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Abstract

In thispaper, a robusttechniquefor theimagesegmenta-
tion of wearparticle fromusedoil filtergramsis presented.
Thedifferent wear modesthat occur within an enginecan
be identifiedby the shape, colour and texture of particles
that are foundin the oil. To automatethe identificationof
theseparticlesit is necessaryto developimage processing
software that is robustenoughto extract theshapeandsur-
facefeaturesof each particle, accuratelyandindependently
of the quality and contentof the filtergram image. To do
this, a top-downapproach hasbeenchosen,which estab-
lishesthenature of anydistortionor attack upontheparti-
cle andthenattemptsto recover theoriginal image. Thisis
achievedwith a techniqueof over-segmentationandgraph-
basedreconstruction.

Keywords: segmentation,watershed,split andmerge, re-
gionadjacencygraphRAG).

1 Intr oduction

The microscopicinspectionof wear debrison a filter-
gramslide1 canprovide extensive and timely information
on the conditionof mechanicalcomponentslubricatedby
oil. In the past, this techniquehasbeenlimited because
theinspectionis performedby ahumanoperator, whichcan
be both expensive and time-consuming. Automationcan
changethis andtransformthe techniqueinto an analytical
tool, with applicationsover a wide rangeof equipment.In
analysingthe filtergram, the different wearmodescan be
identified by the shape,colour and texture of eachparti-
cle [3]. The segmentationof theseparticlesfrom a digital
imageis thefirst steptowardstheautomationof suchanal-
ysis. This processcanbe complicatedby the presenceof
contamination,sludgeandotherunidentifiabledebris.Fur-
thermore,whatis seenunderthemicroscopeis theresultof

1Usedoil is passedthroughaveryfinepaperfilter. Thisfilter is washed
with a solvent removing the oil but leaving small particleson the paper.
Thepaperis madetransparentwith aclarifying agent.

physical,thermalandchemicalattackwhilst theparticleis
in thelubricant,anddistortionsgeneratedby thevisionsys-
temusedto acquirethe image.To automatetheprocessof
identificationthesoftwareneedsto accountfor all of these
factors.To do this, it caneither:

develop differentclassificationrules for eachtype of
attack/distortion,or

establishthe natureof attack/distortionandtry to re-
cover theoriginal image.

Thefirst solutionis a “brute force” approachbecauseit re-
quiresa largenumberof differentrules.It will first require:
arule for aparticlethatis “fresh” (ie. hasnotbeenattacked
in thelubricantor distortedby defectsin thevisionsystem);
anotherrule for a particlethathasbeencrushed(eg. in the
bearing); and then, anotherrule for a particle that is out
of focus,andsoon. This solution,althoughsimple,hasthe
disadvantagethatit cannothandlesituationsfor whichit has
not beentrained.Thesecondsolutionis a moreintelligent
approach.Thesoftwarewill needto bemadeawareof the
differentmodesof attackanddistortion,andtheeffect that
thesemodescanhave uponthe particle. This solution,al-
thoughcomplex, hasmorepotentialbecauseit closelymim-
ics thehumandecisionmakingprocess.It canbeachieved
in thefollowing steps:

Acquisition, acquiredigital imageof particle;

Over-segmentation,split the imageup into a numberof
smallparts;

Reconstruction, mergepartsbasedupontheir features;

Analysis, performshapeandsurfaceanalysisontherebuilt
particleimage;

Classification, use knowledge gained in reconstruction
andanalysis.

Thefirst four stepsaredescribedin the Sections2 to 5 re-
spectively. Classificationis not within thescopeof this re-
port. Section6 describesthe resultsof the software, fol-
lowedby Section7 which lists anumberof conclusions.



Figure 1. Image of par tic le taken with trans-
mission (a) and reflected (b) light sour ce.

2 Acquisition

In practice,the quality of filtergramimagescanbe sig-
nificantly affectedby the lighting conditions.For a human
operator, both transmittedand reflectedlight are required
to correctly identify eachparticleon the filtergram: trans-
mittedlight is usedto identify transparentsludgeandvisual
aberrationson theslide;andreflectedlight is usedto exam-
ine thecolourandsurfacetextureof eachparticle. For the
humaneye,thetransmittedandreflectedlight canbedistin-
guishedby usinggreenandred light respectively (bichro-
maticmicroscope[5]). Whitereflectedlight is subsequently
usedto establishthe colour of the particle. Unfortunately,
whenthis techniqueis appliedto thecomputer, thesegmen-
tationof theimagehasprovedto beverydifficult. Problems
occurasaresultof changesin texture,shadow and/ora lack
of focusat the edgeof the particle. For the humanopera-
tor, theseeffectsdonotnormallypresentaproblembecause
thebrainis ableto interpolatetheshapeof theparticlefrom
a numberof visual clues. Ratherthan trying to interpret
theseclues,anothersolutionpresentsitself by recognizing
the fact that a computeris able to recordthe transmitted
andreflectedimageseparately(Figure1). In this situation,
the computercanusethe transmittedimage(Figure1a) to
generatea maskthatdefinestheouteredge(outline)of the
particle. This maskcanbe appliedto the reflectedimage
(Figure1b) to measuretheshape,colourandtextureof the
particle.Althoughthis techniquehastheadvantagethatthe
segmentationof thetransmittedimageis relatively straight
forward, in practiceit is not very robust— lessthan40%
of the test imageswerecorrectlysegmented.This failure
lead to the developmentof the following split andmerge
technique.

3 Over-segmentation

Over segmentationinvolves splitting the image into a
numberof smallercomponents(parts). This processcan
bebaseduponcolour, texture,shapeor sizeof any regionin
theimage.Currently, over-segmentationis achievedby seg-

Reflected 
Image

Threshold Particle Mask

Small Parts

Light PartsDark Parts

Masked 
Reflected Image

Threshold

Watershed

Labelled over-segmented Image

Transmitted 
Image

Large P arts

Figure 2. Flow diagram to over-segment (split)
image.

mentingtheparticlefrom thebackground,thensegmenting
thedarkpartsof theparticlefrom thelight, andfinally seg-
mentingthesmallpartsof theparticlefrom the large. This
processis shown in theflow diagramin Figure2.

3.1 Segmentationof transmitted image

The first stepis to segmentthe transmittedimage(Fig-
ure1a)ie. to isolatethewearparticlefrom thebackground.
To do this,a grey level thresholdneedsto beestablished.It
is inappropriateto useafixedthresholdbecausethelighting
conditionsandcontrastareaffectedby the differentlevels
of contaminationin the oil. A popularautomaticthresh-
old techniqueis to find the minimum betweentwo peaks
in thebrightnesshistogram.In a normalimage,two peaks
are expected;one peakfor the dark particle, and another
for the backgroundlight source.An appropriatethreshold
is the minimum betweenthesetwo peaks.In theory, find-
ing this minimum is simple, but in practice,it is compli-
catedby the presenceof noisein the image. Suchnoise
canintroduceextrapeaksandtroughsto thehistogram.Al-
thoughit is possibleto find theminimumby smoothingthe
histogram,it is difficult to decidehow muchsmoothingto
use. If thedatais very noisy, thena greatdealof smooth-
ing is required,but if oneof thepeaksis very small, it can
be smoothedaway altogether. The bestsolutionis to start
outwith asmallamountof smoothing,calculatethederiva-
tive of thehistogram(themin andmax)andthencountthe
zerocrossings.Smoothingis progressively increasedwhilst
therearemorethanthreezerocrossings,until thereareex-
actly threezerocrossings;two maximaandoneminima.2

2Sometimesthis criteriawill fail, eg. if therearethreedistinctpopula-
tions,or if thecontrastis very low andthetwo populationsmerge. In both
cases,an alternative thresholdingroutineis used;the Kmeanstechnique.
It assumesthat two populationsexist in thegrey level histogramandthen
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Figure 3. Automatic threshold (a) and la-
belling (b) of transmission image.

Figure 4. Backgr ound filling (a) and hole re-
moval (b).

The effect of automaticthresholdingupon the transmitted
imagecanbeseenin Figure3a.

Thenext stepis to isolateconnectedregions(ie. to label
eachparticle in the image). This is shown in Figure 3b,
whereeachparticlehasbeenassignedadifferentgrey level.
Sinceonly thelargestparticleis of interestin this analysis,
theareaof eachparticleis measuredandall but the largest
particleis removed.Thenext stepis to find if thereareany
holesin theparticle. Holesin this maskmayeitherbereal
or theresultof internalreflectionsin themicroscopeoptics.
To find theseholes,theprevious imageis invertedandthe
backgroundfilled to generateamaskthatrepresentsthearea
outsidetheparticle( Figure4a). If thismaskis thensubtract
from previous image,the resultingimagerepresentsholes
thatarewithin theparticle. Theseholescanbelabelledand
sorted.In this case,thereis only onehole. The shapeand
colour of this hole is calculated. If it appearsthat it not
physicallyreal (i.e. noiseor backscatteredlight) thenthe
holeis removedfrom themaskof theparticle. In this case,
thehole is real (ie. it consistsof light from thetransmitted
light source)andit is left in the particlemask(Figure4b).
Thisinformationisveryimportantfor classificationbecause
it infersthattheparticlehasbeencrushed.

finds the centreof the two populationsby iteratively moving the centres
andthencalculatingthedifferencesbetweenall of thepointsandthecen-
tre. The thresholdis themidpointof thetwo centres.This techniquewill
alwaysfind a midpointbetweentwo populations,even if two populations
donotexist.

Figure 5. Masked luminosity (a) and labelled
dark and light par ts (b).

Figure 6. Distance transf orm (a) and water -
shed (b).

3.2 Segmentationof reflectedimage

The next step is to segment the reflectedimage (Fig-
ure 1b) ie. to segmentthe dark partsfrom the light parts.
Sincethebackgroundimageis of nointerestin thisanalysis,
theluminosity imagecanbemaskedwith thebinaryimage
generatedin the previous section(Figure4b). The results
of this operationis shown in Figure5a. The histogramin
thebottomleft handcornerof this imagedemonstratesthat
the reflectedlight from the particlehasat leasttwo popu-
lations. Therefore,the imagecanbe segmentedusingthe
minimabetweenthetwo peaks,to isolatethe light partsof
theparticlefrom thedark. The light partsarefilled, sorted
andlabelled. If the imageis inverted,it is possibleto seg-
mentand label the dark parts. If the dark and light parts
areaddedtogether, a labelledimageof bothdarkandlight
partsis generated(Figure5b). Unlike the segmentationof
thetransmittedimage,segmentationof the reflectedimage
will only proceedif therearetwo clearly definedpeaksin
thebrightnesshistogram.

3.3 Watershedsegmentation

Thefinalstepis to performwatershedsegmentation(Fig-
ure5b)ie. to segmentthesmallpartsof theparticlefrom the
large.Thewatershedsegmentationis baseduponadistance
transformof thelight partsof theparticledeterminedin the
previous segmentation(Figure5b). In a distancetransfor-
mation, the value of eachpixel (grey scale)is calculated
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Figure 7. Labelled image of small and large
par ts (a) and all par ts tog ether (b).
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Figure 8. Connectivity of par ts (a) and region
adjacenc y graph (b).

from thedistanceto thenearestedge(Figure6a).To under-
standwatershedsegmentationit is useful to visualizethe
maximain thedistancetransformasvalleys on a plain. As
it “rains” eachvalley fills with adifferent“colour” of water.
Whendifferent “colours” of watermeet,along the water-
shedbetweeneachvalley, a line is drawn andthe imageis
segmented.To reducethecomplexity of theproblem,rather
thanseedingeachvalley with a differentcolour, a thresh-
old is established(baseduponthe distancehistogram)and
eachvalley is labelledas eitherdeep(large part) or shal-
low (smallpart).As it “rains”, smallvalleys aresegmented
from the large alongthe watershedline that dividesthem.
Theeffectof this techniquecanbeseenin Figure6b. Since
thelargeandsmallpartsarenow isolated,it is asimplemat-
ter to separate,sortandlabelthesmallandlargeparts.The
smallandlargepartsarerecombinedandrelabelledin Fig-
ure7a. Sincethewatershedroutinewasonly performedon
thelight partsof thereflectedsegmentation,it is possibleto
combine,thesmall,thelarge,andnow thedarkpartsof the
particleinto onelabelledimage(Figure7b).

4 Reconstruction

Now thattheimagehasbeensplit into anumberof parts
reconstructioncan proceed. Reconstructionof the parti-
cle is basedupon the featuresof eachpart. The decision
to include (or reject) a part canbe basedupon the shape,
colourand/ortextureof eachpart. It canalsoberelatedto
the spatialrelationshipbetweeneachpart, anda database

Figure 9. Absorb shado ws in labelled image
(a) and average luminosity of par ts (b).

Figure 10. Outline of final mask on reflected
image (a) and shape analysis (b).

of sensiblearrangements,ie. arrangementsthat arephys-
ically meaningful. This reconstructionis aidedby estab-
lishing the connectivity of eachpart to oneanother. Such
a relationshipis shown in Figure8a wherea line is drawn
from the centreof eachpart that sharesa commonborder
with its neighbour. Here eachpart of the segmentedim-
agecorrespondsto avertex, whilst edgescontainadjacency
informationbetweendifferentparts. This type of relation-
ship is commonlyreferredto asa region adjacency graph
(RAG). It hasbeenusedwidely in imageanalysis[2] and
hasconsiderableapplicationin themedicalfield [6]. More
recently, it is proving usefulfor videoencoding[4]. Work
relatedto this applicationcanbe found in [1] which uses
RAG to reconstructionimagesbasedupontexture,and[7]
which usesRAG to addressthe problemsassociatedwith
lighting and focus in microscopy to extract line networks
from noisylow-contrastimages.

OncetheRAG hasbeencreated(Figure8b) thefirst task
is to remove shadows along the edgeof the particle. A
shadow is definedas a part that lies betweena light part
andthebackground.It is typically thin with a high contact
length. Given theseconditions,if a part is identifiedasa
shadow, the part is absorbedinto its neighbour— without
modificationto theparentproperties.This is demonstrated
in Figure9awherea smallshadow alongthetop right hand
sideof the main part hasbeenabsorbed.The next taskis
move down the graph,startingat the largestpart, absorb-
ing partsthatappearto belongandremoving thosethatdo
not. If they belong,the part is absorbedinto its neighbour
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by addingits propertiesand inheriting its neighbours. If
not, thepart is removed. Whena part is removedfrom the
RAG, the graphis broken andthe remainingpartson that
particularbranchare ignored. This is called pruningand
is a desirablebehaviour whenthereis anagglomerationof
particles.Currently, theabsorptionandrejectioncriteriaare
basedupontheaveragecolourandluminosityof eachpart.
Theaverageluminosityof eachpart is shown in Figure9b.
Theeffectof pruningandabsorptionuponthegraphcanbe
seenin Figure10awherean outline of the “final mask” is
overlayeduponthereflectedimage.In this image,thedark
parton thetop left handcornerandright sidehavebeenre-
moved. Thesetwo partsareclearly an agglomerationand
thesoftwareis correctin removing them.

5 Analysis

Now that the particle hasbeenrebuilt it is possibleto
perform shapeanalysisupon the final mask(particle out-
line). This is shown in Figure10bwhere: thecrossrepre-
sentstheminimumandmaximummoment;the circlesde-
finesthe minimum andmaximumradii; the line down the
centredefinesthe skeleton;and the taut string aroundthe
particle is calculatedfrom Feretanalysis. The degreeof
confidencein theshapeof theparticlecanbeusedto weigh
the relative importanceof differentfeatures.For example,
if thesoftwareexperiencesdifficulty whenthresholdingthe
reflectedimage,thenit would not beappropriateto rely on
any featurederivedfrom theprofile of theparticleto make
a classification.A goodexampleof this is highlightedwith
the fractal dimensionof shape.This is oneof key identi-
fiers for classificationof differentwearmodes,however it
is verysensitiveto thespatialaccuracy of theprofile. Onthe
otherhand,thefibre length,which is alsoa key identifieris
relatively tolerantto errorsin the profile. Confidencein a
featurecanbe gainedby looking at the distribution of the
histogramat eachlevel of segmentation,or by examining
theindividualstatisticsof eachpart.During reconstruction,
partsare absorbedor rejectedbasedupon the probability
thatit is apartof the“targetparticle”. Evenif thepartis ab-
sorbed,theprobabilitycanbeusedasa level of confidence
thatthepartis “real”.

For texturalandcolourfeatures,it is notnecessaryto re-
cover theoutlineof thewholeparticle,but only a part that
is believed to be representative of the actualparticle. To
guaranteethat thepart is valid andcontainsusefultextural
andcolourinformation,it is importantthatthepartbein fo-
cusandadequatelylit. Confidencein theseconditionscan
be madeby making comparisonsbetweendifferentparts.
If surfaceanalysisis performeduponeachpart of the par-
ticle thenthe following comparisonscanbe made: firstly,
if thepartshave differenttextural scale,thenthepart with
the lower resolutionis probablyout of focus; secondly, if

one part is dark and the other light, then the dark part is
probablyin shadow; andfinally, if two partshave different
textural orientations,then it is likely that the particle has
eitherbeenfolded, or thereis an agglomerationof two or
moreparticles.

6 Results

Over90 pairsof transmissionandreflectedimageswere
acquiredwith a high resolutiondigital camera(Kontron
ProgRes3008)fittedto aNikonbichromaticmicroscope.In
morethat50%of cases,over-segmentationandreconstruc-
tion hadan effect uponthe final shapeof the particleout-
line, whencomparedto simpletransmissionsegmentation
(seeSection2). If segmentationis deemedto besuccessful
whenin agreementwith thehumanoperator3 then:

72%werecorrectlysegmented

20%wereincorrectlysegmented.

Of theremainingimages,fiveimagepairscouldnotbeiden-
tified nor segmentedby the humanoperatorandthreeim-
agepairs were influencedby hardware failure, ie. where
the failure hasoccurredduring the acquisitionof the im-
age. Oneof the failureswasdueto a misalignmentof the
transmittedandreflectedimage,whilst the othertwo were
causedbyaproblemwith thetransmittedlight sourceand/or
cameragain.

6.1 Examples

An exampleof successfulsegmentationis shown in Fig-
ure 11, where most of the oil-sludge has beenremoved
from theparticleexceptfor asmallring onthebottomright
handcorner.Anotherexampleof successfulsegmentationis
shown in Figure12, whereall of theagglomerationon the
left handsideof theparticlehasbeenremoved.

The segmentationsoftwarewasnot alwaysableto deal
correctlywith agglomeration.An exampleof this situation
is shown in Figure13a,wherethesoftwarehasincorrectly
assumedthat the hole in the centreof the particle is real,
and not just an agglomerationof different wear particles.
Unfortunately, shapeanalysisof this imagewould not be
ableto identify thecurlednatureof oneof theparticles(this
is an exampleof cutting wearwhich is very seriousmode
of failure).Anotherexampleis shown in Figure13b,where
the software incorrectly identifiesthe shadows on the left

3The software draws a line on the imagewhereit will segment the
particle. The segmentationis successfulif a humanoperatoragreeswith
thepositionof this line. Of coursetherewill becaseswheretheposition
will differ slightly to thepositionchosenby thehumanoperator, but if the
errordoesnotgreatlyinfluencetheshapeof theparticle(i.e. smallbumps)
thenthesoftwarewill still bedeemedto besuccessful.
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Figure 11. Segmentation of oil sludg e.

Figure 12. Segmentation of agglomeration.

andright handsidesof theparticleasadarkagglomeration.
Currently, the software identifiesa shadow as a thin part
that lies betweenthe particleandthe background.In this
case,the partsarerejectedbecausethey aretoo thick. To
prevent this from happeningthe software could relax the
“shadow thickness”rule, but this would have a sideeffect
of incorrectlyidentifyinganagglomerationasashadow in a
differentsituation.This is a typical dilemmafacedby rule-
basedsystemsandrequiresfurtherresearch.

7 Summary

In thispaper, wehavediscussedtheproblemsassociated
with the segmentationof wearparticleson usedoil filter-
grams.As discussedin Section2, simplebichromaticseg-
mentationwasunableto segmentmorethan40%of thetest
sample.Most of theproblemsweredueto thefactthat:

the particlesare often surroundedby contamination,
sludgeandotherunidentifiabledebris;

theparticlecanbedistortedby variousformsof attack
whilst in thelubricant;

theimageof theparticleis distortedby thevision sys-
temusedto acquiretheimage.

To overcometheseproblemsa robust segmentationalgo-
rithm has beendevelopedbasedupon over-segmentation
andgraph-basedreconstruction.This haslifted thesuccess
rateof segmentationto greaterthan70%.This successwill
enablework to proceedonthedifficult taskof classification,
whichwill bemadeeasier, by usingsomeof theknowledge
gainedin the reconstructionprocess. Another advantage
of this techniqueis that it provides information regarding

Figure 13. Examples of failure , agglomeration
(a) and shado ws (b).

the level of confidencethat the particlehasbeencorrectly
segmented.This is a valuablepieceof informationfor any
automatedsystemso that it canreject the 10% of images
whichnormallycannotbeidentifiedby thehumanoperator.
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