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Abstract

Oneof themoresuccessfulapproachesto imagesegmen-
tation involvesformulatingtheproblemastheminimisation
of a Mumford-Shahfunctionalandthenusingregion merg-
ing algorithmsto approximatetheminimiser. Recentwork
by Reddinget al. presentedsuch an algorithmanddemon-
stratedthe quality of the segmentationsit produces.Here,
weextendthatwork in twoways.First,wedescribea varia-
tion of thealgorithmwhich leadsto thesamesegmentations
but which is an order of magnitudefasterto compute. This
gain is madeby introducingthe conceptof a locally best
merge. Second,andasa natural consequenceof consider-
ing locally bestmerges,wedescribea newalgorithm.While
thenew algorithmis no longer optimal, it is fasterandhas
otherdesirableproperties.In particular, in thecasewhere
thefunctionalto beminimisedtakesaccountof regionvari-
ancesas well as means,the new algorithm overcomesthe
problemof unreliablevarianceestimatesfor small regions.

1. Introduction

The Mumford-Shahfunctionalwe will be dealingwith
is discussedin Chapter5 of the book, [4], by Morel and
Solimini. They take an imageto be a function ��� ��� ��� of
thecontinuousvariables� and � definedon a domain	 . A
segmentationof � , in its mostgeneralform, is a collection


of boundarieswhichpartition 	 into asetof regionssuch
that � is “homogeneous”oneach.For Mumford-Shahfunc-
tionals,the term“homogeneous”is givenprecisemeaning
by specifyinganimagemodel � � ��� ��� . We usethesimplest
modelwhereby� is restrictedto beconstanton eachof the
segmentationregions.Theassociatedfunctionalis
 � � � 
 ����� ��� ��� � � ��� ��������� ��� ��� � � � ��� ����� � � 
 � (1)

where� � 
 � is thetotal lengthof



and � is aregularisation
parameter. The choiceof � controlsthe tradeoff between
how well the model � fits the image � andthe complexity
of theboundary



. It mustbepre-specified.Thesuitability

of (1) for imagesegmentationis clearly shown by Morel
andSolimini’smathematicalanalysis.

By design,

 � � � 
 � is smallfor goodsegmentationsand

thusthesegmentationproblemis to find theminimisersof
 � � � 
 � . This problemcanbe simplified by first observ-
ing that a minimiser is fully specifiedby its boundary



alone. The realproblemthenis to find theboundary



of

the minimiser. While therearemany algorithmsfor doing
this regionmerging is a goodchoice,see[3] and[4].

Two questionsneedaddressingin region merging algo-
rithms:whichsegmentationto startfrom andhow to choose
the regionsto be merged. In answerto the first question,
Koepfleret al. provide soundargumentsfor startingwith
the trivial segmentation.(The trivial segmentation is the
onein which eachpixel is a separateregion.) The second
questionis moreinteresting.It accountsfor thedifferences
betweenouralgorithmsandthoseof Koepfleretal., [3], and
others[2]. It is answeringthis questionthatunderpinsthe
work describedhere.Wewill presenttwo differentanswers.

Our first answerwasmotivatedby attemptsto speedup
the full � -schedule algorithm (FLSA) reportedon in [5].
We have beenhighly successfulin thoseattemptsandhave
decreasedthecomputationtimesby anorderof magnitude.
We call our new versionof the algorithmthe optimal lo-
cally best merging (OLBM) algorithm.We emphasisthat
it producesthesamesegmentationsasFLSA. Thespeedup
isachievedin thesearchfor thenext pairof regionsto merge
- insteadof searchingthefull list of all potentialmergeswe
only searchthelist of locally bestmerges.

Our secondanswer, resultsin anew algorithmwhichwe
call the synchronous locally best merging (SLBM) algo-
rithm. The ideabehindthis algorithmis to performall lo-
cally bestmergessynchronouslyratherthansearchingfor
thebestone. While SLBM is not asaccurateasOLBM, it
is somewhatfasterandhasotherdesirableproperties.



2. Discretising the functional

In orderto apply(1) to digital imagesit needsto bedis-
cretised.To do so,we take  to bea setof pixels indexed
by a discretevariable !#"%$ & ' ' ' & ( . The image ) and its
model * are thendefinedby their values )�+ ! , and *�+ ! , at
eachpixel. A segmentationregion is a connectedsub-set
of  anda segmentation- is a partitionof  into regions.
Theboundaryof - is thesetof pixel edgeswhich separate
theregionsandits length . + -/, is thetotalnumberof edges
in theset.With this notation,thefunctional(1) becomes0 + *�& -/,�"213 4 5�6 + *�+ ! ,�7�)�+ ! , , 8:9�; . + -<, ' (2)

Further, sincewe areonly interestedin the minimisersof
(2) and * is piecewiseconstant,we canassume*�+ =�,�" $> ?@> 34 A B )�+ ! , (3)

where
?

is theregionof - with =DC ? and
> ?#>

is its area.

3. Full E -schedule algorithm (FLSA)

Thefull ; -schedulealgorithmreportedonby Reddinget
al. in [5] wasanextensionof theregionmergingalgorithm
developedby Koepfleret al., [3]. At its heart,theKoepfler
et al. algorithmhastwo components:a simplestrategy for
searchingfor candidatepairsof regionsto be mergedand
a criterion for decidingwhetheror not to mergethem.The
searchstrategy is neithersophisticatednor optimal. How-
ever, it is fastandsomeof its deficiencieswereaddressed
by a cleverextensionof thebasicalgorithm.Theextension
involveschoosinganincreasingsequenceof valuesF�G ; 6 G ; 8 G ' ' ' G ;�H (4)

to beusedfor theregularisationparameterin (2). For each
value ; 4 the basicalgorithm producesa segmentation- 4
which “minimises” the functional(2) with ;I"J; 4 . These
segmentationsform achainwith - 4 beingusedasthestart-
ingpointfor thealgorithmwhichproduces- 4 K�6 . Thechain
begins with -#L being the trivial segmentation. The final
segmentation-@H is theoutputandso ;�H shouldreflectthe
final amountof regularisationrequired.

The sequence(4) is called a ; -schedule. Its effect is
to limit the the mistakes madedue to the poor searching
strategy. Thus, it is natural,as was done in [5], to con-
sider the extremeof choosingthe ; -scheduleso that each
segmentation,- 4 , differs from thepreviousone, - 4 M�6 , by
exactlyoneregionmerge.Thisschedulewascalledthefull; -schedule. Implementingthefull ; -scheduleusingtheal-
gorithmof Koepfleret al. is not practicaldueto the ineffi-
ciency of their searchstrategy. However, analgorithmwith

anefficientimplementationis possibleandwasdescribedin
[5]. It wascalledthefull ; -schedule algorithm (FLSA).

To describeFLSA we first needto describehow thefull; -scheduleis calculated.We assumewe have thesegmen-
tation - 4 andwe will describehow to calculate; 4 K�6 . Let+ ? 4 & ?ON , be a pair of neighbouringregions in - 4 . The
Koepfleret al. criterion for merging this pair is that the
functional (2) be decreasedby doing so. In other words,
themergingcriterionis that

0 + -<P Q�+ ? 4 & ?ON , , 7 0 + -<, GIF
whereQ�+ ? 4 & ?�N , is thatpartof theboundary- which sep-
arates

? 4
and
?�N

. In [5], it wasshown that an equivalent
criterionis that ;�RIS + ? 4 & ?�N , where

S + ? 4 & ?ON ,�" > ? 4 > > ?ON >> ? 4 > 9 > ?�N > + *
4 7�* N , 8. + Q�+ ? 4 & ?�N , , ' (5)

Here
> ? 4 >

and
> ?ON >

denotethe areasof
? 4

and
?ON

, and * 4
and * N arethe averagevaluesof ) on

? 4
and
?ON

, respec-
tively. We refer to S + ? 4 & ?�N , as the merge cost for the
pair + ? 4 & ?�N , . Clearly then, the desiredvalue of ; 4 K�6 is
theminimummergecostamongstall neighbouringpairsin- 4 . Further, thesegmentation- 4 K�6 is obtainedfrom - 4 by
merging thepair with theminimummergecost.

Thus the ideaunderpinningFLSA is to maintaina list
of all potentialregion mergersandto calculatethe associ-
atedcostsaccordingto (5). At eachstepof thealgorithmthe
cheapestmergeris performed.Thismergingprocesscontin-
uesuntil thedesiredstopping lambda, ;�H is reached(that
is, until all mergecostsaregreaterthan ;�H ). We shouldre-
mark herethat choosingthe correctstoppinglambdais an
importantquestionandalthoughthe paper, [5], suggested
oneanswer, we believe a bettermethodis needed.An ex-
ampleof theoutputof FLSA is shown in Figure1.

In orderto describeour improvementsto FLSA we will
needto briefly delve into its efficient implementation,as
presentedin [5]. Theimplementationdependsonmaintain-
ing two mainlists: theregion list TU"�V 6 & V 8 & V�W & ' ' ' and
the region pair (or boundary) list XY"[Z 6 & Z 8 & Z�W & ' ' ' .
Theregionpair list X is thelist of all potentialmergersand
we describeit first. Its = -th entry refersto the = -th pair
of neighbouringregionsor equivalently, the = -th boundary
componentof the segmentation. If

? 4
and
?�N

are the re-
gionsconcernedthen Z�\ is of theformZ�\�"]+ ! & ^ & _ 4 N & S 4 N , & (6)

where _ 4 N "Y. + Q�+ ? 4 & ?ON , , is the lengthof the separating
boundaryand S 4 N "]S + ? 4 & ?�N , is themergecostasdefined
in (5). The ! -th entryof T refersto region

? 4
andis of the

form V 4 "]+ ` 4 & * 4 & a 4 & b 4 , & (7)

wherè

4
is theareaof

? 4
, * 4 is its averagegray-scalevalue,a 4 "dc ? 4 e & ' ' ' & ? 4 f g is the list of neighboursof

? 4
, and
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(a)Original image (b) FLSA segmentation (c) SLBM segmentation

Figure 1. Segmentation of the image used by Koepfler et al. in [3]. The optimal locall y best merge
(OLBM) algorithm segmentation is the same as the full h -schedule algorithm (FLSA) segmentation
and so is not illustrated. In both cases the stopping lambda h�i was chosen so that 200 region remain.

j�k:l]m n�k o p q q q p n�k r s
is the list of correspondingpair setin-

dicesfor theneighbours.Sortingthecompletelist t to find
thecheapestmergecostis cumbersomeandinsteada third
list u , calledthe merge cost list, is introduced.It consists
solelyof themergecoststogetherwith their index in t .

FLSA is then a processof finding the cheapestmerge
costin u , performingthemergeandupdatingall threelists.
This canbe doneefficiently as follows. First, u is sorted
usingred-blacktrees.Second,therearesimpleupdatefor-
mulae(including(5)) for all thequantitiesinvolved,see[3]
and[5]. Third, theregionandboundarycomponentswhich
areaffectedby the merge areeasilyfound usingthe com-
plex linking betweenthelistswherebytheentriesin t refer
to indexesof v andvisa-versa. Full detailsare given in
[5]. Herewe merelycommentthat if w k and w�x arebeing
mergedthenthe lists y k and y�x tell us which regionsare
neighboursandthe lists

j�k
and
j x tell uswherethecorre-

spondingboundarycomponentsare.Further, it is only these
regionsandboundarycomponentswhichareaffectedby the
mergeandneedupdating.

4. Optimal locally best merging (OLBM)

Despitetheuseof red-blacktrees,sortingthemergecost
list u is still the mostexpensive computationalelementof
FLSA. The list canbe very long (for a rectangularimage
it is initially approximatelytwice thenumberof imagepix-
els)andit needsresortingeachtime a mergeis performed.
Moreover, in general,aftereachmergemorethanoneentry
will beout of place.In this sectionwereporton a new idea

which reducesthesizeof u andtherebymakesthesorting
processmuchmoreefficient.

Our ideais that,sincea region mergeoperationonly af-
fectsthemergecostsin a local area,it makessenseto sort
the affectedmerge costsfirst and thenonly enterthe best
(cheapest)onesinto themergecostlist u . In orderfor this
ideato work though,somecareis neededin definingwhat
is meantby a locally bestmerge. We needto ensurethat
thesetof locally bestmergesis easilyupdatedandthat the
globallybestmergeis included.To do this,we first needto
bepreciseaboutwhatis meantby bestandgloballybest.

Given a setof potentialregion merges,the best merge
is the one with the smallestmerge cost and given a seg-
mentation,theglobally best merge is thebestamongstall
possiblemerges. We resolve the ambiguity in the caseof
tied mergecostsby choosingthebest merge to betheone
with the smallestindex in the region pair list t . We can
now give our maindefinition. We saya neighbouringpair
of regions z w k p w�x { is a locally best merge if it is thebest
mergein thesetof all mergeswhich involveeither w k or wOx
(or both). TheideabehindtheOLBM algorithmthen,is to
prunethe merge cost list u so that it only containslocally
bestmerges.It is clearfrom thedefinitionsthattheglobally
bestmerge is not removed by this pruning processand it
follows that the OLBM algorithmwill produceexactly the
samesegmentationsasFLSA.

As an indication of the savings the OLBM algorithm
leadsto, observe thatat any stagein thesegmentationpro-
cessthe number of locally best merges is at most half
the numberof regions (sinceeachlocally bestmerge ac-
countsfor two regions),whereasthe total numberof pos-
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Figure 2. A comparison of the computation times for the full | -schedule algorithm (FLSA), the optimal
locall y best merge (OLBM) algorithm and the sync hronous locall y best merge (SLBM) algorithm.

siblemergesis greaterthanthenumberof regionslessone
(sinceeachmergereducesthenumberof regionsby oneand
mergingcancontinueuntil only oneregionis left). Thusby
usinglocally bestmergesonly, weareguaranteedof at least
halvingthesizeof the } list.

It only remainsto show that the locally best merges
areeasily found andhencethe prunedmerge list is easily
updated. Returningto the definition, it is evident that if~ ��� � �O� �

is a locally bestmergethen
���

is thebestneigh-
bour for

���
to merge with andvisa-versa. It follows that

we canfind all thelocally bestmergesby first scanningthe
list of regionsandfor eachonedeterminingits bestmerging
neighbour. By reviewing the list andlooking for instances
wherethebestmergingneighbourof a regionsayslikewise
thattheoriginal region is its bestmerge,we canfind all the
locallybestmerges.Notethat,while thisprovidesthethink-
ing behindour implementation,we make the searchmuch
moreefficientby usingour linkeddatastructures� and � .

Our implementationof OLBM requiresanextravariable
in eachentryof theregionlist � andtwo flagsin eachentry
of theregionpair list � . Thustheentriesnow havetheform� ����~ � � � ��� � ��� � ��� �

bestp
� �

(8)��� ��~ � � � � � � � � � � � �
bflag

� � �
eflag
� � � �

(9)

The new item, bestp
�
, in (8) recordsthe index in � of the

pair
~ ��� � � � �

where
� �

is the bestmerge for
���

. Region� �
is found by using the list

���
to searchthe merge cost

informationin � for
���

’s bestmerge.
Thenew item, eflag

� �
, in (9) recordswhetheror not the

pair
~ ��� � ��� �

is a locally bestmerge andhenceis usedto
maintainthe prunedmerge cost list } . It is setwhenboth

���
and
�O�

saythe otheris its bestmerging neighbour. To
helpperformthischeck,weusetheothernew item,bflag

� �
,

in (9). This secondflag is setwhenat leastoneof
���

and�O�
saystheotheris its bestmerge.Notethatif bflag

� �
is set

but eflag
� �

is clearedthenonly oneof
���

and
�O�

is saying
the other is its bestmerge. In this case,we canonly tell
which onethatis by examiningbestp

�
andbestp

�
.

We now describehow theOLBM algorithmupdatesthe
new quantitiesafter eachmerge operation. Fortunately,
thesenew updatesare essentiallyindependentof the old
ones and we do not need to discussthe full details of
FLSA. In thefollowing, we assumetheregions

���
and
�O�

arebeingmergedto form
��� �

andthe FLSA updateshave
alreadybeendone.As with FLSA wemakegooduseof the
linking in ourdatastructuresto obtainspeedandefficiency.

OLBM Extension of the FLSA Algorithm

1. Use
��� �

to process
��� �

’s neighbours
� �

asfollows:

(a) Usebestpfor
� �

to find its old bestmerge,
���

.

(b) If
���������

or
�������O�

thentheFLSA updates
ensure

~ � � � ��� ���]~ ��� � � � � �
, so:

i. Clear bflag for the pair
~ ��� � � � � �

. (Since~ ��� � �O� �
waslocally besteflag is not set.)

ii. Completelyrecalculate
� �

’s bestmerge by
using

� �
to scanthemergecostsof itsneigh-

boursandlet
���

bethecheapest.
iii. Setbestpfor

� �
equalto the pair setindex

of thepair
~ � � � ��� �

.
iv. If bflag for thepair

~ � � � ��� �
is clearedthen

setit andseteflag otherwise.
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(c) If ���I�� ��� and ���I�� ��� thenseeif ��� � is a
bettermergefor ��� than ��� . If so,then:

i. Cleareflag for the pair   ��� ¡ ��� ¢ if it is set
andclearbflag otherwise.

ii. Setbestpfor ��� equalto the pair setindex
of   ��� � ¡ ��� ¢ .

iii. Setbflag for thepair   ��� � ¡ ��� ¢ .
2. Processtheregion ��� � asfollows:

(a) Use £�� � to finding its bestmerge, ��¤ .
(b) Setbestpfor ��� � equalto theindex of   ��� � ¡ ��¤ ¢ .
(c) If bflag for the pair   ��� � ¡ ��¤ ¢ is clearedthenset

it andseteflag otherwise.

This completesour descriptionof theOLBM algorithm.
Evidenceof thedecreasein computationtimeit affordsover
the FLSA algorithmis shown in Figure2. While suchre-
sultsvary dependingon thenatureof the imagebeingseg-
mentedwe have found that acrossa wide rangeof image
types,thecomputationtimesof OLBM areconsistentlyan
orderof magnitudelessthanthoseof FLSA.

5. Synchronous locally best merging (SLBM)

The merge cost(5) canbe thoughtof asmeasuringthe
significanceof the differencebetweenthe pair of regions  ��� ¡ �O� ¢ . The smaller that differenceis, the smaller the
merge cost and visa-versa. It follows that the regions in
a locally best merging pair are separatedby the locally
leastsignificantimagestructures. Consequently, we pro-
posethesynchronous locally best merging (SLBM) algo-
rithm wherebyall locally bestmergesareperformed“syn-
chronously”ratherthansequentially. By “synchronously”,
wemean“at thesametime”.

Sinceour SLBM algorithmis designedfor a serialcom-
puterwe don’t actuallyexecutethe mergessynchronously.
Instead,we obtainthe sameresultby maintaininga queue
containingall thelocally bestmergesandwework ourway
throughit sequentially. Obviously this can be done in a
batchfashion: the queueis filled with all the current lo-
cally bestmerges;it is processeduntil empty;andthenit is
re-filled with the new batchof locally bestmergesandso
on. Surprisinglythough,this canalsobedonein a continu-
ousfashionashappenswith OLBM. In fact,only two main
changesareneededto convertOLBM into theSLBM.

Thefirst changeis thatin placeof themergelist ¥ which
is sortedaccordingto mergecost,we usea queue¦ which
is sortedaccordingto “time of arrival”. As with OLBM, a
neighbouringpair of regionsis addedto ¦ if andassoon
asits eflag is set. The secondchangeinvolvesStep1c of
the OLBM algorithm. This step is the only place in the
OLBM algorithm where the currentmerge operationcan

clear an eflag and hencedestroy an existing locally best
merge.SLBM usesthefollowing alternative:

SLBM Adaption of the OLBM Algorithm

(c) If ���<�� ��� and ���<�� ��� thenseeif ��� � is a better
merge for ��� than ��� . If so andif alsoeflag for the
pair   ��� ¡ ��� ¢ is not setthen:

(a) Clearbflag for thepair   ��� ¡ ��� ¢ .
(b) Setbestpfor ��� equalto theindex of   ��� � ¡ ��� ¢ .
(c) Setbflag for thepair   ��� � ¡ ��� ¢ .

As with OLBM, theSLBM algorithmis rununtil all locally
bestmergecostsaregreaterthanthestoppinglambda,§�¨ .

To prove that the SLBM algorithm works, we needto
examine the changesto Step 1c more closely. Instead
of always executingSteps1(c)i, 1(c)ii and 1(c)iii of the
OLBM algorithm,SLBM only executesthemif   ��� ¡ ��� ¢
is not a locally bestmerge. This meansthat theSLBM al-
gorithm never destroys a previously existing locally best
merge which was our aim. However, it also meansthat
SLBM allows someof the variablesbestp, bflag andeflag
to becomecorrupted.Clearly, the immediatecorruptionis
repairedwhenthemerge   ��� ¡ ��� ¢ finally takesplacesince
thenthecorruptedcomponentseitherbecomeredundantor
arere-calculated.To completethe proof, we alsoneedto
checkthat thecorruptiondoesnot spreadin themeantime.
While this is not trivial, thedetailsarestraightforwardand
weomit themdueto a lackof space.

From the timing data in Figure 2, it can be seenthat
SLBM is faster than OLBM and from the segmentation
resultsin Figure 1 it can be seenthat SLBM hassimilar
accuracy. Objectively assessingaccuracy requiresthe use
of benchmarksegmentationproblemsandproperaccuracy
measuresWe hopeto do this in the future,but for the mo-
ment,ourempiricalresultssuggestthatSLBM is notalways
asaccurateasOLBM.

Onewayof limiting theerrorsSLBM makesis to stopit
earlyandfinishwith OLBM. Wehavehadgoodresultswith
this approach.Anotherway is to useKoepfleret al.’s trick
of introducinga © ª «�¬ ­ ª -schedule.We have not tried this
yet. However, SLBM producesgoodsegmentationswith-
outa © ª «D¬ ­ ª -scheduleandhenceis abetteralgorithmthan
Koepfleret al.’s. If a schedulewasto beusedwe expectit
wouldnot needto bevery long.

6. An advantage of SLBM

We claim that in generallocally best merges will be
“common” and“spreadevenly” acrossimages.This claim
canbe justifiedby consideringchains of best merges. By
this we meana sequence��® ¡ ��¯ ¡ ��° ¡ ± ± ± suchthat ��� ²�® is
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(a)Original image (b) OLBM segmentation (c) SLBM-OLBM segmentation

Figure 3. Segmentation of a difficult image. Since the diff erences between the regions lie onl y in the
noise variance , the Mumf ord-Shah functional is not suitab le and the MAP functional of [1] was used
instead. In (c), SLBM was onl y used in the initial stages and the process was completed with OLBM.

thebestmerging neighbourof ³�´ for all µ . It is not hardto
prove that eachchainendsat a locally bestmerge. More-
over, as a chain lengthensthe merge costsdecreaseand
so the chain is unlikely to crosssignificantimagebound-
aries.This justifies(if notproves)ourclaim. It followsthat,
SLBM will tend to spreadregion growth “evenly” across
images.We explainwhy this featureis desirablenext.

In recentwork, [1], it was shown that a Bayesianset-
ting can be usedto re-interpretthe Mumford-Shahfunc-
tional. This settingleadto a MAP functionalfor segmen-
tation which takesaccountof region variancesas well as
means.It wasfurthershown thattheFLSA algorithmcould
be usedto approximateits minimisers. The only change
requiredis to replacethemergecostformula(5) with¶ · ³�´ ¸ ³O¹ º�»Y¼ ³�´ ¹ ¼ ½ ¾ ¿:À�Á´ ¹OÂ ¼ ³�´ ¼ ½ ¾ ¿:À�Á´�Â ¼ ³O¹ ¼ ½ ¾ ¿:À�Á¹Ã:Ä · Å�· ³�´ ¸ ³�¹ º º
where À�Á´ is the variance over region ³�´ of the noiseÆ · Ç ¸ È�º�»�É · Ç ¸ È�º Â<Ê · Ç ¸ È�º . However, poor varianceesti-
matesfor smallregionsmeantthealgorithmdidnotperform
well. Similarproblemswerenotedin [2].

In [1], a hybrid updateformulaewassuggestedfor deal-
ing with this problem.We have sincefounda moreconve-
nientmethod.It involvessimply initialising thesinglepixel
regionvariancesatsomesmallpositivevalue.Thevariance
of eachmergedregion ³�´ ¹ is thenestimatedfrom thoseof³�´ and ³�¹ using the standardupdateformulae for com-
bined samples. Furtherhelp is provided by usingSLBM
to initialise the segmentationprocess,seeFigure(3). We
surmisethat theexplanationis SLBM’s tendency to spread
regiongrowth “evenly” acrossimages.

7. Conclusion

The OLBM algorithm affords an order of magnitude
speedincreaseoverFLSAwhileproducingexactlythesame
segmentations.TheSLBM algorithmoffersa furtherspeed
increasebut with somelossof accuracy. Unlessspeedis
critical, werecommendSLBM beusedonly to initialise the
segmentationprocess.On the up side,SLBM helpsover-
comeinitialisation problemsfor MAP functionals.On the
down side,it involveschoosinganadditionalparameterto
specifywhenSLBM shouldstopandOLBM continue.
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