
ACCV2002:The5thAsianConferenceon ComputerVision,23–25January2002,Melbourne,Australia 1

Singleand Multi-V iew Reconstructionof Structured Scenes

EtienneGrossmann,DiegoOrtin andJoséSantos-Victor
ISR; IST - TorreNorte;Av. RoviscoPais,1; 1049-001Lisboa;Portugal

{etienne,dortin,jasv}@isr.ist.utl.pt

Abstract

We presenta methodfor reconstructionof structured
scenesfromoneor more views, in which theuserprovides
image pointsandgeometricknowledge -coplanarity, ratios
of distances,angles-about the corresponding3D points.
First, the geometricinformation is analyzed. Then van-
ishingpointsare estimated,fromwhich camera calibration
is obtained.Finally, an algebraic methodgivesthe recon-
struction.

Our algebraic reconstruction method improves the
presentstate-of-the-artin manyaspects: geometricknowl-
edgeincludesnotonlyplanarityandalignmentinformation,
but alsoknownratios of lengths.Thesingleandmultiple-
view casesare treatedin thesamewayandthemethodde-
tectswhethertheinputdatais sufficientto definea rigid re-
construction.We benchmark,usingsyntheticdata,thevar-
ious stepsof the estimationprocessand showreconstruc-
tions obtainedfrom real-world situationsin which other
methodswouldfail.

We also presenta new methodfor maximumlikelihood
estimationof vanishingpoints.

1 Intr oduction

It hasbeenshown [2, 6, 7, 5] that 3D reconstructionis
achievablefrom asingleimage,providedthatsomegeomet-
ric propertiesaboutthe sceneareknown, asis possiblein
urbanor indoorsscenes.Possibleapplicationsincludehis-
torical studies,urbanism,real-estateetc. In this article,we
presenta methodfor obtainingsuchreconstructions.

We considerstructuredscenes: thereexist parallellines
andplanes,somedistancesareequalor have known ratios.
Thedirectionsthatdefinetheseplanesandlinesplaya spe-
cial role andwecall them“dominantdirections”.

The input could consistin one or more images,as in
Fig. 1 (left). Theuseridentifiestheprojectionsof 3D points
to be estimated(white dots in the figure) andgivessome
geometricproperties,suchas:

� The five big white dots(at the right of the image)all
belongto a “X-Z” plane.Otherplanesandlineshave
likewisebeengiven.� The slantedwall surface(bottom of walls) stick out
by thesameamountalongthe“X” and“Y” directions
(distance“ ��� ” in thefigure).� The distances� � , along the “X” axis is equalto the
distance��� alongthe“Y” axis(distance“ �	� ”). Also,
thedistances��
 alongthe“X” and“Y” axesareequal
to �
���������������	� .

We will call “g eometricinformation” all the coplanarity,
alignmentanddistanceratio informationgivenby theuser.
Theinputdatais givena formaldefinitionin Section1.1.

Theproposedmethodworks in two steps: first, vanish-
ing points1 of thedominantdirectionsareestimatedand,if
possible,thecamera(s)is (are)calibrated.Then,therecon-
structionis obtainedby analgebraicmethod.

Weoutlineherethealgorithm,detailsbeinggivenin Sec-
tions2-3. Eachpartof the algorithmis summarizedat the
endof thecorrespondingsection.

Vanishing points Any number of dominant directions
may be present. In Figure 1, thereare five, labeled“X”,
“Y”, “Z”, “U” and“V”. MaximumLikelihoodestimatesof
thevanishingpointsareobtained(Section2.1)undertheas-
sumptionthat the error on the observationsareGaussian,
indepententand identically distributed. Under the above
assumptions,the likelihoodfunction is the sumof the eu-
clideandistancefrom the points to the lines that contain
them,andpassthroughthevanishingpoint.

Calibration can be obtainedif a right trihedron exists
amongstthe dominantdirections[1]. Otherwise,an affine
-ratherthaneuclidean-reconstructionis obtained.

Projection matrices areobtained[1] from thevanishing
points.

1Thevanishingpoint of a 3D direction � is theuniqueimagepoint in
whichall projectionsof 3D linesparallelto � intersect.



Figure 1. Left : Image with dominant directions (X,Y,Z,U,V,W) and 2D points. Right : Reconstruction.

The algebraic reconstruction method for obtainingre-
constructionfrom 2D pointsandgeometricinformation is
the maincontribution of this article. It’s main characteris-
ticsare:

1. A criterion, insensitive to noise,is usedto determine
whethertheinputdatadefinesa rigid reconstruction.

2. Knownratiosof distancesbetweenparallelplanesmay
bespecified,whichalsoallows to exploit symmetryin
thescene.

3. All 3D pointsandcameraposition(s)areobtainedsi-
multaneously(unlikein [7, 6]). No referenceplane[4]
or shapetemplate[2] is used.

4. Multiple and single-imagescasesare treatedin the
samemanner. It is not necessary(althoughfeasible)
to trackpointsacrossimagesto obtainreconstructions
from many views.

5. Thereconstructionalwaysverifiesexactlythegeomet-
ric propertiesgivenby theuser, unlike in [6, 7].

Thealgebraicreconstructionmethodfirst determines(Sec-
tion 3.1) the linear constraints-referredto as “g eometric
constraints”- thatareimposedon thecoordinatesof the3D
points by the geometricinformation. The set of feasible
coordinatesis a vectorsubspace,for which a basisis com-
puted.

Then,theobserved2D pointsimposeanothersetof lin-
ear constraints,“observationconstraints”, on the coordi-
natesandonthecamerapositions(Section3.2). In thepres-
enceof noise,a least-squaressolutionis sought.

In the noiselesscase,and if the input data definesa
rigid reconstruction,thegeometricandtheobservationcon-
straintsareall simultaneouslyfeasible,andthesetof their

solutionsis a subspaceof dimensionfour (Section3.3). If
this subspaceis of greaterdimension,this indicatesthatthe
input datais insufficient to definea rigid reconstruction.If
there is noise in the observation, the rank is alteredand
this criterion cannotbe usedas-is. However, it is possi-
ble to generatea setof 3D pointsthatverify thegeometric
constraints,andprojectthemin the imageplane,resulting
in a noiselesssetof observations;from these,oneobtains
noiselessobservationconstraints.Weshow thattheoriginal
datasetdefinesa rigid reconstructionif andonly if the set
of coordinatesthatsolve simultaneouslythegeometricand
noiselessobservationconstraintsis of dimensionfour. This
criterion is insensitive to noise. In Section3.3, we give a
precisedefinition for a “rigid reconstruction”andthecor-
respondingcriteria.

In therestof this section,thenotationsandassumptions
areintroducedandin Section2 theestimationof vanishing
pointsandcalibrationis presented.Section3 describesthe
algebraicreconstructionmethod. Section4 presentssome
experimentalresults: benchmarkingof the algorithmsis
doneusingsyntheticdata,andresultsobtainedfrom real-
world imagesareshown.

1.1 Definition of the input data

The input data consists in 2D pixel coordinates�����! � � !�"�$#&%('*) , localizedin oneof + imagesandge-
ometricinformationrepresentingknown geometricproper-
ties of the 3D points and of the 3D dominantdirections.
Thisgeometricinformationconsistsin :, Knownanglesandcoplanaritiesbetweendominantdi-

rections., Planarity information: Subsetsof 2D points whose
corresponding3D pointsareknown to belongto a 3D
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planeparallelto two of thedominantdirections,which
arealsogiven. Alignementinformationcanberepre-
sentedby planarityinformation.� Metric information: Pairs of pairs of parallel planes�.-0/"-213� and �542/�4617� andtheknowledgeof theratio 8
of the distancesbetweentheseplanes. Eachplaneis
definedby a 2D point 9$: which it containsand by
two directions;$< and ;>= parallelto it.� Oneknowswhatimageeachpoint 9$? comesfrom.

1.2 Notationsand assumptions

The 3D points and dominantdirectionswill be writ-
ten @A�B/!C�C!C
/5@ED and ;���/�C!C�C!/";$F respectively andidentified
with theircoordinatesin thebasisG!;���/5;$�H/5;$IBJ . Weassume
the first threedominantdirectionsareindependent,so that
they form a basis. If a right trihedronis given,we assume
that it is G!; � /5; � /"; I J . We call KML� /�C!C�C
/5KMLF the vanishing
pointscorrespondingto the dominantdirectionsin image
numberN ; all the K L< neednot beobserved.

Imagelinesarerepresentedby a OQP2R vector S . Thesetof
2D pointscontainedin this line is TH9VUXW �ZY\[ 9^]_R
`aS^bdc>e .

Theobservationsareobtainedby perspectiveprojection.
Assuming9$: hasbeenobservedin imageN , onehas[3, 1] :f 9$:Rhg bjilk Lnmpo L� o L� o LIHqr sut vw^x y @n:{z}| LH~�� f*� :c�g / (1)

where i is a scalefactor, k L is the matrix of intrinsic pa-
rameters,| L is the positionof the camerain world coor-
dinates. The error in the observations,the terms

� : , are
supposedto be independent,Gaussianandwith covariance� � [�� � ` , for someunknown � .

2 Vanishing points and calibration

We now show how to estimatethe vanishingpointsof
somedominantdirectionsandpartialcameracalibration.

2.1 Vanishingpoint estimation

First, the geometricinformation is examinedto deter-
mine,for eachdirection,setsof 2D pointsthatarethepro-
jectionsof 3D pointson 3D linesparallelto thatdirection.
A maximumlikelihoodestimateis computedfor eachvan-
ishingpoint for which two or morelinesareavailable.

A vanishingpoint K L< can be estimatedif, in image N ,
the projectionsof at leasttwo 3D lines, parallel to ; < , are
observed. The 2D points 9 : � /!C3C7C7/"9 :�� are known to lie
on the projectionof a 3D line parallel to ;$< if thereex-
ist two distinct planes,specifiedby the user, that contain

the direction ;$< and contain the points �X�B/�C7C3C7/"�A� . Let� �*b���� �� /!C3C7C3/5� �� � �u/!C�C�C�/ �a� b���� � � /!C3C7C3/5� ��M� � bethe lists
of indicesof pointsin image N thatbelongto theprojection
of a 3D line parallel to ;$< . The maximumlikelihoodesti-
mateof thevanishingpoint is thepoint K suchthatthereex-
ist lines S���/�C7C3C7/5S � passingthroughK thatminimizethefunc-
tion : ��K�/5S���/�C7C7C3/�S � �Ez>� ��=5��� ����� ��� ����S.=B/59 : � �B� �r sut v� �u�7���"� /
where ����S�/59^� is the euclideandistancebetweenthe line S
and the point 9 . The searchfor the optimal K is greatly
simplified by the fact that for all K and all   , the line S =
passingthroughK thatminimizes¡�=¢��Sp=�� is eithertheline £ S.=
thatpassesthrough K and ¤9>=nb�¥ � 9 : � � ��¦>= (the centroid

of thesetof points), £ S = b§K¨P©¤9 = , or the line £ S�1= orthogonal

to £ S = andpassingthrough K . Onethenhasto minimize a
functionof K alone:Kªz>� ��=5��� min «>¡�= � £ S.= � /�¡�= � £ S 1= �­¬ C

This expressioncanbe furthersimplified for easycom-
putation. Its minimum is found using Nelder-Mead opti-
mization[8] with multiple startingpoints.

2.2 Calibration

If the first threedominantdirectionsform a right trihe-
dronand k hastheform

k®b&¯°_± ²>³± ´B³R
µ¶ / (2)

thenit is well known [1] that ± canbe estimatedfrom the
vanishingpoints KH� , K�� and KBI , exceptin somepathological
cases.In this article, we only estimate± andassumethat²·³ b ´B³ b{c .
2.3 Estimation of principal dir ections

It is clear that in the basis formed by the first three
dominantdirections,thecoordinatesof thesedirectionsare; � b y R^cQc ~ ] , ; � b y c	R^c ~ ] and ; I b y c­c¸R ~ ] . The co-
ordinatesof the otherdominantdirection, i.e. the vectors;a¹H/!C�C�C (if any) canthenbeestimatedby :; < b m K L � K L� K LI q�º � K L< C
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2.4 Summary of algorithm (I)

1. DeterminesomevanishingpointbyML estimationand
coplanarityconstraints.

2. If a right trihedronis given, Estimatecalibrationma-
trices k L . andleft-multiply theobservations y 9 : R ~ ]thevanishingpoints K L< by k º �L .

3 Algebraic reconstructionmethod

In this section,the algebraicreconstructionmethodis
presented.Threelinearsystemsareconsidered: oneis built
fromthegeometricinformationanddeterminesalinearsub-
spacein which the reconstructionbelongs. The secondis
built from the observed2D featuresanddefinestherecon-
struction. The third systemhasthe samestructureas the
secondand its corankdetermineswhetherthe reconstruc-
tion is uniqueup to scaleandtranslation.

3.1 Geometric constraints

We now show how to expressthegeometryinformation
-coplanarityandmetric information-asa linear systemof
equationson the coordinatesof the 3D points. We build
a basisfor the set (a subspace)of coordinatesthat verify
theseequalities.Examiningthis basis,onecheckswhether
theuserprovidedcoherentgeometricinformation.

Planarity information If two points �V/"» areknown to
belongto aplaneparallelto thedirections¼½/�  , onecaneas-
ily show thatthecoordinates@E:2/�@n? verify :��;$<­P_;>=�� ] @E:dz©��;$<QPE;>=�� ] @n?0bjc¾C (3)

Metric information If points ���¿/5»^� (resp. �ÁÀ^/�ÂM� ) lie on
apair of parallelplanes-0/�-21 (resp. 4*/^461 ) with normal ;
(resp. Ã ) andoneknows theratio 8 of the distancesfrom- to -21 andfrom 4 to 461 , a linearconstrainton thecoor-
dinatesof points �V/"»¢/�À and Â canbefound:; ] ��@E:dz}@n?l�­bd8^Ã ] ��@ÅÄ�zV@_Æ��ÇC (4)

Notethattheratioof ;�]A��@E:{z}@n?l� over Ãn]A��@ÅÄÈz}@EÆ!�
is not invariant by affine transformationsunless ;ÉbÊÃ .
Thus it only makessenseto have ;ÌËbÉÃ if an Euclidean
reconstructionis sought.Thenormalsmaybespecifiedas
thecrossproductof two dominantdirections,or, if anEu-
clideanreconstructionis sought,by adominantdirection.

Using all the equations(3) and(4) providedby the ge-
ometric information, one getsa systemof equations,the
geometricconstraints: Í @ÌbÏÎÐ/ (5)

where @Éb [ @E]� /!C�C!C
/5@_]D ` ] is the OHÑÒPVR vectorholding
all thepoint coordinates.

We call Ó a OHÑÔPÖÕ matrix whosecolumnsform an
orthonormalbasisof the nullspaceof

Í
. All the solutions

to Eq. (5) areof theform@�b×ÓÈØ (6)

for someØÙU_WÐÚ .
Examining Ó allows us to checkthe coherenceof the

geometricinformation: if

Í
hasfull rank,or if somerows

of Ó containonly zeros,thegeometricconstraintsonly have
trivial solutions,mostlikely indicatinganinvalid geometric
information.

3.2 Observationsconstraints

A linear systemis now built from the 2D informa-
tion, thatconstrainsthecoordinatesof thereconstructed3D
points. In the presenceof noisein the observations,this
systemmayhave no exactsolutionof theform (5) andthe
reconstructionis obtainedasa least-squaressolution.

Observationof a 2D point constrainsthe corresponding
3D point to lie on a 3D line. Not surprisingly, from each
observed 2D point 9$: , oneobtainstwo affine constraints
on thecoordinates@n: .

For eachobserved point 9 , projectionof @ , and each
vanishingpoint of thebasisdirectionso < (we omit the im-
agenumber N ), onecanbuild the 2D line containingboth
points: SÜÛ o <¢P f 9 Rªg C
This line is theprojectionof the3D line parallelto the ¼ th
basisvector and passingthrough 9 . Of course,one has[ 9^]AR
`aS$bdc , sothat,usingEq.(1), oneobtains:S ] o <7Ý�Þ¨< � S ] o <3Ý Ý�Þ¨<7Ý Ý$zVS ] o <7Ý.ßa<7ÝazVS ] KB<3Ý Ý�ßa<7Ý Ý�bdcj/

(7)
where ¼à1 and ¼�1 1 aresuchthat G�¼�/5¼à1�/"¼à1 1�J}báGZRZ/�â\/�O\J . The
threelinear equationsEq. (7) (oneper vanishingpoint o < )
obtainedfor eachpoint form asystemof ranktwo.

By concatenatingthe equations(7) obtainedfor each
point, one obtains a linear systemof observationcon-
straints: ã @ �ªä |åbÏÎÐ/ (8)

where |æb [ |2]� C�C!C5|2]ç ` ] and
ã

and ä are OHÑèPXOHÑ andOHÑéP0OZê matricesholdingthecoefficientsthatmultiply el-
ementsof @ and | , respectively. Sincethe geometricin-
formationconstrains@ to have theform of Eq. (6), Eq. (8)
canberewrittenas: ã ÓÈØ �ªä |åbdc¾C (9)
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3.3 Natureof the solution

In this sectionwe show how the rank of a certainma-
trix indicateswhethertheuserprovideddatathatdefinesa
uniquereconstructionup to scaleandtranslation.

Definition: One says that a datasetdefinesa rigid re-
construction if and only if there exist vectors @_ëìb[ @ ë ]� C�C�C�@ ë ]D ` ] UÖW I�D and í�|*�Z/�C!C�C
/½íÐ| ç UÖW I such
that, for all @ and | that verify Eqs.(9) , thereis a scale
factor iîU_W anda vector |Ð�6UXW I suchthat:@E: b i·@ ë: � |ÐïZð �pñÇ�òUóG�RHC7C3C�ÕôJ��| L b |Ð� � i·í�| L �pñaNóU¿GZRHC7C7C ê�JB�

where õö:÷UøG�RHC7C3C ê�J is theindex of theimagein which9$: is observed.
Here,the @ : are“base” reconstructions,the í�| L are

displacementsbetweencamerapositions,and i , | � arethe
arbitrarily chosenscalefactorandpositionof thefirst cam-
era.

If there is noise in the observations 9$: , Eq. (9) will
have no exact solution. For a noisy dataset,onedefinesa
rigid reconstructionasfollows : assumingtheobservations
areobtainedby Eq. (1), onesaysthat the datasetdefinesa
rigid reconstructionif andonly if thenoiselessobservations
(Eq. (1) without the noiseterm

� : ) definea rigid recon-
struction.PropertyB, below, saysthat,evenwithoutknow-
ing the noiselessobservations,it is possibleto determine
whetheradatasetdefinesarigid reconstruction.

Property A: In the absenceof noise,thereis a rigid re-
constructionif andonly if the matrix y ã Ó Y ä¢~ hascorank
equalto four. Wedonotgivehereaproofof thisstatement.

If thereis noisein the observations 9 : , the rankof the
matrix y ã Ó Y ä­~ will bealteredandonecannotusethecri-
teriongivenabove.

However, onecanbuild matrices ùã and ùä suchthatthere

is a rigid reconstructionif andonly if m ùã Ó Y ùä q hascorank

four. We call m ùã Ó Y ùä q the“twin matrix” of y ã Ó Y ä¢~ . This

matrix is obtainedin thefollowing way: onegeneratesran-
domly a vector ùØhUjW Ú whoseelementsareall distinct,
anddistinctvectors ù|Ð�M/�C7C3C7/Çù| ç . Onedefines ù@ÉbåÓúùØ and
then produces,using Eq. (1), noiselessobservationsù9$: ,
the projectionsof the 3D points ù@E: . Finally, from these
2D points,onebuilds thematrices ùã and ùä in thesameway
that

ã
and ä wereobtainedfrom the 9$: .

Property B: Thereis a rigid reconstructionif andonly if

the“twin matrix” m ùã Ó Y ùä q hascorankequalto four. Wedo

notgiveherea proof of thisstatement.

Note that this criterion is not influencedat all by noise
in theobservationsor in thevanishingpoints.

3.4 Computing a solution

We assumethe twin matrix hascorankfour. The space
of solutionsto Eq. (9) would have dimensionfour in the
absenceof noise.In thepresenceof noise,we approximate
this spaceby : û f Ø |Ôg bjüXÃ}ý�þ�ÿ����
wherethe columnsof ü are the right singularvectorsofy ã Ó Y ä­~ correspondingto thesmallestsingularvalues.It is
oftenmoreconvenientto representthesolutionspaceby :û f @ | g b f Ó�ü �ü �Ôg Ã}ýöþ�ÿ����¢/
whereüòb [ üó]� üó]� ` ] and ü0�M/¾üÅ� have Õ and OZê rows
respectively (correspondingto Ø and | ).

Obtaininga particularsolutioncanbedoneby imposing
four additionalconstraintsto @ and/or | , for exampleby
fixing thecenterof massof thesceneandits scale.

3.5 Summary of algorithm (II)

1. Build the matrix

Í
from the vanishingpoints K L< and

geometric information; computea basis Ó for the
nullspaceof

Í
, checkthat it containsonly non-zero

points(stopotherwise).

2. Build thematrices
ã

and ä from thevanishingpointso L< andtheobservations9$: .

3. Build the twin matrix m ùã Ó Y ùä q . Verify that it has

corankequalto four (stopotherwise).

4. Computea basisfor the spaceof solutionsanda par-
ticular solutionusingotherconstraints.

4 Experimental results

4.1 Sensitivity to noise

We studytheeffectof noiseon thealgebraicreconstruc-
tion method-for Euclideanreconstruction,on the estima-
tion of vanishingpointsandon thecalibrationprocess.Us-
ing syntheticdata,with varying noiselevel, we study the
errorin theresultingreconstructions.A very wide rangeof
noiselevelsis covered.

The “house”objectshown in Figure2 (left), consisting
of tenpoints,is used.It’s coordinatesareall within thein-
terval y zÜRH/!R ~ . Five directions,“Z”, “X”, “Y”, “U” and“V”
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arepresent,the last four beingcoplanar. Nine planesare
identified. Theobjectis rotatedrandomlyandobservedby
perspectiveprojection,thematrix k in Eq.(1) is of theform
(2) where ± , thefocal length,is generatedrandomlywith a
uniform densityprobability function in y RZC � /lâ ~ -not anun-
commonvalueif pixel coordinateshavebeennormalizedtoy zÜRZ/>R ~ . Theprincipalpoint y ² ³ / ´ ³ ~ is likewisetakento be
uniformly distributedin y z¸c¾C c � /\clC c � ~ .Noise is addedto theseobservations with amplitudes
varyingfrom 25dB(6%error: thestandarddeviationof the
error is 0.06timesthatof theobservations)to 60dB(0.1%
error). In real-world situations,we believe thenoiselevels
arein therange0.3-1%(40-50dB).

The vanishingpoints are estimatedand calibration is
obtainedfrom the dominantdirections“X”, “Y” and“Z”.
Then,thealgebraicreconstructionmethodis usedto obtain
thereconstruction,in threedifferentcases:

1. Using the maximumlikelihood vanishingpoints and
focal lengthestimatedasin [1].

2. Using the maximumlikelihood vanishingpoints and
thetruecalibrationmatrix k .

3. Usingthetruevanishingpointsandcalibrationmatrix.

This experimentwasrepeated50 times.Theerrorbetween
thetrueandestimatedparametersaremeasured.

Vanishing points and calibration Figure 2 (middle)
shows themeanabsoluteerror, measuredin degreesin the
estimatedvanishingpoints. The smoothcurve shows the
errorin thevanishingpointsestimatedfrom two lines(“U”
and“V” axes)andthedashedcurve is for vanishingpoints
estimatedfrom four (“Y”,“Z”) or five (“X”) lines.

Algebraic reconstruction Thesmoothcurve in Figure2
(right) showsthemeanerrorof thereconstructionalgorithm
whenthetruevanishingpointsandcalibrationaregiven;the
dashedcurve is for estimatedvanishingpointsandknown
calibration,andthedottedcurve is for estimatedvanishing
pointsandcalibration.

For valuesthat arecommonin practice,between0.3%
and1% the error level is seento be very reasonable.For
highernoiselevels, the error increasesapproximatelylin-
early, showing therobustnessof thealgorithm.

4.2 Real-world data

Figure1 showson theleft a real-world imageandon the
right the reconstructionobtainedfrom it. Fifty nine (59)
pointsand50 planesandnineratiosof lengthsweregiven.
The matrix Ó has57 columns. If onereprojectsthe esti-
mated3D pointsin the image,thenoiselevel with respect
to theobservedpointsis 29.5dB.

Figure3 shows two indoor imagestaken from approxi-
matelythesamepoint,but in more-or-lessperpendiculardi-
rections.Theinput consistsin 61 points,35 planesandone
known ratioof lengths: thedistancefrom thepointmarked
“A” in thefirst imageto thatmarked“A-prime” in thesec-
ond imageis equalto that from point “B” (first image)to
point “B-prime” secondimage. No 3D point is visible in
both images.Theerror level of reprojectedpointswith re-
spectto observedpointsis 42.9dB.

Figure 4 (left,middle) shows two outdoorsimagewith
someoverlap.Seventy-two (24 in thefirst image,48 in the
second)pointsand21planeswereidentified.In orderto ob-
tain a rigid reconstruction,it is necessaryto usemetric in-
formation: oneassumesthatthespikesontheleft andmid-
dlewall stick out by thesameamount.Without thisknowl-
edge,the relative scaleof the spikesandof the restof the
scenewouldbeundetermined.Figure4 (bottom)showsthe
reconstruction.The error level of reprojectedpointswith
respectto observedpointsis 46.6dB.

5 Conclusionsand futur e work

We havepresenteda methodfor 3D reconstructionfrom
one or more views that checkswhetherthe input data is
coherentandsufficient to definea rigid reconstruction.It
could e.g. addversatility to an easy-to-useinteractive re-
constructionsystemsuchas[2, 5, 7].

It allows reconstructionfrom many images(like [6], but
onedoesnotneedto trackpointsacrossimages[Sec.4.2]).
We have shown thatusingmetric informationincreasesthe
versatility: we believenoneof thepresentedreal-world re-
sultscouldbeobtainedusingotherpublishedmethods.

Also, we have presentedand benchmarked a method
for computingmaximumlikelihoodestimatesof vanishing
points.

Therearemany prospectsfor futuredevelopment: one
could includeconstraintson | in the geometricinforma-
tion; maximumlikelihoodestimationof the reconstruction
hasalsobeenimplementedin thepresentedframework.

Credits : This work hasbeensupportedby grantsPRAXIS /
BD / 19594/ 99 and project CameraEC FTMP Network ERB
FMRX-CT97-0127.
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