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Abstract

In many areas of computer vision the research produc-
ing new algorithms greatly exceeds work on their evalua-
tion. Evaluation of vision algorithms is often difficult be-
cause of the multiple objectives that an algorithm should
meet, for example accuracy and computational efficiency,
and because algorithms typically have several parameters
which must be specified by the user. In this paper we pro-
pose a framework for evaluation of algorithms with mul-
tiple objectives, which allows probabilistic analysis of the
behavior of a set of algorithms in a joint fitness/cost space.
We take the image segmentation problem as an example ap-
plication domain and use our approach to compare seven
state-of-the-art image segmentation algorithms.

1. Introduction

Many areas of computer vision demand algorithms
which have multiple objectives, for example producing an
output of satisfactory accuracy within a reasonable amount
of processing time. While new algorithms are published
in great numbers, little attention has been directed at their
evaluation. Evaluation of algorithms having multiple objec-
tives can be difficult because of uncertainty in what trade-
offs can satisfactorily be made between the objectives. The
difficulty is compounded if there are several algorithm pa-
rameters which must be specified by the user.

In this paper we propose a new framework which can
be used to evaluate algorithms probabilistically in a multi-
dimensional fitness/cost space without having to define ex-
act weights between the multiple objectives. The novel as-
pect of this framework is that we use a probabilistic ap-
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proach to allow examination of an algorithm’s stability in
addition to its average performance. This gives a signifi-
cant improvement over the evaluation by “monotonic hulls”
which we have proposed [3], and is more general than the
convex hull methods which have been proposed for analysis
of receiver operating characteristic (ROC) curves [8]. We
apply our approach to the evaluation of image segmentation
algorithms, since this is an area in which some attempts at
evaluation have been made, and show that our approach of-
fers more informative results in comparison with other pub-
lished methods.

2. Evaluating segmentation algorithms

Image segmentation is the first stage of processing in
many practical computer vision systems. Over the last few
decades many segmentation algorithms have been devel-
oped, with the number growing steadily every year. Typ-
ically the effectiveness of a new algorithm is demonstrated
only by the presentation of a few segmented images, allow-
ing only subjective and qualitative conclusions to be drawn
about that algorithm. We believe that if segmentation algo-
rithms are to be successfully applied in real vision systems,
quantitative assessment methods of algorithms need to be
defined.

Zhang [10] has proposed a classification of existing
quantitative evaluation methods:

“Analytical” methods attempt to characterize an algo-
rithm in terms of principles, requirements, complexity, etc.
without reference to a concrete implementation of the algo-
rithm, or test data. For example, one can define the time
complexity of an algorithm or its response to a theoretical
data model such as a step edge. While in domains such as
edge detection this may be useful, in general the lack of a
general theory of image segmentation limits these methods.

“Empirical goodness” methods evaluate algorithms by
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Figure 1. Example fitness/cost graph, monotonic hull, and cumulative probability distribution

computing a “goodness” metric on the segmented image,
for example grey-level uniformity of the output regions [6],
without a priori knowledge of the desired segmentation re-
sult. The advantage of this class of methods is that they
require only that the user defines a goodness metric, and
can be used for online evaluation. The great disadvantage
is that the goodness metrics are at best heuristics, since no
ground truth data is available, and may exhibit strong bias
towards a particular algorithm.

“Empirical discrepancy” methods calculate some mea-
sure of discrepancy between the segmented image output
by an algorithm and the correct segmentation desired for
the corresponding input image. The use of ground truth po-
tentially makes this class of methods the most general and
least biased. Proposed discrepancy measures include pixel
class confusion [9], distance to correctly segmented pixels
[9], or differences in feature values measured from regions
[11]. The principle drawback with these methods is that one
must manually define the ground truth segmentation, unless
working with synthetic image data.

2.1. Limitations

We believe that the main problem with previous ap-
proaches is their attempt to combine the multiple objectives
of an algorithm into a single metric, where in reality we
expect that we always have to make a trade-off between dif-
ferent properties of the algorithm. Methods which are based
solely on a quality metric do not allow such trade-offs to be
evaluated objectively.

Our approach, described in the next section, does not
fit easily into any one of Zhang’s categories [10] but can
be seen as a unification of all categories into a consistent
framework, defining a general methodology of comparison
incorporating multiple measures rather than advocating the
use of a single particular measure. Our approach is most
similar to the “empirical discrepancy” methods, but impor-
tantly has the distinction of not defining just a single dis-
crepancy metric and evaluating effectiveness in a discrep-
ancy/parameter space, but instead performing a probabilis-
tic evaluation in a multi-dimensional fitness/cost space.

3. Algorithm evaluation in fitness/cost space

Rather than attempt to define very specific measures of
an algorithm’s performance, we start with a very general
form of overall fitness
H(a~p, D) = Φ

(
f1(a~p, D) . . . fm(a~p, D), c1(a~p, D) . . . cn(a~p, D)

)
(1)

wherea~p is an algorithma instantiated by parameters~p and
D is a set of test data for which the desired output is known.
Functionsfi(a~p, D) are individual fitness functions from a
setF = {f1, . . . , fm} and are defined to increase mono-
tonically with thefitnessof some particular aspect of the al-
gorithm’s behavior. Functionsci(a~p, D) are individual cost
functions from a setC = {c1, . . . , cn} and are defined to
increase monotonically with thecostof some particular as-
pect of the algorithm’s behavior. Cost functionsci could
equivalently be defined as negative fitness functions, but we
make the distinction here for the sake of clarity.

Φ combines the individual fitness and cost functions into
an overall measure of fitness. We believe that in general it
is difficult to specify an exact form forΦ, since this requires
defining the exact trade-off to be made between fitness and
costs, and therefore assume it to be of unknown form. With
no loss of generality we assume thatΦ increases monoton-
ically with increasing values of all fitness functionsf ∈ F
and decreases monotonically with increasing values of all
cost functionsc ∈ C.

We can plot a projection ofΦ onto a single fitness func-
tion fi and cost functioncj for different parameters~p by
a zero-scaling of all other functions. Figure 1a shows an
example where a potential accuracy functionf is plotted
against the mean number of regionsc output per image for
an image segmentation algorithm (see Section 6.1), by sam-
pling the parameter space of the algorithm.

3.1. Monotonic hull

Many of the points on the graph of Figure 1a are intu-
itively undesirable since they have lower fitness and higher
cost than points corresponding to other choices of param-
eters. In the 2-D case these undesirable parameter settings
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are points which are to the bottom-right of another point.
Since we have defined our overall fitness functionΦ to be
monotonic, then for a particular algorithma with parame-
ters taken from the setPa it is readily shown that the only
worthwhile choices of parameters are in the set

{~p ∈ Pa|¬∃~q ∈ Pa : n(a~q , a~p)} (2)

where

n(a~q , a~p) =

{
true if

{ ∀f ∈ F : f(a~q , D) ≥ f(a~p, D)∧
∀c ∈ C : c(a~q , D) ≤ c(a~p, D)

}

false otherwise
(3)

andF = {f1 . . . fm}, C = {c1 . . . cm}. We call the set of
such points the “monotonic hull” [3]. Figure 1b shows these
points for the graph of Figure 1a, where we have drawn
connecting lines to indicate the partitioning of the space by
the hull.

The strength of this construction is that we can readily
show that forany choice of overall fitness functionΦ that
increases monotonically inF and decreases monotonically
in C, parameters which do not correspond to points on the
hull arealwaysbad choices, since there is another point on
the hull which increases the overall fitness.

We can extend Equation 2 to the case of multiple algo-
rithms, and define the monotonic hull over both algorithms
a and their parameters~p:

{a~p|a ∈ A ∧ ~p ∈ Pa ∧ ¬∃b ∈ A, ~q ∈ Pb : n(b~q , a~p)} (4)

This has the natural consequence that anyalgorithm that
does not fall on the monotonic hull is similarly a bad choice
for anymonotonic fitness functionΦ.

4. Probabilistic evaluation

In Section 3.1 we assumed that the test dataD is atomic
such that a particular instantiation of an algorithma~p results
in a single point in fitness/cost space. In many applications
however, there is a natural grouping of the test dataD into
subsets of datad ∈ D, for example ifD is a set of im-
ages anda~p is an instantiation of an image segmentation
algorithm, then it is desirable not only to look at theaver-
ageperformance of the algorithm over all images, but also
howstableits performance is over a set of images, or equiv-
alently how much the performance varies over individual
imagesd ∈ D. If only the average fitness/cost results are
used, then an algorithm which performs with great stabil-
ity (low variability) but slightly lower average performance
than one which has lower stability (greater variability) but
slightly higher average performance may be disregarded en-
tirely.

4.1. Probability distribution in fitness/cost space

In fitness/cost space we are not concerned with the prob-
ability that an algorithm yields a particular point in that

space, but rather with the probability that it gives costs no
higher than some set of thresholds, and fitnesses no lower
than another set of thresholds. If we assume that for a par-
ticular instantiation of an algorithm by its parametersa~p the
fitnesses and costs are mutually independent, then we obtain

P
(
∀c ∈ C : c(a~p, S) ≤ kc ∧ ∀f ∈ F : f(a~p, S) > kf

)
=∏

c∈C

P
(
c(a~p, S) ≤ kc

) ∏
f∈F

P
(
f(a~p, S) > kf

)
(5)

Note that while in general the independence assumption
may not hold, since it is only made locally around a single
instantiation of an algorithm by its parameters, we believe
it to be a satisfactory approximation.

Taking the maximum of Equation 5 over all parameters
~p ∈ Pa gives an expression for the overall behavior of an
algorithm a if we are allowed to set the parameters~p to
optimum values:

P
(
∀c ∈ C : c(a, S) ≤ kc ∧ ∀f ∈ F : f(a, S) > kf

)
=

max
~p∈Pa

P
(
∀c ∈ C : c(a~p, S) ≤ kc ∧ ∀f ∈ F : f(a~p, S) > kf

)

(6)

This expresses with what probability an algorithm can
achieve an output with at worst specified fitness/costs given
a suitable choice of parameters.

If we further extend Equation 6 to cover asetof algo-
rithmsA, we obtain:

P
(
∀c ∈ C : c(A, S) ≤ kc ∧ ∀f ∈ F : f(A, S) > kf

)
=

max
a∈A,~p∈Pa

P
(
∀c ∈ C : c(a~p, S) ≤ kc ∧ ∀f ∈ F : f(a~p, S) > kf

)

(7)

This expresses with what probability some algorithm in the
set A can achieve an output with at worst specified fit-
ness/costs.

4.2. Fitness/cost probability distributions

We consider two specific forms for modelling the indi-
vidual cost/fitness probability distributionsp(f = t|a~p). In
the case that the fitness/costf for an instantiation of an al-
gorithm a~p is not guaranteed to be constant across inputs
d ∈ D, we assume a Gaussian distribution:

p(f = t|a~p) = G(t, µ, σ2) =
1√

2πσ2
exp

{
− (t− µ)2

2σ2

}
(8)

where we estimate the meanµ and varianceσ2 from the test
dataD. The cumulative distribution for a fitness functionf
is then given by

P
(
f(a~p, D) > k

)
= 1−

∫ k

−∞
G

(
t, µ(f, a~p, D), σ2(f, a~p, D)

)
dt

(9)

and equivalently for a cost functionc:

P
(
c(a~p, D) <= k

)
=

∫ k

−∞
G

(
t, µ(c, a~p, D), σ2(c, a~p, D)

)
dt

(10)
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Figure 2. Probabilistic hulls fu × cr at P = 0.5, P = 0.9

Certain algorithms produce an output for which some fit-
ness/cost functions are constant for a particular choice of
parameters~p (for example, algorithm BLK in Section 6.2).
In this case, the probability distributionp(f = t|a~p) has the
form of the Dirac delta function

p(f = t|a~p) = δ
(
t− f̂(f, a~p, S)

)
(11)

where

δ(t) = 0 if t 6= 0;

∫ ∞

−∞
δ(t) dt = 1 (12)

andf̂ is the constant fitness/cost value for the instantiation
of the algorithma~p run on test dataD. The cumulative dis-
tribution for a fitness functionf is then given by the Heavi-
side step function:

P
(
f(a~p, S) > k

)
= 1−H

(
k − f̂(f, a~p, S)

)
(13)

where we define

H(t) =

{
0 : t < 0
1 : t ≥ 0

(14)

and equivalently for a cost functionc:

P
(
c(a~p, S) ≤ k

)
= H

(
k − ĉ(c, a~p, S)

)
(15)

5. Uses of probability distribution

5.1. Coverage of fitness/cost space

Evaluation of the probability distribution for a single al-
gorithm (Equation 6) gives us the probability with which
that algorithm can produce an output with at worst speci-
fied fitness/costs. Figure 1c shows an example in a 2-D fit-
ness/cost space (Section 6.1), with contours at the indicated
probability levels. In this case we see that the fitness has
high variance for low cost, decreasing as the cost increases.
The desirable points of low cost and high fitness (top left of
graph) are covered only with low probability (P < 0.25)

If we use the distribution over a set of algorithms (Equa-
tion 7), we can see with what probability any part of the
fitness/cost space is covered by an algorithm from the set.

5.2. Selection of algorithm and parameters

If we fix a set of minimum fitness thresholds{kf} and
maximum cost thresholds{kc} then the algorithm and pa-
rameter choicêa~p ∈ {A,Pa} which maximizes the proba-
bility of achieving these objectives can be chosen by Equa-
tion 5:

â~p = arg maxa∈A,p∈Pa

P
(
∀c ∈ C : c(a~p, S) ≤ kc ∧ ∀f ∈ F : f(a~p, S) > kf

) (16)

By determiningâ~p for any point in the fitness/cost space
we can determine which algorithm performs with most sta-
bility in an area of the space. An example can be seen in
Figure 4 (Section 6.3).

5.3. Probabilistic hull

By placing a thresholdtP on the probability distribution
across a single algorithm (Equation 6), or set of algorithms
(Equation 7), and evaluating the monotonic hull of those
points in fitness/cost space at which the probability is above
threshold, we obtain a hull labelled by the algorithms hav-
ing above threshold probability at that point. We call this a
“probabilistic hull”.

The probabilistic hull has an equivalent interpretation to
that of the monotonic hull (Section 3.1). Any instantiation
of an algorithma~p which does not contribute to the hull is
alwaysa bad choice under any monotonic fitness functionΦ
(Equation 1), since another algorithma~q yields a better out-
put with at least the specified probabilitytP . An example is
shown in Figure 2 (Section 6.3).

6. Experiments

6.1. Fitness and cost functions

In our experiments we examine image segmentation al-
gorithms, and define the objective of the algorithms to be
to form regions such that if the optimal object label is as-
signed to all pixels of a region, as much as possible of the
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Figure 3. Probabilistic hulls fn × cr at P = 0.5, P = 0.9

object set is correctly labelled. The object label is a unique
identifier of each object present in the images. The test data
is a set of color images of outdoor urban scenes, and their
manual segmentation into objects according to a set of eight
classes including road, pavement, vehicle, etc. Our fitness
function expressingpotentialaccuracy for a single image is
the following:

f(a~p, i) =

∑
o∈Oi

|{x∈o|ôx=o}
|o| |w(o)

∑
o∈Oi

w(o)
(17)

whereOi is the set of objects in imagei, an objecto ∈ Oi is
a set of pixels, and̂ox is the optimal object label of a pixel
x which maximizes the overall measure. The contribution
of each object to the measure is weighted by a functionw
for which we have tried several forms. Settingw(o) = |o|
gives the proportion of image pixels that could be correctly
labelled. This is the same as has been used in other meth-
ods [9], but may introduce bias in that objects or classes of
object having many pixels contribute more to the measure
than those with fewer pixels. We can remove this bias by
definingw thus:

w(o) =

{
1

P (λo)|o| if |o| ≥ k

0 if |o| < k
(18)

whereλo is the class label of an object andP (λ) the prior
probability of an object being drawn from classλ. The
constantk causes objects with smaller pixel area thank
to be discarded, which prevents very small objects bias-
ing the metric. We must definek manually, but it can re-
main constant across different images and segmentation al-
gorithms. In this form we measure theproportion of each
object which can potentially be correctly labelled. We term
un-normalized fitnessfu, and normalized by Equation 18
fn.

For the sake of brevity we report results on two sim-
ple cost functions here:cr =number of regions, and
ct =segmentation time. The number of regions charac-
terizes over-segmentation and the required post-processing

time for a classification system, assuming constant time per
output region.

6.2. Segmentation algorithms

We ran experiments with seven segmentation algorithms:
three state-of-the-art algorithms for which implementations
are publicly available, and four simple or fast algorithms.
BLK simply divides an image statically into square blocks
of constant size. It has zero run-time since the segmentation
is independent of the input image, and is a useful baseline.
KMG, KMC, and GMT cluster low-level features, form
connected regions, and merge regions to a minimum region
size. KMG uses grey-level features alone and the K-means
clustering algorithm [1]. KMC uses color features and K-
means. GMT uses color and texture features from a bank
of Gabor filters [5], and a Gaussian mixture model [1] for
clustering. FH [4] uses dynamic programming to form re-
gions which are guaranteed to be neither too coarse nor fine
with respect to a color edge strength measure, then merges
regions to a minimum region size. JS [2] uses color quanti-
zation followed by a multi-scale region growing step which
aims to segment both uniform and textured regions. EF [7]
uses predictive coding to estimate the direction of change in
color and Gabor texture features, and forms boundaries by
propagating the flow field.

6.3. Results

Figure 2 shows the probabilistic hulls for all algorithms
in the fu × cr space at minimum probabilitiesP = 0.5
(Figure 2a) andP = 0.9 (Figure 2b). We have limited the
y-axis to minimum 50% potential accuracy and the number
of regions to maximum 10,000 for the sake of clarity, since
we argue that a segmentation result outside these ranges is
unlikely to be useful. Algorithms which do not contribute
to the hull are shown grayed in the key.

We can see that to potentially label 80% of the image
correctly with probability greater than 0.5, we need to seg-
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Figure 4. Algorithm stability in fitness/cost space

ment into around 20 regions, and to reach 90% around 100
regions are needed. Figure 2b clearly shows the value of
using the probabilistic analysis: If we require results with
probability greater then 0.9, then to potentially label 80%
of the image correctly we need to segment into around 60
regions, and to reach 90% around 400 regions are needed, a
factor of four greater than in the mean case.

FH dominates the hull, contributing points across the
whole range of cost. Algorithms KMC, EF and JS con-
tribute small sections to the hull, out-performing FH for
lower numbers of regions. Each appears to have a defined
window in terms of the number of regions over which it per-
forms well, while for higher numbers of regions FH gives
consistently higher potential accuracy. In the case of the
P = 0.9 hull, we see that BLK forms part of the hull for
very small numbers of regions. This is unsurprising since
this algorithm guarantees the number of regions output, but
the accuracy at this level is low (< 55%). Two algorithms
are absent from the hull: KMG and GMT, which use grey-
level and color/texture respectively. We found KMG had
a tendency to over-segment, perhaps because of the lack
of color information, and GMT had high variance in fit-
ness/cost space, yielding uncertain results.

Figure 3 shows the equivalent hulls atP = 0.5 (Fig-
ure 3a) andP = 0.9 (Figure 3b) for the normalized po-
tential accuracy metric. Of note is that the number of re-
gions required to achieve a given level of potential accuracy
is higher than in the un-normalized metric, by a factor of
2–3. Only three algorithms contribute significantly to the
hulls (JS and EF are on the hull in a tiny area): FH, KMC,
and BLK. At P = 0.5 FH dominates for higher accuracy,
and KMC for lower number of regions, while atP = 0.9
FH again dominates the hull since its output is more sta-
ble than that of KMC. Interestingly the BLK algorithm also
appears on the hulls across a wide range of accuracy, par-
ticular atP = 0.9. Despite its naive method, BLK does
have an advantage of providing a guaranteed number of re-
gions. It may also perform better according to the normal-

ized metric since it cannot have any bias towards forming
larger regions, bias which the other algorithms can be seen
to exhibit.

Figure 4 shows which algorithms perform with most sta-
bility at points in the fitness/cost space, according to Equa-
tion 16. Parts of the space for which no algorithm produces
an output withP > 0.5 are left blank. In the case of the un-
normalizedfu accuracy metric (Figure 4a), FH produces
the most stable results over most of the space, with KMC
and JS more stable for a narrow band in the lower num-
bers of regions, and EF more stable in a small area of the
space. The difference in probability level between FH and
the other algorithms in this area also proved small, suggest-
ing that FH is a good choice regardless of the fitness/cost
trade-off made here. In the case of the normalized accu-
racy metric, the picture is less clear, with FH, KMC and
BLK performing with most stability in bands according to
the number of regions. Differences between the probability
levels of the algorithms were again small, but the plot sug-
gests no algorithm is performing consistently with respect
to this metric.

We conclude with an evaluation of the algorithms in the
3-D fu × cr × ct space. This allows evaluation of the algo-
rithms’ potential accuracy, output complexity, and process-
ing time. Figure 5 shows a view of the probabilistic hull for
P = 0.5. Results for the normalized accuracy metricfn

and higher probability threshold show the same pattern, and
are omitted here for the sake of brevity.

In this case, where processing time becomes a factor in
an algorithm’s evaluation, we can see that this factor is a
central difference between algorithms. FH gives highest po-
tential accuracy for low numbers of regions, but has high
processing time. KMC offers comparable performance, but
is an order of magnitude faster, and KMG is another or-
der of magnitude faster than KMC for a slight reduction in
potential accuracy. BLK, which has zero processing time
since the segmentation does not vary with the input image,
dominates the hull if very low processing time is required,
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and can surprisingly offer comparable accuracy to the other
algorithms for moderate numbers of regions.

7. Conclusions

We have proposed methods for evaluating algorithms
having multiple objectives by probabilistic analysis in a
multi-dimensional fitness/cost space. The key advantage
over previous methods [3, 8] is that we can evaluate the
stability of algorithms in addition to their average perfor-
mance. This is crucial for real world applications in which
we need to be more sure about the performance we can ex-
pect from an algorithm than we can ascertain by an average-
case analysis.

We applied our approach to the evaluation of image seg-
mentation algorithms, and showed that more informative re-
sults could be obtained using the new approach in compar-
ison with analysis using the monotonic hull [3]. In these
experiments we found that one algorithm, FH [4], outper-
formed the other algorithms tested overall, producing more
accurate and stable output than the other algorithms. This
is an appealing result because of the algorithm’s strong the-
oretical basis [4]. In addition, we showed that in certain
areas of the fitness/cost space, several simpler algorithms
with lower computational cost produce more stable results
than FH. Results of this kind, obtained by the use of proba-
bilistic analysis, allow more informed choices of algorithm
and parameters to be made for a particular application.

Further work in the domain of image segmentation eval-
uation certainly remains to be done on refining the fit-
ness/cost metrics used. We believe that, in conjunction with
such work, the probabilistic hull methods we have described
offer useful, more informative, and more general tools for

algorithm evaluation than previously proposed. We intend
to further investigate this domain, and the application of the
approach to other multiple-objective vision problems.

References

[1] C. M. Bishop. Neural Networks for Pattern Recognition.
Clarendon Press, 1995.

[2] Y. Deng, B. S. Manjunath, and H. Shin. Color image seg-
mentation. InProc. CVPR’99, pp. 446–451, 1999.

[3] M. R. Everingham, H. Muller, and B. T. Thomas. Evalu-
ating image segmentation algorithms using monotonic hulls
in fitness/cost space. InProc. BMVC’2001, pp. 363–372,
2001.

[4] P. Felzenszwalb and D. Huttenlocher. Image segmentation
using local variation. InProc. CVPR’98, pp. 98–104, 1998.

[5] A. K. Jain and F. Farrokhnia. Unsupervised texture
segmentation using Gabor filters.Pattern Recognition,
24(12):1167–1186, 1991.

[6] M. D. Levine and A. Nazif. Dynamic measurement of com-
puter generated image segmentations.IEEE Trans. PAMI,
7:155–164, 1985.

[7] W. Y. Ma and B. S. Manjunath. EdgeFlow: A technique
for boundary detection and segmentation.IEEE Trans. IP,
9(8):1375–1388, 2000.

[8] F. Provost and T. Fawcett. Analysis and visualization of clas-
sifier performance: Comparison under imprecise class and
cost distributions. InProc. KDD’97, 1997.

[9] W. A. Yasnoff, J. K. Mui, and J. W. Bacus. Error measures
for scene segmentation.Pattern Recognition, 9(4):217–231,
1977.

[10] Y. J. Zhang. A survey on evaluation mehods for image seg-
mentation.Pattern Recognition, 29(8):1335–1346, 1996.

[11] Y. J. Zhang and J. J. Gerbrands. Objective and quantitative
segmentation evaluation and comparison.Signal Process-
ing, 39(1–2):43–54, 1994.

7


