors to
the offset of the distortion center were less than 2 %,
which was smaller than we expected.

4.2 Real data

We conducted two experiments on real images with
two types of lenses, zoom and wide-angle. First, we
show the result with a zooming lens. Two images
were taken by a hand-held digital still camera (Nikon
CoolPix 950) that is equipped with a zooming lens.
The overlap of the images was around 50 % in vertical
direction. We obtained the lens distortion coeflicient
as -3.19e-7 from 23 pairs of feature correspondences.
The error E has been reduced from 13.3 to 3.1, which
is 23.3 %.

Figure 3 shows the effectiveness of correcting lens
distortion for image mosaicing. Figure 3 left shows
the mosaic without lens distortion correction. Figure
3 right shows the mosaic corrected by the estimated
distortion coefficient with the proposed method. While
the edges of the book are curved in the left image, those
in the right image are straight.

In the second experiment, we show the result with a
wide-angle lens. Two images were taken with a wide-
angle conversion lens (Olympus WCON-8), that is at-
tached to a digital camera (Olympus C-3030ZO0OM).
The focal length is 25.6mm in 35mm-film equivalent.
The overlap between the images was around 50 % in
horizontal direction. We established 70 pairs of fea-
ture correspondences. The estimated lens distortion
coeflicient was -4.95e-7. The error E has been reduced
from 160.6 to 116.8, which is 72.7%. Figure 4 right
shows the corrected image of the second image. While
the pillar is curved in the original image (left), it is
straight in the corrected image (right). Figure 5 shows
another example of correcting radial distortion by us-
ing the estimated value. The figure right shows one
of the corrected input images. Although the edges of
the side wall behind the sink are curved in the original
(left), they are straight in the corrected image (right).
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Figure 3. The left shows the mosaic without lens
distortion correction. The right shows the mosaic
with lens distortion correction.

4.3 Comparison

We compare the accuracy and efficiency of our
method with previous methods. First, we compare the
accuracy of our method with a previous method de-
veloped by Zhang [20]. This method is supposed to
be more accurate than our method, because it uses a
planar calibration pattern and more images (five) than
our method (two). Tables 1 shows comparisons with
two different cameras. We used natural scenes to es-
timate the distortion parameter for our method. We
used the images shown in Figure 3 for a zooming cam-

Table 1. Error Comparisons

Lens Method k Error
Zoom Proposed | -3.19e-7 | 3.10
Zhang -3.52e-7 | 3.22

Wide-angle | Proposed | -4.95-7 | 116.8
Zhang -6.94e-7 | 212.2

era (CoolPix 950) and Figure 4 for a wide-angle camera,
(C-3030 + FCON-08).

For Zhang’s method, we used a calibration pattern
which has 108 circles printed on a sheet of paper by
a laser printer. The circles were aligned in a 12 by 9
formation with displacements of 20 mm. The center
coordinates of each circle was computed after the cir-
cle pixels were extracted by binarization followed by a
labeling technique. We used five images taken from
different viewpoints to estimate the internal camera
parameters, including the radial distortion parameter.
Our implementation does not take into account the sec-
ond term of radial distortion coefficients and assumes
that the skew parameter is zero.

Tables 1 shows the sum of reprojected errors in
Equation (5). From the tables, we can see that the
errors of our method are smaller than those of Zhang’s
method.

Second, we compare the computational efficiency of
our method with a previous method, developed in [15].
The previous method is slow to compute because it is
based on a non-linear minimization framework. Table
2 shows the processing time for images taken with the
two types of cameras. We measured the processing
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Figure 5. Corrected input image (Wide-angle)

Table 2. Processing time {seconds)

Method Zoom | Wide-angle
Proposed 12.1 11.0
Non-linear | 41.6 45.6

time on an SGI Indigo 2 (195MHz). The results show
that our method was about four times faster than the
previous method.

In the experiment, we measured the processing time
with the following conditions. The results of rough
alignment were provided to both methods. The res-
olution pyramid of four levels was prepared in both
methods for hierarchical estimation. In the previous
method, the maximum number of iterations at each
level was set to 10. We measured the processing time
for computing the radial distortion parameter and the
homography, not including the time for rough align-
ment and the final mosaic construction. In our method,
the additional time of computing distortion coefficient
k to homography computation was less than one sec-
ond.

5 Discussion

Our method is about four times faster than the pre-
vious method proposed in [15]. The previous method
is an extension of direct methods that use non-linear
minimization, not requiring calibration patterns. The
idea of our method is similar to that of the previous
method, except that the definition of error function is
different. This difference makes our method faster than
the previous method because our method does not re-
quire iterative image warpings.

The major difference in computational cost is the
number of iterative image warpings. Our method re-
quires only three image warpings for hierarchical es-
timation. On the other hand, the previous method
might require forty iterations at most. While flow es-
timation in our method by using the Lucas-Kanade
method requires iterative computation, it requires no
image warpings. Since it is based on 2D translation, the
computational cost for computing image coordinates
for each pixel is two additions. On the other hand,
the previous method requires image warping with more
parameters at each iteration. We warp images by us-
ing the currently estimated homography and distortion
coefficient pixel-by-pixel. The computational cost is



higher than 2D translation, because the computation of
warping by homography consists of 6 multiplications, 6
additions and 2 divisions, to compute the image coordi-
nates for each pixel. In addition, the previous method
needs to compute image derivatives for each warped
image. This process increases the computational cost.
Furthermore, the cost for computing the partial deriva-
tives of 9 parameters, homography and distortion co-
efficient, cannot be negligible. Our method, however,
requires feature extraction. The computational cost of
this part is less than that of the image warpings in the
previous method.

The accuracy of the method is comparable to previ-
ous methods using special calibration patterns. Using
only images of natural scenes taken with a hand-held
camera, we were able to estimate a reasonable distor-
tion parameter. We might be able to recover other
parameters such as image center coordinates. By sim-
ulation, however, we confirmed that the slight offset
of the image center coordinates is negligible. To com-
pute the second term of the distortion parameters is a,
subject of future research.

We can use more than two images in order to in-
crease the accuracy of estimating the lens distortion
parameter. To do this, we can define the error func-
tion as follows.

Bk) = 3 S0l - HEI @) (1)

where pg represents the ith image coordinates in the
jth image. An experiment to analyze this performance
is another subject of future research.

6 Conclusion

In this paper, we have illustrated a method for au-
tomatically correcting radial lens-distortion for image
mosaicing. The method has two advantages over ex-
isting techniques. First, it does not require any spe-
cial calibration patterns. We showed that the accuracy
of the proposed method is comparable to the previous
method using a calibration pattern. Second, it is faster
than the previous method. Experiments showed that
it is about four times faster than the previous method.

In future work, we plan to analyze the effectiveness
of considering a second distortion parameter kg for im-
age mosaicing.
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Appendix

The derivative of error E

Here we show how to compute the derivative of the
error E in Equation (5). To distinguish true points
from the distorted points, we rewrite the error as fol-
lows:

E=Y(p~ Hp. )’ (12)

where p¢ is a distortion free, true point and a function
of the distortion parameter k.
The derivative of the error E can be expressed as:

- Z2(pt—Hpt’>(5ﬂ—5H"t'>. (13)

ok ok ok

We show how to compute each term. For the first
term, we need to obtain true points, because we have
only distorted points as follows:

Pd = pt + Pekrs’ (14)

where pt is a true point, pq is its distorted point by the
radial distortion k, and ;2 is the squared distance from
the image center for the true point. We obtain the true
points from the distorted points by using the current
value of the distortion parameter k. If we assume that
the squared distance of a true point is nearly equals
to that of the distorted point, we can obtain the true
point as follows:

Pd

= Tk (15)

Pt

where 742 is the squared distance for the distorted
point. By using this equation, we can obtain the deriva-
tive of points with respect to the distortion parameter
k in the second term as follows:

opt
W = —paC (16)
where
o= T __
(14 Ekrg?)?”

The derivative of the transformed points by Equa-
tion (2) in true coordinate system can be expressed as
follows:

SHp: [ % ()
=| ¥ 8 (17)
ok 3% (D)
where
A = hom + h1ytl + hs
B = hgzi +hays + hs
D = hﬁxtl + h7yt' +1

By using Equation (15), we can rewrite the above
equation with the distorted points as follows:

A = hozd G+ hyd G+ ho

B = h3.’1,'le + h4yle + hs
D = hezg G+hysG+1
where
oo 1
T 14 krqg?’
The derivatives in Equation (17) can be obtained as
follows:
O (A _ oA, AdD
Sk\D) ¢k D2 6k
o (BY _ 9B, BD
Sk\D) ¢k D2 4k
where
A ) ,
% - —hozqg C —hya C
6B ) ,
E = —hg.’l:d C - h3yd C
6D ) ,
5 —hezqg C —hrya C
e
(14 krg?)?

Now we have all of the elements to solve the deriva-
tive of the error F in Equation (13).



