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Abstract

Looming stereo is a stereo configuration where the cam-
era baseline is perpendicular to the image planes. In con-
ventional stereo with parallel or vergent cameras, depth is
extracted using disparity. In looming stereo, however, we
can compute depth using what we call the disparity ratio.
The disparity ratio measures relative feature sizes between
the two images rather than the relative feature position. To
compensate for the significant change of sizes in the front
and back images, we also propose a new method of deter-
mining adaptive window sizes based on signal-to-noise ra-
tio optimization. Our looming stereo algorithm uses both
adaptive window correlation and dynamic programming.
Error analysis and experimental results show that our loom-
ing stereo algorithm produces accurate reconstruction.

1 Introduction
Stereo vision is an important method to extract 3D infor-
mation from image pairs or sequences. The most common
stereo configuration is a parallel setup where the camera
baseline is parallel to the image planes. The image planes
can also be oriented to focus on the objects for better sam-
pling if we know approximately where the objects of inter-
est are in the scene.

A rarely used stereo setup is calledlooming stereo,
where the image planes are perpendicular to the baseline, as
shown in Figure 1. The most important physical phenom-
ena in looming stereo is thevisual looming, which is the
expansion of the size of an object projected on the retina
plane when the object is moving toward the camera or the
camera is moving closer to the object. Looming stereo has
not received a lot of attention in the stereo reconstruction
literature because of its singularity in recovering the depth
along the baseline, and perhaps also due to the difficulty in
matching pixels with different sizes. However, looming has
been reported as an important cue for collision detection in
robot navigation. Recovering depth from looming stereo is
also very useful for applications such as wandering in vir-
tual environments. In fact, looming stereo has two advan-
tages over the conventional parallel setup. First, it has much
larger overlap because the front image is almost completely
seen in the back image. Next, there is less lighting varia-
tion in looming images than in parallel images. It makes
correlation-based matching in looming stereo easier than in
other stereo setups if we can compensate the size change.

By analyzing the visual looming phenomena, we pro-
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Figure 1. Looming stereo: (a) geometric configu-
ration; (b), (c) front and back images.

pose in this paper a disparity ratio that measures the change
of pixel sizes for depth recovery from looming stereo. In
looming stereo, disparity ratio plays the same role as the
disparity in conventional stereo setups where the horizontal
shift of corresponding pixels is used to recover the depth.
Because of visual looming, adaptive window sizes have to
be incorporated in the correlation stereo algorithm. Instead
of minimum uncertainty principle [4], we use the maxi-
mum SNR principle that enables us to select windows with
irregular shapes and sizes. Guided by the analysis of noise
sensitivity, new applications of looming stereo such as view
interpolation become possible.

1.1 Previous work
Though looming stereo has not been thoroughly investi-
gated for 3D reconstruction, visual looming for obstacle
avoidance has been studied by Joarder and Raviv [2] for
robot navigation. A quantitative analysis of visual looming
can be found in [9]. In their analysis, however, the con-
ventional disparity measurement (i.e., the pixel shift in two
images) is used in the looming equation.

Stereo reconstruction from multiple panoramas (e.g., [5,
7]) can also be considered as a special case of looming



stereo even though they did not carefully analyze error sen-
sitivity etc. The singular case along baseline was not con-
sidered either.

Also related to our work is adaptive window size for im-
proved stereo matching (correlation-based or SSD). Little
[6] used several predefined correlation window and choose
the best window. Jones and Malik [3]used filter banks in-
stead of a series of windows. Kanade and Okotumi [4]
introduced a statistical model of disparity and searched for
the optimal window by minimizing the uncertainty of dis-
parity. The correlation window relates to the local support
to increase the reliability of certain disparity assumption.
An excellent survey on local support and disparity variance
assumption can be found in their paper. Recently, Boykov
et al. [1] proposed an approach to variable window size and
shape based on maximum likelihood hypothesis (plausibil-
ity) testing. They estimated the disparity by maximizing the
size of window.

1.2 Overview
We describe the model of looming stereo in section 2.
In section 3 we analyze the quantitative error in looming
stereo. The looming stereo algorithm will be discussed in
details in section 4 and 5. Experimental results are pre-
sented in section 6. Finally we present our conclusions in
section 7.

2 Modelling Looming Stereo
We first describe the geometric model of looming stereo.
Figure 1.a depicts the looming configuration of two cameras
with baseline B. An object appears bigger in the front im-
age than in the back image. In this paper we assume a pin-
hole camera model. We also assume that the optical axes of
the two cameras are coincident, with the front camera closer
to the scene. The two cameras have parallel retinal planes
and the intrinsic parameters are known. In our subsequent
analysis, we will work with normalized image coordinates.

2.1 Looming
Let P = (x; y; z)T be a 3D point in object space and its
projections on two image planes be pf = (xf ; yf )

T and
pb = (xb; yb)

T . The subscripts f and b denote front and
back cameras, respectively. Then,

pf =

�
xf
yf

�
=

1

z

�
x

y

�
pb =

�
xb
yb

�
=

1

z +B

�
x

y

�
(1)

Consider a small shallow object that lies on the plane
parallel to the image plane with the centroid at P. The ob-
ject size is dx � dy. We assume that the depth variation
of the object is small enough compared to the depth of its
centroid. Therefore,�
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where dxf � dyf and dxb � dyb are the pixel sizes ofP
in front and back images, respectively.

From equations (1) and (2), it can be shown that
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where L represents the ratio between the coordinates of the
pixels on the front and back images. It also represents the
ratio between the sizes of pixels. We call L disparity ratio
because the depth is inversely proportional to L� 1. Recall
that in parallel stereo, the depth is inversely proportional to
the disparity that is defined as the difference between the
horizontal coordinates of two corresponding pixels, if the
images are rectified.

Equation (3) is called the looming equation and has a
few important properties. Looming stereo is sensitive to the
quantitative error and position noise when either L ! 1

or (xb; xb)T ! (0; 0)T . Details are given in section 3.
Because the looming equation can be applied to x and y di-
mensions independently, we will discuss the looming stereo
with x dimension only in the remainder of this paper.

From looming equation (3) we also get a constraint on
disparity ratio

L � 1; kxfk � kxbk; kyfk � kybk (4)

Unlike the conventional parallel stereo configuration,
equation (4) provides a useful spatial constraint on the
search area for the matching algorithm. The correspon-
dences should be matched from the front image to the back
image, not the other way around.

2.2 Stereo under Looming configuration
This subsection describes looming stereo, in which the dis-
parity ratio is used to recover the depth of scene. From
equation (3), we know there are two ways to depth recovery
under the looming configuration. One is by the correspon-
dences (L =

xf
xb

), as

z =
B

L� 1
=

B
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xb
� 1

(5)

Equation (5) is actually the depth from disparity method
used in the parallel stereo. As we will see in section 3, this
method is very sensitive to the noise and tend to be singular
near the epipoles.

The other is by size of the projected areas, as,

z =
B

L� 1
=

B
dxf
dxb

� 1
(6)

3 Quantitative Error Analysis
In this section we discuss the noise sensitivity of looming
stereo. The source of noise in looming stereo is due mainly
to pixel quantization, image noise and optical distortion.
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3.1 Disparity based stereo
To analyze the error property of looming stereo reconstruc-
tion algorithm described by equation (5), we take the front
view as the reference image and the baseline is known. That
means the coordinates in the front image and baseline is
noise free. The estimated depth error is mainly determined
the image coordinates of the corresponding points on the
back view. The new depth, absolute error and relative error
in depth estimation due to small disturbances in the back
view image coordinates can be computed as following

z0 =
xb
0B

xf � xb0
=

(xb +�xb)B

xf � (xb +�xb)

�z =
xfB

(xf � xb)2
�xb

�z =
xf

xf � xb
�xb (7)

where �xb is the additive position noise including quan-
tization noise, position noise and image noise, �z and �xb
are the relative errors in estimated depth and back view co-
ordinates, respectively.

Several observations can be made from (7).

� When xf ! xb and xf 6= 0, looming becomes an
ill-posed problem because the error in image position
affects the depth estimate significantly.

� When xf ! xb with xf = 0, looming becomes a sin-
gular problem because we cannot compute the depth
in (3).

� For large xf � xb and small xf ,computing depth is
robust.

� Error in baseline results in the same relative error on
estimated depth. If the position error in baseline is
white noise, we will get better estimate of depth with
longer baseline.

Figure 2 illustrates the theoretical error bounds for
looming stereo, assuming quantization error is a uniform
distribution with zero mean noise, camera baseline 1 m, fo-
cal length 440 pixels and quantization error �0:5 pixel. A
3D point lies on the plane 4 times of camera baseline. From
Figure 2, we know that the relative position error of esti-
mated depth due to noise will be reduced significantly as
the object moves away from the epipole.

3.2 Disparity ratio based looming stereo
For the disparity ratio based looming stereo approach, we
can do the same error analysis to equation (6). We assume
the projected area on the front view and and baseline is
noise free. The noise in the projected area on the back view
is the main source of the estimated depth error. By add a
small turbulence �dxb to dxb in equation (6), we get

z0 =
B

dxf+�dxf
dxb+�dxb

� 1
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�dxb

�z =
dxf

dxf � dxb
�dxb (8)

-
40

-
30

-
20

-
10

0 10 20 30

0

10

20

30

40

50

60

70

80

90

100

Re
la
ti
v
e 
de
pt
h 
er
ro
r

View Angle

Figure 2. Relative error in depth caused by quan-
tization error. The focal length is 440 pixels, the
camera baseline is 1m, and the depth is 4 m.
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Figure 3. Foreshortening in both looming and par-
allel stereo. Clearly there will be more seriously
foreshortening in parallel stereo than in looming
stereo.

Note that the size of projected areas dxf and dxb are
not related to the projected position xf and xb. That means
depth recovery by disparity ratio (equation 6) is much more
robust than by disparity (equation 5) with xf ! 0.

It is worth noting that foreshortening is less significant
in looming stereo than in conventional parallel stereo. Ref-
erencing to Figure 3, with the same camera baseline, there
will be � � � , where � and � is the view angle difference
of the same 3D point viewed in parallel stereo and looming
respectively. It means that the foreshortening in looming
stereo is relative smaller than in parallel stereo. Because re-
sulting in little intensity changing, it also benefits the match-
ing between two images.

Correlation is a basic technique for matching image
points. While correlation methods are often the preferred
for stereo matching, they do have some shortcomings. In
next section we will discuss how to select optimal correla-
tion window sizes for stereo matching. Adaptive window
sizes are particularly important for looming stereo because
of significant size change of object appearance in the front
and back images.

4 Optimal Window for Intensity Cor-
relation

The shape and size of correlation window will significantly
affect the disparity estimates. If the window size is too
small, we cannot include enough image intensity variation.
Correlation will be sensitive to image noise and there would
be many correlation peaks along the epipolar line. If the
window size is too large, we cannot avoid the effects of per-
spective distortion and disparity variance. Window shape
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also plays an important role for accurate estimation of dis-
parity [1]. Window size is especially critical when there is
disparity discontinuity (e.g., around an object boundary).

Unlike the conventional approach, we consider the dis-
parity variance and intensity variance to affect the result of
correlation in the same manner because they both introduce
noise into correlation. We treat these two kinds of noise
uniformly as an additive correlation noise. Furthermore, we
do not assume the distribution of correlation noise [4], but
rather, estimate it from the images themselves. This is an
important distinction: Because the disparity is the output of
stereo reconstruction, we should not assume the disparity
distribution prior. Otherwise, we can only get the optimal
depth estimates under a predefined disparity distribution.

This is why we formulate the disparity estimation as a
problem of detecting signals from a given set of candidates
by searching for correlation peaks.

Let I0(x; y) and I1(x; y) be two images of the same
scene, I0(x0; y0) and I1(x1; y1) represent the projections
of the same 3D point. We assume that and are equal in in-
tensity except for the additive noise n(x; y). The correlation
between I0(x0; y0) and I1(x1; y1) is given by

C =
1

N

X
(u;v)2w

fI0(x0 + u; y0 + v)I1(x1 + u; y1 + v)g (9)

where w is the correlation window, and N is the number of
pixels in the window.

The signal to noise ratio (SNR) of the correlation is de-
fined as

SNR(x; y)=
C2(x; y)

E
�
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is the power of output noise, and

nc(x; y) denotes the correlation noise, which is the output
noise of correlation. In signal detecting theory, SNR is re-
lated to the probability of detection (PD). Maximizing SNR
means maximizing the probability of detection for a given
probability of false alarm (PFA) in the Neyman-Pearson
sense, or minimize PFA for given PD. Consider the follow-
ing two hypotheses:

H0 : nc(x; y)

H1 : eC(x; y) + nc(x; y)

where eC(x; y) is the correlation of the same intensity
pattern in both images. nc(x; y) is the correlation between
and correlation noise. To simplify the analysis, we assume
is a zero-mean Gaussian noise with variance �. The con-
ditional probabilities of C(x; y) under both two hypotheses
are:
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Figure 4. Probability of false alarm (PFA) and prob-
ability of detection (PD) versus SNR in maximum
likelihood (ML) test.(a) Maximum likelihood test;(b)
PD and PFA of maximum likelihood test

We take maximum likelihood (ML) test for these two
hypotheses with no prior bias in favor of either H0 or H1.
Then H1 holds if and only if

p(C(x; y)jH0) < p(C(x; y)jH1) (10)

The ML test is illustrated in Figure 4a.
The probability of false alarm (PFA) is defined as
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ity of detection (PD) is defined as
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The relationship between PFA and SNR is shown in Fig-
ure 4b. As shown in Figure 4, higher means higher probabil-
ity of detection and lower probability of false alarm, there-
fore, more reliable decision. Therefore, we adopt maximiz-
ing SNR as the optimal principle for adaptive correlation
windows.

If n(x; y) is the white noise, the optimal correlation win-
dow size is obviously the largest window size. Unfortu-
nately, because the correlation noise includes portions of
the image noise, projective distortion noise and mismatch
noise, it cannot be modeled as the white noise. Instead,
it should be estimated together along with the correlation,
because the intensity variance in an image results from all
these three sources. For example, if there is no texture
(equal in intensity), geometry projective distortion will not
affect the intensity variance nearby the projected position.

In our approach, the optimal window wopt is chosen so
that

wopt = argmax
w

fSNR(x; y)g (13)

The best window provides the optimal local support with
maximum probability of detection.
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Consider the problem of estimating the disparity ratio at
a given point. Because the true variance �xy is not available,
an estimated variance �̂xy is used to estimate the optimal
correlation window. We estimate the power of correlation
noise by

�̂xy = E
�
n2(x; y)

	
= E

n
[If (

x

L
;
y

L
)� Ib(x; y)]

2
o

(14)

where L is the disparity ratio. After the correlation is
computed, we expand the window by adding more pixels
that satisfy (13).

5 Looming Stereo with Adaptive
Windows

5.1 Optimal correlation window size
Both visual looming and maximum SNR window have to be
considered when selecting adaptive window sizes in loom-
ing stereo. In practice, in order to include information of
the image intensity variance and use the disparity ratio con-
straint (4), we first determine the maximum SNR correla-
tion window in the front image, then compute the corre-
sponding window in the back image using equation equa-
tion (3).

In looming stereo, adaptive window sizes can be deter-
mined as follows:

� For a given front mage point pf and a potential dis-
parity ratio we estimate power of the correlation noise
by (14).

� Set initial correlation windowwf for the pixel (xf ; yf )
in the front image.

� Expand the correlation window wf in each direction.
A new pixel is accepted if and only if the SNR function
is non-decreasing after the expansion.

� For any point (x; y) 2 wf and disparity ratio L(x; y),
compute the correspondence in the back image. These
correspondence points in the back image form the cor-
relation window wb.

� Compute the correlation with the estimated windows.

5.2 Estimate Disparity Ratio
To solve disparity ratio along the epipolar line, we use dy-
namic programming with the cost function defined as the
sum of correlation along the epipolar line. For a pair of cor-
responding epipolar lines on the front and back images, the
cost function of disparity ratio is defined as

Cost(x; y; L) =
X
(x;y)

C(x; y; L(x; y))

=
P

xy

P
(u;v)2Wf (x;y))

n
Ib(x+u; y+v)If (

x+u
L(x;y)

; y+v
L(x;y)

)
o

(15)
where Wf (x; y) denotes the optimized correlation win-

dow, L(x; y) the disparity ratio estimate of the image point
Pf (x; y), Ib(x; y) the estimated intensity at pixel (x; y) in
the back image. The cost function is separable. Our loom-
ing stereo problem can be expressed as maximizing the cost

function defined by (15). We solve it using dynamic pro-
gramming similar to [8].

6 Experimental Results
In this section, we describe experiments using images of
synthetic and real scenes.

6.1 Synthetic scene
Figures 1(b,c) show a pair of looming stereo images of a
textured cube. Both epipoles are at the center of image. The
disparity ratio range of this looming stereo pair is between
1:1 and 2:0. Figure 5(a) shows the depth map computed by
a standard correlation algorithm with a fixed size window
10 � 10). Figure 5(b) is the plot of the depth map viewed
from another viewpoint. As shown in Figure 5(a), large er-
ror occurs near the center of the image, which is the singu-
lar case of looming stereo with disparity. Figure 5(c) shows
the depth map computed using our disparity ratio approach
with adaptive windows, which yielded significantly better
depth estimation near the epipoles. Figure 5(d) is the plot
of the depth map viewed from another viewpoint. For this
camera, which has a relatively small field of view (FOV),
we can see that using the disparity ratio is better than us-
ing disparity, especially within the vicinity of the epipoles.
Figure 5(e) shows the map of correlation window size. The
brighter pixel means bigger window size (containing larger
number of pixels) at that position. Figure 5(f) shows the his-
togram of the window size. The mean of the window size is
about 127:639.

6.2 Real scene
We have applied both the disparities stereo algorithms to
real looming stereo images.

Figures 6(a,b) show the images of NASA data that we
taken from the optical flow test database. The camera mo-
tion between the image pairs is near looming because the
epipoles is located near the center of images. The disparity
based stereo algorithm with dynamic programming search
method is applied to the image pair. Figure 6(c) shows the
recovered depth map with conventional disparity method.
Near the center of the depth map, we observe that we do not
get reliable depth information. Figure 6(d) shows the depth
map as a result of using the disparity ratio with adaptive
windowing. In contrast, we can see that the depth estima-
tion has improved near the center of images. Figure 6(e)
shows the map of correlation window size. The brighter
pixel means bigger window size (containing larger number
of pixels) at that position. Figure 6(f) shows the histogram
of the window size. The mean of the window size is about
94:1755.

7 Conclusion
In this paper, we have studied looming stereo where the im-
age planes are perpendicular to the baseline. We propose
to use disparity ratio to estimate the depth from looming
stereo, as opposed to disparity in conventional parallel or
vergent stereo. Error analysis shows that looming stereo
will be divergent at the epipoles, and very sensitive to noise

5



(a) (b)

(c) (d)

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

(e) (f)
Figure 5. The results of looming stereo for the
"cube" image pair: Results with synthetic image:
(a) Depth map by standard disparity algorithm; (b)
Depth map (a) as seen obliquely, (c) Depth map
by disparity ratio and adaptive windows, (d) Depth
map (c) as seen obliquely, and (e) The window size
map where the graylevel indicate the number of
pixels in the correlation windows.(f) Histogram of
(e). The mean of histogram is 127:639 and the vari-
ance is 68:57; We see that the results using the
disparity ratio with adaptive windowing are better
than the conventional disparity approach. This is
not surprising, as the disparity ratio exhibits

near epipoles. It is robust when the image points move far
away from the epipoles. This is a shortcoming for some vi-
sion task such as 3D structure recovery or depth estimate.
On the other hand this error character will bring us some
useful application of looming stereo, and sometimes we
must deal with the looming stereo such as vision navigation
in AGV, and walkthrough environment building in image-
based rendering. To compensate for the large size change
in the back and front images in looming stereo, we have in-
troduced a novel approach to computing adaptive window
sizes based on the principle of optimizing signal-to-noise
ratio of correlation. Optimal window shape and size are
then obtained. Experimental results show that our stereo al-
gorithm results in more accurate reconstruction than fixed
window correlation, and more uniform correlation map.
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