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Abstract

Light field rendering has been proposed to render novel
images from a collection of captured images without explicit
geometry information. In this report, we present an optical
analysis of light field rendering. In particular, a light field
rendering system can be considered as a virtual imaging
system with a discrete synthetic aperture (e.g., [10]. We
define the key elements of the virtual imaging system in-
cluding the aperture, the circle of confusion, the depth of
field, the hyperfocal distance and the imaging law of the
constant depth rendering, with analogy to a conventional
optical imaging system.

Based on the optical analysis of the virtual imaging sys-
tem, we describe the relationship among the depth variation
of the scene (depth of field), the constant depth(perfectly
focused plane), the spacing of cameras (aperture) and the
rendering resolution (circle of confusion). Specifically, the
hyperfocal distance of the virtual optical system, as a key
parameter for light field rendering, determines the relation-
ship between the spacing of cameras and rendering reso-
lution. Given the minimum and maximum depths of the
scene, the optimal constant depth and the hyperfocal dis-
tance are derived to achieve the best rendering quality or
minimum number of images. The minimum number of im-
ages required for anti-aliasing rendering (i.e., the rendering
error is smaller than the circle of confusion) can be fur-
ther reduced by segmenting the depth into multiple depth
layers. A quantitative relationship between hyperfocal dis-
tance, number of layers, and depth variation of the scene is
described.

1 Introduction
Based on the plenoptic function [1], many image-based ren-
dering techniques have been developed to create novel im-
ages from a large number of images. Indeed, an image can
be considered as a sampling of the plenoptic function [2].
By assuming continuity of the sampled ray space, novel
ray through arbitrary viewpoints can be determined by the
nearby rays in the captured ray database even in the absence
of any geometry information of the scene. Assuming a free
space and the transparency of the route of the ray, for exam-
ple, light field [3] and lumigraph [4] reduce a 5D plenoptic
function to a 4D light field. Concentric Mosaics system [5]
is a 3D sampling of the plenoptic function along a circle
path.

A continuous representation of a ray database would be

sufficient to synthesize any desired view from any view-
point in the feasible space. In practice, however, we must
sample the ray space with a finite sampling density and a
finite capture resolution of cameras. The success of many
existing image-based rendering systems depends on a high
sampling rate (over-sampling) and a large amount of image
data. Special compression and decompression techniques
need to be applied to make these systems useful. The bot-
tom line is that, we have to understand how densely these
images should be sampled in order to achieve an acceptable
rendering quality.

Much work has been done recently on light field sam-
pling, or the minimum number of images needed for anti-
aliased light field rendering. Through a geometric analysis,
for example, Lin and Shum [6] obtain the lower bound of
the number of images of a light field rendering system us-
ing bilinear interpolation a constant-depth assumption. Chai
et al. [7] analyze the relationship among scene complexity,
number of image samples, and output resolution. Further-
more, based on a spectral analysis of sampled light field.
The minimum sampling curve in the joint image and geom-
etry space is also proposed by using multiple constant depth
layers for the light field.

This paper takes a different approach. We argue that the
light field rendering can be considered as a virtual optical
imaging system. Analogous to a real optical system, we
can define the optical parameters of the light field rendering
system, such as the depth of field, the aperture, the circle of
confusion and the hyperfocal distance of the virtual imag-
ing system. We present an optical analysis to determine the
minimum sampling rate of the light field rendering system.

Treating light field rendering system as a synthetic opti-
cal system is not entirely new. The original light field sys-
tem regards the sampling interval as the aperture [3]. Aper-
ture filtering has also been proposed. Isaksenet al. [10] pre-
sented a dynamically reparameterized light field by chang-
ing the synthetic aperture (i.e., the number of cameras) and
the focal planes for environment. Kunitaet al. [11] use
”equivalent depth of field” to characterize the maximum ac-
ceptable depth variation in a standard constant depth light
field rendering system by measuring the fidelity of the syn-
thesized images.

In our analysis, we quantitatively describe the relation-
ship among three key elements in light field rendering: the
scene complexity, the number of images, and the output
resolution. Not only can we compute the required number
of images for anti-aliased light field rendering given output
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Figure 1. A conventional thin lens imaging system
with focal length f and aperture A. An object P at
distance O away is filmed at point Q on the image
plane.

resolution, but we also can deduce how much geometrical
information is necessary if the input image number is in-
sufficient. Therefore, the optical analysis can be applied to
guide the design of many image-based rendering system.

The remainder of this paper is organized as follows. In
Section 2, we discuss an ideal thin lens imaging system and
introduce conventional image formation model commonly
used in computer graphics and computer vision. In Sec-
tion 3, We formulate the light field rendering system as
a virtual optical system, and define its optical parameters.
Furthermore we describe the imaging law of the constant
depth rendering of the light field system. Then, we present
our optical analysis and study the relationship among the
elements of light field rendering system. Optimal constant
depth and the minimal sampling rate are deduced in Section
4. Moreover, the optimal depth segmentation to extend the
depth of field and the trade-off between the amount of ge-
ometrical information and the number of images needed is
studied. We conclude our paper in Section 5.

2 Thin Lens Optical System

2.1 Ideal Thin Lens Model

Fig. 1 shows the basic image formation geometry of a con-
ventional thin lens optical system. With the perfectly con-
verging thin lens and the aperture diameter A, all light rays
radiated from an object point P (on the object plane) that
pass through the aperture are refracted by the lens to con-
verge at the point Q on the image plane. One can view the
lens imaging system as transforming each point in the scene
to a single focused point behind the lens. For the thin lens,
the relationship between the object distance O, focal length
of the lens f , and the image distance I is described by the
Gaussian lens law:
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1

O
+

1

I
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Each point on the object plane, which is not occluded, is
projected onto a single point on the image plane, causing
a focused image to be formed. The film (or sensor) plane
must coincide with the image plane to record a sharp image.
Points in front of object plane and behind object plane are
not focused perfectly and therefore are distributed over a
patch (blurred image) on the film plane.
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Figure 2. The depth of field of a conventional op-
tical system is defined by the distance between
points P1 and P2, which are filmed on the image
plane with the diameter of circle of confusion d.
The point P is perfectly focused.

2.2 Depth of field and hyperfocal distance
As shown in Fig. 2, the point displace from the object plane
image as a circle of confusion (C:o:C) on the film. The
diameter of the circle of confusion C is determined by the
congruent trigles formed by the rays passing through the
aperture, i.e.,
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where O0 and I 0 are the object distance and image distance
of the point( In Fig. 2, either O1 or O2 can be O0, so does
I 0.).

The C in Eq. 4 can be computed as

C =
kO0 �Ok

O0

f

O � f
A: (5)

In practice, films have a finite resolution. Films can’ t re-
solve details smaller than the minimum grain separation of
the film emulsion (or pixel size of CCD). Points with the
circle of confusion smaller than the resolution of film are
” in focus” .

The depth of field (DOF ) is defined as the total range of
in focus zone,

C =
Af

O � f

kO0 �Ok

O0
� d (6)

where d is the maximum acceptable circle of confusion.
The nearest and farthest points that are acceptable are

found at the distances,

Of =
dHO

dH � (O � f)
(7)

On =
dHO

dH + (O � f)
(8)

respectively, where

dH =
A

d=f
(9)
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Figure 3. The ray interpolation of the light field ren-
dering: The desired ray (u; s) is interpolated by the
nearest neighboring rays (u1; s1),(u1; s2), (u2; s1),
and (u2; s2).

is so-called “hyperfocal distance” ([12]), or the ratio of di-
ameter of aperture to maximum acceptable angular blur.
The depth of field is then computed as

DOF = Of �On =
2dHO(O � f)

dH
2 � (O � f)2

(10)

3 Light Field Rendering: An Optical
Analysis

3.1 An Overview of Light Field Rendering
The sampling of the 4D plenoptic function in light field ([3])
/ lumigraph ([4]) can be represented by a two-plane param-
eterization. A ray passing through a light slab, as specified
by a line connecting a point on the UV plane and another
point on the ST plane, can be uniquely determined by a
quadruple (u; v; s; t). A pinhole camera is adopted to cap-
ture the light field with the center of projection located on
the UV plane (camera plane).

To render a given ray, the line parameters (u; v; s; t) is
computed and then the light slab is resampled and interpo-
lated by a certain bandpass filter to reconstruct the desired
ray. The 2D case of interpolation is illustrated in Fig. 3. We
refer the read to the original light field paper and Lumigraph
paper for more details.

For sake of simplicity, we now discuss light field render-
ing in 2D space. As shown in Fig. 4, cameras are aligned
so that their centers of projection are located on the U axis
with the same intervals D. To render novel view images, a
virtual rendering cameraC with infinite resolution is placed
on the desired viewpoint behind the U axis at a distance I .
Assume that there is only one ideal object point Q ([12],
[6]) in the scene, which is placed Z units in front of the U
axis.

3.2 Imaging law of light field rendering with
constant depth

A constant depth plane that is closer to the object is se-
lected to improve the rendering image quality. With the
constant-depth assumption, all the ray captured by cameras
are hypothesized emitted from points located on the con-
stant depth plane, which is parallel to the camera plane. Fig.
4 illustrates the 2D case of light field rendering process. The
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Figure 4. Light field rendering with constant depth
assumption. The rendering error jqi � qj j incurred
by the constant depth assumption (Zc) is projected
by jQi � Qj j. Ci and Cj are neighboring capturing
cameras, while C at the bottom is the rendering
camera.

constant depth line is defined to be parallel to the U axis.
Let us denote the distance between the constant depth line
and U axis by Zc. The virtual rendering camera is located
behind the U axis with distance I . The rays captured by the
cameras Ci through Cj are employed in rendering. Recall
that, for constant depth assumption, all rays captured by the
camera is hypothesized as being emitted from a point lying
on the constant depth plane. To camera C i, the ray emit-
ted from Q is hypothesized as being emitted from a virtual
point Qi, which is the intersection of constant depth plane
and the ray (Ci; Q). Thus, on the novel view image, the ray
(Ci; Q) is rendered as image point qi, which is the image of
virtual point Qi. Similarly for the camera Cj , Q is rendered
as qj .

Accordingly, the light field rendering system with con-
stant depth correction can be considered as a virtual optical
system, whose imaging law is described above. The point
qi and qj are called the image point of the object point Q.
Only the points exactly on the constant plane are perfectly
in focus.

In Fig. 4, from the congruent trigles 4QQ iQj and
4QCiCj , we have the following relationship,

jQi �Qj j

jCi � Cj j
=
jZc � Zj

Z
(11)

where Zc is the constant depth, Z is the depth of the object
point Q. From the congruent trigles 4CQiQj 4Cqiqj , we
have,

jQi �Qj j

jqi � qj j
=

Zc + I

f
(12)

where qi and qj are the virtual points on the constant depth
line corresponding to cameras Ci and Cj , respectively. And
f is the focal length of the virtual rendering camera C.

Substitute Eq. 12 for Eq. 11, we have,

jqi � qj j =
jZc � Zj

Z

f

Zc + I
jCi � Ckj (13)

Equation 13 is the basic equation of the light field rendering
that describes the quantitative relationship among the key
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elements of light field system and rendering image quality.
From the above analysis, we can consider a light field ren-
dering system as a virtual optical imaging system, whose
imaging process depends on the constant depth assump-
tion and rendering algorithm. Levoy and Hanrahan [3] sug-
gested that the light field rendering system be considered
as a discrete aperture imaging system, with the diameter of
the aperture being equal to the spacing between camera lo-
cations. Similarly, discrete aperture camera has also been
discussed in [11]. In this section, however, we will for the
first time derive important qualitative properties of the vir-
tual optical system of light field rendering, much like the
conventional thin lens optical system.

3.3 The depth of field
As shown in previous section, in the light field rendering
system, images of an ideal object point could be more than
one point on the desired image plane. To alleviate the alias-
ing, pre-filtering and post-filtering is applied by Levoy and
Hanrahan. In our analysis, it is equal to blurring the image
points to avoid the double image [6]. In this subsection, we
will determine the depth variation range of scene, where the
rendered image is spread less than a given length for all ob-
ject points. For Eq. 13, we define the acceptable rendering
quality as the largest range of jqi � qj j. That is

jqi � qj j =
jZc � Zj

Zc + I
f jCi � Cj j � d (14)

where d is a predefined acceptable rendering quality (ren-
dering resolution).

We define the aperture of the virtual optical system as
A0 = jCi � Cj j, or the distance between two consecutive
cameras. The nearest and farthest depth whose diameter of
blurred circle are within d are specified as two solutions of
Eq. 14,

Zmin =
DHZc

DH + (I + Zc)
(15)

Zmax =
DHZc

DH � (I + Zc)
(16)

where

DH =
A0

d=f
(17)

We can easily verify that, for all Z (Zmin � Z � Zmax),
jqi�qj j � d is satisfied. Therefore, the depth of field (DOF)
of the virtual optical system is defined as acceptable range
of focus. That is,

ZDOF = Zmax � Zmin =
2DHZc(I + Zc)

D2
H � (I + Zc)2

(18)

The geometrical interpretation of Eq. 18 is illustrated in
Fig 5. Zc is distance from the constant depth plane to U
axis, Zmin and Zmax are the minimum and the maximum
depth range for acceptable rendering quality. Note that the
object points lie on Zmin and Zmax plane causes the same
circle of confusion on the desired image. Fig. 6 shows the
depth of field variation due to changes in DH and Zc.
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Figure 5. The acceptable range (depth of field) of
light field rendering, given the tolerable rendering
error (circle of confusion).
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Figure 6. (a) The relationship between depth of
field and constant depth with given hyperfocal dis-
tance; (b) The relationship between the hyperfocal
distance and the depth of field with a fixed con-
stant depth.

3.4 When the rendering camera is on the UV
plane

A special configuration of light field rendering is of par-
ticular interest, when the rendering camera is located on
the same plane with the capturing cameras (UV plane), as
shown in Fig. 7. Substituting I = 0 for Eq. 13, we have,

jqi � qj j =
jZc � Zj

Z

f

Zc
jCi � Ck j (19)

As illustrated in Fig. 7, we assign the image distance is
the focus length f of the rendering camera C, the object
distance is the constant depth Zc. Then an virtual focus
length f 0 of the optical system is obtained by the Gaussian
law (Eq. 1),

f 0 =
Zcf

Zc + f
(20)

Substituting Eq. 20 for Eq. 19, we have

jqi � qj j =
f 0

Zc � f 0
jZc � Zj

Z
jCi � Cj j (21)

Notice that Eq. 6 has exactly the same form as that of
Eq. 21. Therefore, when the rendering camera is located
on the UV plane, a light field rendering system with con-
stant depth correction can be regarded as an ideal thin lens
imaging system.
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Figure 7. When the rendering camera is located
on the capturing camera plane, the light fielding
rendering system becomes an ideal thin lens op-
tical system. Objects lying on the constant plane
are perfectly focused on the image plan. The focal
length of the virtual lens is f 0 = fzc=(f + zc).

We can also verify that the depth of field has the same
form as that of Eq. 10.

Z 0

DOF =
2DHZ

2
c

D2
H � Z2

c

=
2z2cA

0f=d

(A0f=d)2 � z2c
=

2d0Hzc(zc � f 0)

d02H � (zc � f 0)2

(22)
where d0H = A0f 0=d.

In summary, analog to the conventional optical system,
the key elements of light field can be defined in term of a
virtual optical system:

� Aperture. A0 = jCi � Cj j

� Focal length. f 0 = fzc
f+zc

� Hyperfocal distance. d0H = A0f 0=d

� Depth of field. z 0DOF =
2d0

H
zc(zc�f

0)

d0

H

2
�(zc�f 0)2

In the virtual optical system, the aperture is defined as
the intervals of cameras. Object distance is the distance be-
tween object point and UV plane. Image distance is the
distance between rendering image plane and UV plane. Fo-
cal length is defined as a virtual value decided by the object
distance and the image distance.

The hyperfocal distance plays an important role in mini-
mum sampling of light field rendering because it describes
the relationship between spacing between cameras (the
number of cameras) needed for capturing and the render-
ing quality (rendering resolution). Given rendering resolu-
tion, the higher DH means fewer raw images needed for
anti-aliasing rendering. For a given hyperfocal distance, the
relationship between the spacing of camera and rendering
resolution d is illustrated in Fig. 8.

4 Minimum Sampling of Light Field

4.1 The optimal constant depth
Given the minimum depthZmin and maximum depthZmax

of a scene, we want to determine the optimal constant depth
Zopt for minimum sampling rate or best rendering quality.
By the definition of hyperfocal distance, it is equivalent to
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Figure 8. The hyperfocal distance is proportional
to the rendering resolution, and inversely propor-
tional to the number of images used. Given a fixed
hyperfocal distance, the relationship between ren-
dering resolution and the number of images is lin-
ear.

the maximizing the hyperfocal distance d
0

H or DH . The
optimal constant depth Zopt satisfies:

Zopt = argmax
Z

fDHg

s:t: Zmin �
DHZ
DH+Z

Zmax �
DHZ
DH�Z

(23)

The maximum DH arrives when
1

Zopt
=

1

2
[

1

Zmin

+
1

Zmax

] (24)

1

DH

=
1

2
[

1

Zmin

�
1

Zmax

] (25)

The geometrical interpretation of Zopt is that the optimal
constant depth is the harmonic mean of the minimum and
maximum depths. The maximum DH is decided by Eq. 25,
which means the relationship between the spacing of the
cameras and output quality is determined by the scene depth
variation. In other words, this equation completely deter-
mines the minimum sampling of light field rendering.

4.2 Multiple depth layers segmentation
From the above analysis, we know the hyperfocal distance
is specified by the maximum and minimum depth of the
scene. We understand that, the larger the depth of field, the
more input images needed for anti-aliased light field ren-
dering. More images mean more storage and less efficient
rendering. Therefore, segmenting the depth of the scene
into multiple depth layers effectively decreases the depth of
field and decreases the number of cameras needed for ren-
dering. The number of layers is determined by the tradeoff
between rendering efficiency and the storage of image data.

Fig. 9 illustrates how the scene is recursively segmented
into multiple layers. From Eq. 16, we get the following
relationship between the layers

8>>>>><
>>>>>:

1
Zmax(n)

= DH � I
DH

1
Zopt(n)

� 1
DH

1
Zmin(n)

= DH + I
DH

1
Zopt(n)

+ 1
DH

Zmax(n) = Zmin(n+ 1)

(26)
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Figure 9. Multiple layers of constant depth are re-
cursively constructed for minimum sampling of
light field rendering. Given the minimum and max-
imum depths of a scene, and the rendering res-
olution, the number of depth layers needed for
anti-aliased light field rendering is computed re-
cursively.

where Zopt(n), Zmin(n), and Zmax(n) are the optimal
constant depth, the minimum depth and the maximum depth
of the nth layer, respectively.

From Eq. 26 we have,

1

Zopt(n)
= (

DH � I

DH + I
)n(

1

Zopt(0)
+

1

I
) (27)

A special case of Eq. 27 is that I = 0. When the render-
ing camera is located on the U axis, we get the following
equations.

1

Zopt(n)
=

n

2
[

1

Zmin

+
1

Zmax

] (28)

1

DH

=
1

N + 1
[

1

Zmin

�
1

Zmax

] (29)

The above equations determine the minimum sampling in
the joint image and geometry space. Specifically, the min-
imum sampling problem in the joint image and geometry
space is described by the relationship among the number
of images, the output resolution and the number of con-
stant depth layers. Depth layer segmentation effectively in-
creases the hyperfocal distance.

5 Discussion and Conclusion
In this paper, we have presented an optical analysis of the
field rendering system. We regard the light field rendering
as a synthetic aperture optical system with a constant depth
assumption for the scene. We define the aperture, the circle

of confusion, the depth of field and the hyperfocal distance
of the light field rendering system. From an optical analy-
sis of light field sampling, we obtain the relationship among
the depth variation of the scene (depth of field), the number
of images (aperture) and the rendering resolution (circle of
confusion). Specifically, this relationship is completely de-
scribed by the hyperfocal distance of the virtual optical sys-
tem. The optical analysis is applied to estimate the optimal
constant depth for a given scene for the best rendering qual-
ity. The minimum sampling rate is then derived. To extend
our method to cover much larger depth variation, we give
the optimal depth segmentation using much fewer number
of images, without loss of rendering quality. It is worth to
mention that we get similar but more general results com-
pared to the geometric analysis of [6], and the spectral anal-
ysis of [7], in particular, when the rendering camera is not
on the capturing camera plane. In the current optical anal-
ysis, the occlusion problem is not discussed. Occlusion is
an interesting but difficult problem for our future study in
plenoptic sampling. Another interesting research direction
is to study the depth recovery problem by the virtual syn-
thetic aperture camera.
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