
ACCV2002: The 5th Asian Conference on Computer Vision, 23–25 January 2002, Melbourne, Australia. 1

Reconstruction from two views using approximate calibration

Richard Hartley and Chanop Silpa-Anan,
Department of Systems Engineering,

RSISE,
Australian National University,

ACT, 0200, AUSTRALIA.

Email: {hartley,chanop}@syseng.anu.edu.au

Abstract

The problem of Euclidean reconstruction from two perspec-
tive images is well studied for calibrated cameras, and good
algorithms are known. On the other hand, if the cameras are
known to have square pixels (no skew and unit aspect ratio)
then the problem is also theoretically solvable, provided an
estimate of the principal point is provided. The focal lengths
of the cameras may be computed from the fundamental ma-
trix, however, it is quite sensitive to the computed fundamen-
tal matrix and the assumed position of the principal point. In
fact, sometimes the estimate of the focal length fails, and
so Euclidean reconstruction is impossible using this method.
In this paper, we investigate the cause of this problem, and
suggest an algorithm that more reliably leads to a reconstruc-
tion. Weak bounds on the principal point locations, and the
focal lengths of the cameras and the condition that points
must lie in front of the cameras give enough constraint to
compute a fundamental matrix that always leads to a plau-
sible focal length estimate, and hence Euclidean reconstruc-
tion that suffers only a very small degradation in residual
point-reprojection error.

1. Introduction
Scene reconstruction from a number of perspective images of
a scene is one of the fundamental problems of computer vi-
sion, and reconstruction from two views is the simplest case
of this problem. Earliest work in this area concentrated on
calibrated cameras, from which it is in principal possible to
obtain a Euclidean (sometimes called metric) reconstruction
of the scene. Such a reconstruction is unique apart from
a choice of the Euclidean coordinate frame, and an over-
all scale, which it is impossible to determine. Notable al-
gorithms for obtaining a reconstruction from two calibrated
views include [LH81, Hor90, Hor91].

With a shift of interest towards uncalibrated cameras, it
was natural to ask whether Euclidean reconstruction was
possible from uncalibrated cameras, leading to a well-known

negative result ([HGC92, Fau92]) showing that for arbi-
trary uncalibrated views, the best one can achieve is pro-
jective reconstruction. On the other hand, it was shown in
[Har92] that given reasonable assumptions about the cali-
bration (square pixels and known principal points), it is still
possible to achieve Euclidean reconstruction. Under these
partial-calibration conditions, the remaining camera calibra-
tion parameters (the focal lengths of the two cameras) may
be computed. After this a calibrated reconstruction method
may be used to obtain a Euclidean reconstruction.

The simplest implementation of this method involves a
formula of Bougnoux ([Bou98]):

f2
2 = − (p1

�[e1]×IF�p2)(p1
�F�p2)

p1
�([e1]×IF�IF)p1

(1)

where I is the diagonal matrix diag(1, 1, 0). A similar for-
mula for f 2

1 is obtained by interchanging the roles of the two
images.

This algorithm, however, suffers from various deficien-
cies.

1. Computation of the focal lengths is not possible if the
principal axes of the two cameras intersect ([NHBP96]).

2. The algorithm requires the position of the principal
point to be known. Furthermore, the computation of
the focal lengths can be very sensitive to the assumed
positions of the principal points, and also to the funda-
mental matrix.

3. In the worst case, the algorithm will fail completely, be-
cause the value of f 2 computed from (1) is negative,
resulting in an imaginary value for the focal length. It
is our observation that a fundamental matrix (even those
computed by the best known methods) may in this sense
be incompatible with any reasonable choice of the prin-
cipal point.

Indeed, the sensitivity is so severe that computation of the
focal lengths can not be relied upon at all, and this algorithm
is of doubtful practical value.



In reconstruction from two views, the camera calibration
is usually not completely unknown, but often not completely
known either. The principal point is usually near the centre
of the image, and the focal length is at least known within
some reasonable bounds. Our goal is to show that Euclidean
reconstruction is possible from two views, even without ex-
act knowledge of the principal point, provided some assump-
tions are admitted concerning the position of the principal
points, and the focal lengths of the images. As part of this
reconstruction process, a fundamental matrix is found that is
compatible with reasonable estimates of the principal point.
Thus, incorporation of this a priori knowledge of the prob-
able principal points and focal lengths leads to an improved
estimate of the fundamental matrix.

The constraints imposed by the a priori knowledge of the
principal points and focal lengths can be very weak, and yet
lead to a considerably improved results. For instance, in the
examples discussed below, an assumption that the principal
point is weakly constrained to be near the image centre (let
us say plus or minus half the image radius), and that the focal
lengths of the two cameras are approximately equal (maybe
within 5%), is sufficient for Euclidean reconstruction to suc-
ceed. Other assumptions are possible, as will be seen. Please
refer to section 5 for details of the weights used in our exper-
iments.

Oliensis [Oli00] has undertaken a study of reconstruction
methods, and argues that sometimes calibrated camera algo-
rithms give better results than using uncalibrated algorithms.
This can only be true when the camera calibration is accu-
rately known, however. The algorithm given in this paper
gives a solution for the intermediate case where the camera
calibration parameters are known only approximately – with
a degree of uncertainty.

2. Impossible fundamental matrices
In this section, it will be shown that some fundamental matri-
ces, even those computed from good quality data by the best
algorithms (such as a Maximum Likelihood algorithm) are
nevertheless incompatible with the data, and hence wrong.
This is actually quite a common phenomenon, as the exam-
ples will show.

For a fundamental matrix to be accepted as being compat-
ible with a set of matched points x2i ↔ x1i, three conditions
are necessary.1

1. The point correspondences must satisfy the coplanarity
condition x2i

�Fx1i, with a small residual error.

2. For at least some assumed locations of the principal
points p1 and p2, the values of f 2

1 and f 2
2 computed

from (1) are positive.
1Recall that we are making an assumption of square pixels (that is zero

skew and unit aspect ratio) for both cameras.

3. Given such assumed principal point positions, and cor-
responding focal length values, a calibrated reconstruc-
tion is possible, for which the reconstructed 3D points
(apart from a small percentage of possible outliers) lie
in front of the reconstructed cameras.

This last condition is related to the concept of “cheirality”
discussed in [Har98], where it is shown that satisfying the
coplanarity condition for some fundamental matrix is not
sufficient for the set of matches to be realizable. Points in-
correctly placed behind the cameras in a Euclidean recon-
struction severely degrade the quality of that reconstruction.

This discussion is illustrated by the examples given in
Fig 1. There a fundamental matrix is used, computed using
a bundle-adjustment method (the Gold-standard method of
[HZ00]), which is as good as any known method. The set of
matched points used for this computation are of high quality,
outliers having been previously removed, and the residual
error from estimation of F being very small (see table 3).
Nevertheless, it is seen that the possible positions for the
principal point are very constrained. In fact, the most likely
location of the principal point (the centre of the image) is
not compatible with the computed fundamental matrix. This
problem occurs with most of the other algorithms tried (see
table 4 and table 5).

3. A cost function
Given a set of point correspondences x2i ↔ x1i, our ob-
ject is to estimate the fundamental matrix subject to prior
assumptions about the distribution of the focal lengths and
principal points of the two cameras. The method is applica-
ble easily to any assumed distributions, but most commonly
a normal (Gaussian) distribution will be assumed. An iter-
ative (Levenberg-Marquardt) method is used to minimize a
cost function of the following form:

Cost(F, f2
1 , f

2
2 ,p1,p2) = CF(F)+Cf (f2

1 , f
2
2 )+Cp(p1,p2) .

(2)
Thus the total cost is the sum of three cost functions, mea-
suring the cost of estimates of the fundamental matrix F, the
squared focal lengths f 2

1 and f 2
2 , and the principal points re-

spectively. The reason for expressing the second cost func-
tion in terms of the squared focal lengths is because of the
form of Bougnoux’s formula (1). We want to define a cost
(very high) for a negative value of f 2.

The cost functionCF(F) is also a function of the point cor-
respondences. Although various cost functions are possible,
we prefer to use the Sampson cost function

∑
i

(x2i
�Fx1i)2

(Fx1i)2
1 + (Fx1i)2

2 + (F�x2i)2
1 + (F�x2i)2

2

. (3)

This cost function is a first-order approximation to the cor-
rect geometric (or Maximum Likelihood) cost function.
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Figure 1: At the top are a pair of images used for comput-
ing a fundamental matrix. The fundamental matrix was com-
puted using the Gold-standard algorithm of [HZ00]. For this
example it is assumed that the principal point is the same in
both images. In the middle row of figures, the possible posi-
tions for the principal point are shown. White shows possible
positions of the principal point, and black impossible. The
criteria used for the three diagrams are: f 2

1 positive (left),
f2

2 positive (centre) and < 10% points behind cameras. The
graph on the right shows those positions for the principal
points where all three conditions are satisfied. As seen, there
are very few possible positions for the principal points con-
sistent with this fundamental matrix – certainly not the centre
of the image.

The third row of figures shows the same results for the funda-
mental matrix computed using the method described in this
paper. The obtained fundamental matrix is consistent with
the assumption of principal point near the centre of the im-
age.

The total cost function is minimized over a set of param-
eters by Levenberg-Marquardt algorithm. The set of param-
eters is divided into two parts.

1. A set of parameters parametrizing the fundamental ma-
trix F, and

2. A set of 4 (or 2) parameters defining the positions of
the principal points. Two parameters may be used if it
is assumed (and enforced) that the principal point is the
same in both images.

The minimization algorithm is as follows.

1. Given F and pi, compute f 2
1 and f 2

2 using Bougnoux’s
formula (1).

2. Compute the cost function Cost(F, f 2
i ,p

2
i ).

3. Vary the parameters of F and the pi to minimize the cost
function.

Form of Cp and Cf . The specific form of the cost func-
tions for pi and f 2

i may be chosen in various ways. How-
ever, a natural form for Cp is the squared Euclidean distance
of the estimated principal point from the nominal value.
Thus

Cp(pi) = w2
pd(pi, p̄i)

2 (4)

where p̄i represents the nominal position of the principal
point, and wp is a weight. There is a cost term of this form
for each of the two principal points.

The form of the cost function Cf may be a little more
complicated, since we want to ensure that the value of f 2

does not end up negative. In addition, it may be appropri-
ate to enforce a condition that the two focal lengths are the
same (or approximately so). Accordingly, the cost function
Cf (f2

1 , f
2
2 ) used in our implementation of the algorithm has

several components:

Cf (f2
1 , f

2
2 ) = w2

1(f2
1 − f̄2

1 )2 + w2
2(f2

2 − f̄2
2 )2

+ w2
d(f2

1 − f2
2 )

+ w2
z1(f2

min − f
2
1 )2

+ w2
z2(f2

min − f
2
2 )2 (5)

Recall here that f 2
i is the value returned by Bougnoux’s

formula (1), and may be negative. The final two terms of
this equation involve a “minimum” value fmin for the fo-
cal length, and are only included if f 2

i < f2
min. (That is

wz1 and wz2 are zero unless f 2
i is small, or negative.). This

term grows rapidly for small or negative values of f 2
i , and

effectively prevent f 2
i taking on negative values. A reason-

able minimum value of fmin can be deduced from the size
of the image. The field of view of the camera is equal to
2 arctan(dim/f), where dim is the radius of the image. For
small values of f , this becomes unrealistically large. Most
images encountered (except for extreme wide angled views)
do not have field of view exceeding 75◦.

The choice of the weight values may be chosen according
to taste. The values of wzi are not critical, and normally it is
sufficient to apply quite weak weights for the other values.

4. Initialization
The input data for the reconstruction problem includes an es-
timate of the focal length and principal point of the cameras.
Thus, given a set of point correspondences, x2i ↔ x1i and
initial estimates p̄i and f̄i of the principal points and focal
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lengths, an initial value for the fundamental matrix is found
as follows. Let K1 and K2 be the initial calibration matrices
for the two images. Thus,

K1 =


 f̄1 0 x̄1

f̄1 ȳ1

1


 K2 =


 f̄2 0 x̄2

f̄2 ȳ2

1


 (6)

where p̄i = (x̄i, ȳi) are the principal points. Let F be an esti-
mate of the fundamental matrix computed from the point cor-
respondences using any desired method. We used a method
([HZ00]) that minimizes algebraic error. The essential ma-
trix E may then be computed as

E = K2
�FK1 .

This value of the essential matrix will not generally be quite
correct for the assumed calibration matrices, since it will not
satisfy the necessary condition for a essential matrix, namely
that it have two equal singular values. To correct this, the
singular value decomposition of E is computed as E = UDV�,
and a corrected essential matrix is computed, by setting Ê =
UIV�, where I = diag(1, 1, 0). Finally a corrected value of
the fundamental matrix is computed by setting

F̂ = K2
−�ÊK−1

1 .

The resulting fundamental matrix F̂ is the best approximation
to F, compatible with the assumed calibration matrices.

Iteration will start with this estimate F̂ for the fundamen-
tal matrix, and the assumed values p̄1 and p̄2 for the two
principal points. The cost function CF(F̂) will be slightly
greater thanCF(F), but usually the difference is not too great.
However, because of the way F̂ is defined, the cost func-
tions Cp(p̄1, p̄2) and Cf (f2

1 , f
2
2 ) will both have initial val-

ues zero.

5. Experiments
The algorithm was carried out on both synthetic and real
data. The algorithms used for computing the fundamental
matrix were as follows. For details of these algorithms, the
reader is referred to [HZ00].

1. A normalized 8-point algorithm.

2. The gold-standard algorithm (bundle adjustment).

3. Iterative minimization of algebraic error (algebraic min-
imization algorithm).

4. Iterative minimization of Sampson error, (3).

5. The algorithm of this paper (denoted by a-priori in the
graphs and tables).

6. Calibrated reconstruction, given fixed assumed values
of the principal points and focal length.

The final algorithm is the one described in section 4,
which is used as an initial point for the a-priori algorithm.

Noise Cube Shed
Level gold-standard a-priori gold-standard a-priori

0.0 43.82 4.40 20.01 42.77
0.2 44.18 6.31 51.76 43.82
0.5 44.81 15.27 102.9 82.06
1.0 46.46 47.56 148.6 90.86
2.0 60.73 66.00 177.9 125.4
4.0 117.3 123.0 203.1 186.8

Table 1: Mean errors for synthetic data. This table shows
the average reconstruction error for the two synthetic data
set, cube and shed images. For this example, two algorithms
are used to estimated the fundamental matrix, the gold-
standard algorithm and the the a-priori algorithm. An in-
correct initial principal point (225.5,225.5) and focal length
(590) are given to the algorithms.

5.1. Synthetic image experiments
Evaluation of the method was carried out on two sets of data.
In the first set, scattered points on the surface of a cube were
used, and data were generated by projecting the points into a
pair of nominal cameras. In the second set, a pair of images
were used to build a realistic-looking model of a house (us-
ing the images in [HZ00] (page 250)) The model was then
projected back into two images, approximating the original
images. This was the synthetic data, corresponding to a real-
istic imaging setup, that was used for experiments. For each
synthetic data set, noise was added in varying degrees, and
Euclidean reconstruction was carried out.

The experiments were carried out with two different a pri-
ori estimates for the principal point and focal length. In the
first set, the exact values were given. This of course gives
a significant advantage to the calibrated reconstruction algo-
rithm, since it is provided with exact values for these param-
eters. In the second set of experiments, the assured value
of the principal point is shifted by 30 pixels in each dimen-
sion (in a 512 × 512 image), and a slightly modified value
for the focal length is given. This is perhaps more realistic,
since these parameter values may not be known exactly in
advance.

Choice of weights. The a-priori algorithm was run with
very weak weights, in order to place minimal constraints on
principal point and focal length. The value of wp was equal
to 0.01, which means that a variation of 100 pixels (in a
512 × 512 image) was given as much weight as one pixel
reprojection error for a single matched point. The principal
point was, however, assumed to be the same in both images.

As for the focal length, the weights w1 and w2 were set
to zero, which means that no constraint was placed on these
parameters individually. However, a value of 0.001 was cho-
sen for wd. This means that a value of 1000 for f 2

1 − f2
2

was equivalent to one pixel reprojection error. Since f i was
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around 500, this means approximately one pixel difference
in f1 − f2.

As stated, the values of wzi are not very critical. A value
of fmin = 100 was taken, and a weight wzi = 0.01 was
chosen.

Findings. Perhaps because of the controlled nature of the
synthetic algorithms, in no case did the values of f 2

i turn out
to be negative. As a result, the reconstruction results were
good for all the algorithms used. The a-priori algorithm per-
formed significantly better than the calibrated reconstruction
algorithm, except in the case where exact parameters were
given, and for high noise values. See table 1 for a compari-
son of the a-priori and the gold-standard algorithms.

5.2. Real image experiments
Experiments were also carried out on real images, for which,
however, no ground truth structure was known. The image
pairs used were the ones used in [HZ00] (page 273) for eval-
uation of fundamental matrix computation. They may be
taken as reasonably representative of real image sets. The
experiments were carried out with the same weight values
and a priori parameter estimates as the synthetic images. The
results are given in the following tables 2 – 3.

Findings. Most of the algorithms used gave values for
the fundamental matrices for which the focal length values
f2
i were negative, under the reasonable assumption that the

principal points were in the centre of the images. Thus, in
this case it was not possible to proceed with Euclidean re-
construction. For each image, a calibrated reconstruction al-
gorithm was also used to compute the fundamental matrix.
Since the calibration was only guessed at, understandably the
residual reprojection error in this case was much worse than
for the present a-priori method. The consequence of this
will be a significantly degraded reconstruction, since the 3D
points will not be estimated accurately. In addition, in one
case (the statue example, see table 5), the calibrated recon-
struction resulted in points being found behind the camera.
This also occured for some other algorithms and image sets,
but not for the a-priori algorithm. The consequence of points
ending up behind the camera will be a severely distorted Eu-
clidean reconstruction.

It is important to note that the residual projection error is
only very slightly greater for the a-priori algorithm than it
is for the gold-standard algorithm (or the other algorithms).
Despite this, the a-priori algorithm gives fundamental matri-
ces that are much more realistic, in fact usable for subsequent
3D reconstruction.

6. Conclusion
This paper points out some of the difficulties involved in Eu-
clidean reconstruction from two views. It is shown that most

Method a-priori
Image

Basement (255.5,255.5)
Calib (255.9,254.6)
House (254.2,234.9)

Museum (232.0,229.8)
Statue (248.5,206.9)

Table 2: Estimated principal points. For the a-priori al-
gorithm of this paper, the principal points were estimated to
be at location (255.5,255.5). The algorithm has moved the
points away from the initial estimate to the locations given
in this table. As noted, the required changes in principal
point are quite small. This change comes at a very small
additional cost in point residual (see table 3). However, it
results in possible (and plausible) values for the cameras’
focal lengths (see table 4).

Method gold a-priori calibrated
Image standard

Basement 6.95×10−2 9.82×10−2 9.74×10−2

Calibration 1.32×10−2 1.43×10−2 1.03×10−1

House 1.83×10−1 1.83×10−1 3.47×10−1

Museum 2.46×10−1 2.9×10−1 3.51×10−1

Statue 2.77×10−1 2.81×10−1 1.26
Cube 1.26×10−6 1.26×10−6 3.05
Shed 1.31×10−6 1.21×10−6 3.19

Table 3: Residuals. This table summarizes the residual
RMS error of the estimated fundamental matrix obtained
from 3 algorithms: the gold-standard algorithm, the a-priori
algorithm of this paper, and calibrated fundamental matrix
estimation using nominal values of of the focal length and
principal point. Note that the extra cost (in terms of resid-
ual error) of using the a-priori algorithm, compared with the
gold-standard algorithm is very small. However, it has the
great advantage (see Tables 4 and 5) that it leads to a fun-
damental matrix compatible with cheirality and reasonable
estimates of principal point and focal length. The calibrated
algorithm gives larger residuals, presumably due to incor-
rect assumed values of focal length and principal point.

of the standard algorithms for computing the fundamental
matrix may result in matrices that are wrong, and in fact un-
usable for 3D reconstruction. However, adding some weak
constraint terms to the cost function used to compute the fun-
damental matrix can lead to vastly improved results, partic-
ularly as far as estimation of the focal lengths, and subse-
quent 3D reconstruction is concerned. The effect is far more
noticeable for real images than synthetic ones. The cost of
adding these constraint terms is very small in terms of in-
creased reprojection residual.
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Method normalized gold algebraic Sampson a-priori
Image 8-points standard distance error

Basement X/X X/X X/X X/X 503.3/503.4
Calibration 872.3/864.3 510.7/509.2 X/X X/X 279.9/279.7

House X/X X/X X/X X/X 451.6/451.5
Museum X/X X/X X/X 2964/3001 654.8/654.8

Statue X/X X/X X/X X/X 1167/1167

Table 4: Estimated focal lengths. This table shows the estimated focal length for each image pair calculated from 5
algorithms. Note that some well known algorithms such as normalized 8-points algorithm and gold standard algorithm may
give an impossible answer (imaginary focal length, denoted by X).

Method normalized gold algebraic Sampson a-priori calibrated
Image 8-points standard distance error

Basement 0/0 0/0 0/100 0/0 100/100 100/100
Calibration 100/100 100/100 100/0 100/100 100/100 100/100

House 91.7/91.7 100/0 100/0 100/0 100/100 100/100
Museum 0/0 0/100 0/100 94.9/94.9 100/100 100/100

Statue 100/100 100/0 100/0 100/100 100/100 52.4/52.4

Table 5: Percentage points in front of cameras. This table shows the percentage of points that lie in front of each camera in
each image pair. It is clear that the algorithm in this paper gives a better result in that the estimated fundamental matrix yields
estimated points in front of the camera. When wrong principal points and focal length are used in the calibrated reconstruction
algorithm some points may end up behind the cameras, as seen for the statue pair.

In our experiments, we did not attempt to add any extra
cost terms to ensure that the reprojected points lie in front of
the cameras. In all the cases shown here, the new algorithm
resulted in points being reconstructed in front of the cameras.
This is not guaranteed, however, and we occasionally found
cases in which this condition was violated.

Further work in this area can include determination of the
best weight functions for principal point and focal-length er-
rors, and an investigation of adding terms to the cost function
to ensure points lie in front of the cameras.
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