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Abstract

This paper presents a method for noisy object detec-
tion which is based on the expansion/compression paradigm
and combines a multiresolution approach with the principal
component analysis (PCA). The multiresolution representa-
tion is done by successive Gaussian filterings. The compres-
sion of the expanded information is achieved by only keep-
ing the first PCA factorial image. Endly, the object of in-
terest is detected and delineated from the previous factorial
image by using a standard valley thresholding technique.
The proposed method behaves as a compromise between
the various Gaussian filterings by limiting the blurring ef-
fect of such filterings and removing most of the noise. The
experimental evaluation using synthetic objects has shown
the ability of this approach to clean strongly noisy images.
For scenes containing several objects of interest, like CT-
Scan images, we first search for regions of interest (ROIs).
Then, for each ROI, we locally apply the proposed detection
method. Experimental results have shown the potential of
the proposed method for the detection of liver tumours from
CT-Scan images and for the segmentation of handwritten
characters.

1. Introduction

The detection of noisy objects is a classical problem en-
countered in most vision systems. To solve this problem,
many approaches and techniques have been developped. A
classical approach is the region based approach. The goal of
methods based on such an approach is to smooth the differ-
ent regions without removing the boundaries between them.
Image smoothing can be performed using either isotropic
diffusion or anisotropic diffusion. The current limitation of
isotropic diffusion is the blurring effect of edges and the un-

correct noise removal when no knowledge about the noise is
available [6]. To avoid these limitations, Perona and Malik
[8] have proposed the anisotropic diffusion which consists
in smoothing the regions without blurring their edges. But
the quality of this smoothing strongly depends on the num-
ber of iterations, which may lead to a really time consuming
processing [5]. Moreover, this approach requires a super-
vised definition of several parameters. To overcome these
drawbacks, we propose an unsupervised method based on
the expansion/compression paradigm [7] which combines a
multiresolution approach [1] and the principal component
analysis (PCA) [9]. The multiresolution representation is
achieved by successive Gaussian filterings. The compres-
sion of the expanded information is carried out using PCA.
Then, the denoised image is the so called first factorial im-
age obtained by keeping the highest eigenvalue only. This
unsupervised method aims to find the best compromise be-
tween a too strong blurring and a too weak noise removal.

In the following section, we describe the detection
method. In the third section, we study the behaviour of the
proposed method with respect to the degree of noise and the
object size. In the fourth section, we illustrate the potential
of the proposed method for liver tumour detection and seg-
mentation of handwritten characters. Finally, we conclude
on this unsupervised detection method.

2. Method

The proposed detection method is based on the expan-
sion/compression paradigm (E/C)[7]. This is a general ap-
proach for extracting features for pattern recognition appli-
cations. Essentially, this E/C paradigm first expands the in-
put signal in some transform domain and then compresses
the resulting expansion for presenting to a classifier. In our
case, the transformation is the Gaussian transform and con-
sists in applying a succession of Gaussian filterings of in-
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creasing width to the original noisy imagef(x, y). Each
Gaussian filtering, characterized by the width of the Gaus-
sian filterσi, leads to a transformed imagefi(x, y):

fi(x, y) =
∫ ∫

f(a, b)exp[−(
(a− x)2 + (b− y)2

2σ2
i

] dadb.

(1)
Such Gaussian filterings lead to the multiresolution rep-

resentation [1, 2] of the original noisy imagef(x, y). As
usually considered in multiresolution analysis, we oper-
ate an octave decomposition by choosingσi = 2i, with
i = [0, 1, ..., n]. Then, the compression enables to re-
duce the redundancy of the representation and consists in
the principal component analysis (PCA). To perform such
a compression, we consider each Gaussian filtered image
fi(x, y) as a column vector−→xi whose lengthk is equal to
the number of pixels of the analyzed image. Then, the PCA
is applied to the matrixX whose columns are then image
vectors−→xi :

X = [−→x1, ...,−→xn]. (2)

The PCA decomposes the information contained in im-
age data by creating a series of so-called factorial images
F1, F2, ... of decreasing variance. To begin this transfor-
mation, image vectors−→xi are centered by substraction of
their meanµi, and normalized by their standard deviation
si. This leads to the data matrixA:

A = [−→t1 , ...,
−→
tn ]. (3)

Then, the correlation matrix,C, is computed:

C =
1
k

AT A, (4)

where the superscriptT represents the matrix transpose op-
erator.

The PCA states that there is an orthogonal matrixV =
[−→v1 , ...,−→vn] and a diagonal matrixD such thatAT A =
V DV T . The columns ofV are the eigenvectors ofAT A
and form an orthonormal basis. The diagonal entries ofD
are the eigenvaluesλi of AT A and are sorted by decreasing
order so thatλj ≥ λj+1 for j = 1, ..., n.

The firstp factorial imagesFi, with i = 1, 2, ..., p, which
correspond to eigenvaluesλi, are computed by projection
of centered and normalized image data on the eigenvectors
−→v1 , ...,−→vp:

−→
Fi = A×−→vi . (5)

−→
Fi denotes the factorial image vector related to the fac-

torial imageFi. These linear projections lead top uncorre-
lated factorial images. The choice of the numberp of fac-
torial images will based on a visual perception criteria as
explained hereafter.

Figure 1: Application of the proposed method for the de-
tection of a noisy disc of diameter of 128 pixels.First
line: Initial noisy model and the corresponding set of six
Gaussian filterings.Second line: The set of factorial im-
ages, sorted by decreasing order of their eigenvalues and
the thresholded first factorial image (binary disc on the left
side). We see that the first factorial image contains most of
the significant information.

The figure 1 gives the example of a noisy disc detected
by the proposed method. The first line represents the initial
noisy disc and the set of six Gaussian filterings used for the
expansion. The second line represents the set of factorial
images, sorted by decreasing order of their eigenvalues, and
the thresholded first factorial image (left side). The visual
observation of the first factorial image clearly shows that
most of the noise has been removed without blurring the
object boundary. Furthermore, this factorial image explains
about90% of the total variance of the set of centered and
normalized Gaussian filtered images. The following facto-
rial images (F2, F3, ...) are more noisy and do not contain
useful additional information from the point of view of vi-
sual perception. Consequently, it is enough to only consider
the first factorial imageF1.

Finally the object is detected and delineated using the
standard valley thresholding technique which is applied to
the first factorial imageF1. This thresholding is illustrated
by the binary object on the left side of the second line of
the figure 1. This shows that the noisy disc has been cor-
rectly delineated. This furthermore justifies the choice of
only keeping the first factorial image.

The first factorial image is a linear combination of the
six Gaussian filterings which can be interpreted as a com-
promise between a too weak smoothing which would not
remove enough noise and a too strong filtering which would
blur the object boundaries.

3. Evaluation of the object detection method

We propose to study the behaviour of the proposed
method with respect to the type and degree of noise cor-
rupting the images and to the object size. For this analy-
sis, we consider a given set of Gaussian filters defined by
σi = [1, 2, 4, 8, 16, 32].
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Figure 2: First line: set of discs of diame-
ter 32 pixels corrupted by increasing additive
gaussian noises characterized by the resulting
SNRs = [0.00, 7.04, 12.04, 15.91, 19.08, 27.95], in dB.
Second line: the resulting set of factorial images.Third
line: the set of thresholded factorial images.

3.1. Influence of Gaussian additive noise

We assume that the signalf(x, y) we want to denoise is
an ideal signal corrupted by an additive noise. We propose
to represent the noise as a normally distributed (Gaussian),
zero-mean random process with a probability density func-
tion fx(x) [3]:

fx(x) =
1√
2πσ

e−
x2

2σ2 (6)

whereσ is the noise standard deviation. The effect of an ad-
ditive noise process,n, on the imagef(x, y) can be defined
as the summation of the true signals(x, y) with the noise:

f(x, y) = s(x, y) + n(x, y). (7)

For this study, we considered that the ideal signal is a disc
a diameter32 pixels corrupted by various additive Gaus-
sian noises leading to signal to noise ratios (SNRs) of
[0, 7.04, 12.01, 15.91, 19.08, 27.9] in dB. The first line of
figure 2 shows the set of noisy discs corresponding to the
various SNRs. The second line (resp. third line) shows
the resulting factorial images (resp. the resulting delineated
discs). We see that the initially noisy discs are correctly
delineated.

The factorial image is a linear combination of the six
Gaussian filterings whose weights are the coordinates of the
first eigenvector. More precisely, in our case: the first coor-
dinate gives the weight of the first Gaussian filtering defined
by a width of1 pixel, the second coordinate gives the weight
of the second Gaussian filtering defined by a width of2 pix-
els, and so on, up to the strongest Gaussian filtering defined
by a width of32 pixels. The figure 3 shows that Gaussian
filtering weights depend on SNRs. In particular, when the
noise increases, the influence of the weak Gaussian filter-
ings decreases. This shows that the PCA compression takes
automatically into account the degree of noise corrupting
the image without any a priori knowledge about it.

Figure 3: Values of the six coordinates of the first PCA
eigenvector for different SNRs, in the case of a disc of diam-
eter32 pixels. This shows the evolution, with respect to the
SNR, of these coordinates which are the weights involved in
the linear combination of the six Gaussian filterings leading
to the factorial image.

3.2. Influence of Gaussian multiplicative noise

Figure 4: Three discs of diameter32 pixels, corrupted
by multiplicative Gaussian noises, characterized byσ =
[0.025, 0.05, 0.1]. The relative contrast of the model is of
0.05. First line: the three noisy discs.Second line: the
corresponding three factorial images.Third line: the re-
sulting thresholded factorial images.

Many acquisition systems lead to data corrupted by a
multiplicative noise. For this reason, we propose to eval-
uate the ability of the proposed method to remove such
kind of noise. The multiplicative noise can be defined by
a unitary-mean normal random process with a probability
density function of [3]:

fx(x) =
1√
2πσ

e−
(x−1)2

2σ2 (8)

whereσ is the standard deviation of the noise process. The
effect of such a multiplicative noise process,m, on the im-
agef(x, y) can be defined as being the multiplication of the
true signals(x, y) with the noise:

f(x, y) = m(x, y).s(x, y). (9)
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Figure 5: Case of a disc of diameter of32 pixels cor-
rupted by various multiplicative gaussian noises: coordi-
nates of the first PCA eigenvector corresponding to the
weights defining the linear combination of the six Gaus-
sian filterings. The behaviour of these weights is similar to
the behaviour observed in the case of an additive Gaussian
noise.

For the tests, image grey levels are supposed to vary be-
tween0 and 1. We considered an ideal disc of diameter
32 pixels, with a relative contrast of0.05. More precisely,
the grey level of the disc (resp. background) is0.525 (resp.
0.475). This ideal disc is then corrupted by three different
multiplicative Gaussian noises characterized by the follow-
ing relative standard deviations:σ = [0.025, 0.05, 0.1]. The
figure 4 shows the three noisy discs (first line), the corre-
sponding factorial images (second line) and their resulting
thresholdings (third line). We see that, in each case, the ob-
ject of interest has been correctly detected and delineated,
as shown by visual comparison with the initially noisy ver-
sion. The figure 5 gives the distribution of the coordinates
of the first eigenvector. The evolution of these weights is
similar to the evolution observed in the case of an additive
Gaussian noise. For this reason, in the following tests, we
will only consider objects corrupted by an additive gaussian
noise.

Figure 6: Set of disc of varying sizes, initially corrupted
by an additive Gaussian noise corresponding to a SNR of0
dB. First line: the set of initially noisy discs.Second line:
the set of factorial images.Third line: the set of resulting
thresholdings. The discs are correctly detected.

3.3. Influence of object size

We applied the proposed method to noisy discs of vary-
ing diametersd being, in pixels:d = [10, 16, 32, 64, 128].
Each disc was initially corrupted by a Gaussian additive
noise corresponding to a SNR of0 dB. The figure 6 shows
the different initially noisy discs (first line), the factorial
images (second line) and the resulting thresholdings (third
line) obtained for the different sizes. We see that, in each
case, the noisy disc has been correctly detected.

Figure 7: Coordinates of the first PCA eigenvector for dif-
ferent object sizes. The SNR is fixed to0 dB.

The figure 7 gives the distribution of the weights char-
acterizing the PCA compression with respect to the various
object sizes. It can be observed that this weight distribu-
tion depends on the object size: when the size of the disc
decreases, the weights corresponding to both weakest and
strongest filtering decreases. This shows that the PCA anal-
ysis selects automatically the weights so that small objects
do not disappear because of a too strong smoothing.

Figure 8: Example of tumour in the liver.Left side: exam-
ple of slice of abdomen.Right side: Segmented Liver. The
highlighted and thresholded area contains a tumour. This
tumour appears as a dark and compact object which is diffi-
cult to automatically detect and correctly delineate.
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4. Illustration of the potential of the proposed
method

The potential of the proposed method is illustrated by
processing some images encountered in two different appli-
cations: the detection of liver tumours from CT-Scan im-
ages and the segmentation of handwritten characters.

4.1. Liver tumour detection from CT-Scan images

The main purpose of the computer aided diagnostic of
the liver is to segment automatically the liver and the dif-
ferent structures such as vessels and tumours from a set
of about hundred slices acquired by a CT-Scanner [10].
Each slice is an image of 512x512 pixels. The pixel size
is 0.65× 0.65mm2.

Figure 9: Illustration of the different steps:A: a liver slice.
B: its thresholded version showing the existence of gran-
ular noise. C: incrustation of the factorial images of the
two ROIs within the original image.D: The four delineated
objects: the tumour to be detected (bottom, left) and three
false alarms corresponding to normal anatomical structures
(top, right-center).

Our detection method will be applied to the segmenta-
tion and delineation of liver tumours, appearing darker than
the parenchyma as shown on the figure 8-Left. The figure
8-Right corresponds to the segmented liver within which a
region of interest containing the tumour has been thresh-
olded. The granular aspect of this thresholded image shows

the difficulty of the tumour delineation. This justifies the
need of a smoothing process. Tumours are of varying sizes
and of varying contrasts [10]. We first search for regions of
interest (ROIs) containing tumours of various sizes. For this
purpose, we initially threshold the original image, perform
a morphological alternate sequential filtering to remove the
granular noise, and then close the binary filtered image us-
ing a larger structuring element. The ROIs are obtained
by searching for the connected components of the closed
thresholded image. Finally, for each ROI, we locally apply
our detection method. Additional details are given in our
previously published work dealing with the opto-electronic
implementation of the proposed method for tumour detec-
tion [4]. The figure 9 illustrates the different steps leading

Figure 10: Illustration of the details of the processing for de-
tecting a liver tumour using four Gaussian filterings defined
by σ = [2, 4, 8, 16]: A: the initial tumour.B: thresholded
initial tumourC, D, E, F: the four Gaussian filterings of the
initial tumour in increasing order of the width of the related
Gaussian filters.G, H, I, J: the four factorial images, sorted
by decreasing order of their eigenvalues. G is the first facto-
rial image which corresponds to the highest eigenvalue and
contains the significant visual information. The other fac-
torial images are mostly noisy. The liver slice on the right
side shows the resulting contour of the delineated tumour
obtained by thresholding the first factorial image G.

to the detected tumour and to three false alarms. The figure
10 shows the details of the processing of the ROI containing
the tumour belonging to the slice displayed on the right side.
Our detection method has been applied to fifteen liver slices,
using four Gaussian filterings defined byσ = [2, 4, 8, 16]
[4]. The results have been analyzed by the medical staff of
our medical partner IRCAD (Institut de Recherche sur le
Cancer de l’Appareil Digestif). Several conclusions can be
extracted from this analysis [4]. First, most tumours are cor-
rectly depicted. Secondly, the segmentation precision has
been visually validated as correct.

4.2. Handwritten character segmentation

Currently, there is a substantial and growing interest in
the field of document image processing and understanding

5



Figure 11:A: a noisy character.B: its thresholded version
showing the existence of granular noise and the difficulty
of the segmentation task.C: the factorial image.D: the
thresholded version of C. The initially noisy handwritten
character is correctly segmented.

[2]. Document analysis consists in first extracting writtings,
and then classifying them. Here, we illustrate the potential
of our detected method for the segmentation of handwrit-
ten characters from noisy gray-level images. We assume
that the objects (characters) have a relatively constant size
(width of the strokes). Hence, we do not have the problem
encountered in the previous medical application where ob-
jects were of various sizes. To carry out the feasability test,
handwritten characters have been digitized, using an AGFA
scanner at400 dpi resolution. On the resulting digitized im-
age, the width of the strokes was of about15 pixels. For the
feasability test, we used four Gaussian filterings character-
ized byσ = [2, 4, 8, 16]. The figure 11 shows an example
of a character segmented by our method. After the thresh-
olding of the first factorial image (figure 11-C), the charac-
ter is correctly delineated (figure 11-D). Such a preliminary
experimental result illustrates the potential of the proposed
method for this application.

5. Conclusion

This paper proposes an unsupervised method for the
detection of noisy objects which is based on the expan-
sion/compression paradigm, using the multiresolution rep-
resentation with various Gaussian filterings and the princi-
pal component analysis (PCA). This unsupervised method
automatically leads to an acceptable compromise between
various Gaussian filterings. The efficiency of this approach
has been evaluated with respect to the degree of noise and
to the object size. The experimental analysis has shown the
ability of this approach to clean noisy images corrupted with
additive or multiplicative gaussian noise.

Two practical applications have been considered to illus-
trate the potential of the proposed method. These applica-
tions dealt with the liver tumour detection and the segmen-
tation of handwritten characters. Preliminary experimen-
tal results are promising. Nevertheless, further experiments
must be carried out to validate the efficiency of the proposed
method on large databases.

References

[1] K. R. Castleman.Digital Image Processing. Prentice Hall,
1996.

[2] M. Cheriet. Extraction of handwritten data from noisy gray-
level images using a multiscale approach.International
Jounal of Pattern Recognition and Artificial Intelligence,
13(5):665–684, 1999.

[3] B. R. Corner, R. M. Narayanan, and S. E. Reichenbach.
Principal component analysis of remote sensing imagery:
effects of additive and multiplicative noise. InProc. SPIE
on Applications of Digital Image Processing XXII, volume
3808, pages 183–191, 1999.

[4] J. B. Fasquel, M. Bruynoogh, and P. Meyrueis. A hy-
brid opto-electronic processor for the delineation of tumours
of the liver from ct-scan images.SPIE The International
Symposium on Optical Science and Technology, San Diego,
USA, Wave Optics for Optical Information Processing, July
2001.

[5] B. Fischl and E. L. Schwartz. Adaptive nonlocal filtering: A
fast alternative to anisotropic diffusion for image enhance-
ment. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(1):42–48, 1999. January.

[6] R. Gonzales and P. Wintz.Digital Image Processing, 2nd
edition reading. Addison-Wesley, 1987.

[7] G. Okimoto and D. Lemonds. Principal component anal-
ysis in the wavelet domain: New features for underwater
object recognition. InProc. SPIE on Detection and Remedi-
ation Technologies for Mines and Minelike Targets IV, vol-
ume 3710, pages 697–708, 1999.

[8] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion.IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 12(7):629–639, July 1990.

[9] R. J. Schalkoff.Pattern Recognition: statistical, structural
and neural approaches. John Wiley, Inc, 1992.

[10] L. Soler, H. Delingette, G. Malandain, J. Montagnat, N. Ay-
ache, C. Koehl, O. Dourthe, B. Malassagne, M. Smith,
D. Mutter, and J. Marescaux. Fully automatic anatomi-
cal, pathological, and functional segmentation from ct scans
for hepatic surgery.Computer Aided Surgery, 6(3), August
2001.

6


