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Abstract

We examine whether the accuracy of 3-D space point re-
construction from image pairs can be improved by using
rotational imaging. The necessary mechanism and mathe-
matical foundations of such a system are described together
with the control algorithm needed for achieving optimal re-
construction results.

1 Introduction

In recent years it has become apparent that for obtain-
ing reliable solutions of many recognition and scene under-
standing problems it is necessary to acquire 3-dimensional
data of objects and scenes. One of the most popular ap-
proaches to acquiring such data has been 3-D space point
reconstruction from stereo vision. [1]. However, 3-D space
point reconstruction from conventional stereo vision em-
ploying fixed spatial configurations of cameras has been
plagued by several problems: (a) there is an exponen-
tial increase of depth estimation error as the distance be-
tween space points and the camera increases (this problem
is attributed to fixed baseline distance) [2]; (b) many mis-
matches occur during point correspondence computations
especially when there are multiple similar feature points on
the epipolar lines [3, 4]; (c) periodic structures in the im-
ages often cause mis-matches; (d) occlusions are hard to de-
tect and can cause mis-matches [5], and (e) with 2-camera
stereo, only those edge points can be matched reliably that
have a gradient vector roughly pointing in the direction of
the baseline.

In this paper we describe a new attempt to solving the
problem of metric 3-D space point reconstruction by pas-
sive imaging. We use a single camera that can be rotated
around two space axes not passing through the camera’s
optical center and reconstruct 3-D space points from stereo
image pairs acquired by the camera while pointing in differ-
ent spatial directions. The goal of this study is to provide an
answer to the question of whether one can solve the above

mentioned problems by using this mechanism, i.e. whether
it is possible to achieve lower depth estimation error, in-
creased reliability of computed matches in the presence of
occlusions, periodic scene structures and multiple similar
image points on the epipolar line. We assume the scene to
be static, and we require that the system can carry out omni-
directional reconstruction of the surrounding environment’s
3-D space points.

2 Motivation for rotational imaging based
3-D reconstruction

The problem of exponential increase of depth estimation
error can be alleviated to some extend by introducing mul-
tiple baselines with different baseline distances into stereo
system design [6]. However, construction of such systems
is expensive and there is a tendency that they become bulky
and difficult to handle. In contrast, using just one camera
that is rotated around a central axis is another way of con-
structing stereo systems with variable baseline distances.
Such a system even allows to adjust the cameras to achieve
optimal baseline distance.

The problem of mis-matches due to multiple similar fea-
ture points can be solved by using a rotational camera sys-
tem in which as the first step a reliable preliminary match
of a feature point is obtained by rotating the camera only
slightly (while tracking the feature point as the camera ro-
tates). Then in the second step one predicts the point’s lo-
cation on the sensor plane after a larger rotation will have
taken place. In a third step the feature point can then fi-
nally be matched in the vicinity of the predicted location,
effectively avoiding mis-matches.

In the same way, periodic image structures can be
uniquely matched by a rotational imaging system.

When using a rotational imaging system, space points
that are visible in one view and occluded in another can ef-
fectively be dealt with: Firstly, occlusions can be easily de-
tected because if a match cannot be confirmed in the vicin-
ity of the location it was predicted to exist, the space point
can be judged as being occluded in the second frame. And



secondly, it is possible to match points that initially are oc-
cluded by rotating the camera only as much as is required to
let the point stay visible and only then carry out the match.
In this case we may not be able to reconstruct the space
point’s 3-D location with an optimal baseline distance, but
at least we can obtain the match.

The problem of obtaining matches for all extractable fea-
ture points, not only for those that have a gradient vector
pointing in the direction of the baseline, can be solved in a
rotational imaging system by providing for two degrees of
rotational freedom, with one rotation occurring around the
horizontal axis and another one around the vertical axis. In
this case, the system’s control unit must decide which of the
two rotations is most appropriate for a given feature point.

In summary, 3-D space point reconstruction using ro-
tational imaging holds the promise of providing solutions
for most of the major problems exhibited by conventional
stereo based reconstruction systems.

3 Point reconstruction by rotational imaging

3.1 Principal considerations and mechanism

In conventional stereo systems 3-D space points are re-
constructed by first computing the visual disparity between
two images of the same 3-D space point taken at different
space locations and then use it for reconstruction. In the
context of rotational imaging for 3-D space point recon-
struction, the system generates visual disparities between
two point images by rotating the camera. Since the center
of the camera’s optical system must be moved, the center of
rotation and the center of the camera’s optical system must
not coincide.

A mechanism for realizing a rotational imaging system
satisfying this condition and the requirement of having two
degrees of rotational freedom is shown in Fig.1. The largest
possible rotation angle around the (vertical) Y c-axis (i.e. the
pan angle interval) is 360◦, and the largest possible rotation
angle around the (horizontal) Xc-axis (i.e. the tilt angle in-
terval) is 270◦, making the system fully omnidirectional.
The two axes of rotation intersect at the center of rotation,
which is used as the coordinate origin of the system. The
optical center of the camera is placed at a finite distance
from the origin. The angular resolution of both rotations is
high (approximately 0.01◦), and the rotations can be carried
out precisely by means of high-precision stepping motors.
Rotational slip is assumed to be close to zero due to spe-
cially designed gears.

The world coordinate system (C, X, Y, Z) is assumed to
have its origin at the center of rotation C. The Y-axis is ver-
tical, and the X and Z axes span a horizontal plane. When
the camera is in standard pose, the Xc rotation axis coin-
cides with the X-axis, the Yc rotation axis coincides with

Figure 1. Prototype mechanism for rotational
imaging

Y-axis, and the camera’s optical axis coincides with the Z-
axis. All space points are represented in the world coordi-
nate system.

Given this mechanism and coordinate system and assum-
ing that the camera is in standard pose and that its optical
center is located at the origin of the world coordinate sys-
tem, the camera projects a space point M̃ = (X, Y, Z, 1)T

as
m̃ = P̃M̃, (1)

where m̃ = (U, V, S)T is a column vector in homogeneous
coordinates and S is a scale factor equal to Z, and P̃ is
the 3x4 projection matrix in homogeneous coordinates. The
Euclidean coordinates of the space point’s projection onto
the image (sensor) plane of the camera are given as u =
U/Z, v = V/Z.

Since the camera’s optical center c and the center of ro-
tation C must not coincide, the camera has to be translated
along the Z-axis by some distance Zc. This is done by defin-
ing a translation matrix T̃ in projective coordinates and con-
catenating it to the projection matrix.

When the 3-D position of a space point is to be deter-
mined, the camera first rotates around the Xc rotation axis
by angle β in oder to adjust the orientation of the Y c-axis,
then it rotates clockwise by some angle αcw around the Yc-
axis to position CP1, takes an image of the space point M,
then it rotates counterclockwise by some angle αccw around
the Yc-axis to position CP2, and takes the second image of
the space point. (Similarly, the same can be done with rota-
tions in up- and downwards directions, where Xc-axis and
Yc-axis are exchanged). The two rotation angles usually
satisfy the condition αcw < αccw, and the rotations must be
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such that the point to be estimated is visible from both cam-
era positions. These rotations are expressed by two matri-
ces R̃cw

y and R̃ccw
y given in homogeneous coordinates. The

projection of the space point when the camera is at position
CP1 is thus given by

m̃1 = P̃T̃R̃xR̃cw
y M̃ (2)

and the one at position CP2 is given by

m̃2 = P̃T̃R̃xR̃cw
y R̃ccw

y M̃ (3)

If translations and rotations are combined with the projec-
tion matrices for the two camera positions, the resulting ma-
trices are given by

P̃1 = P̃T̃R̃xR̃cw
y (4)

and
P̃2 = P̃T̃R̃xR̃cw

y R̃ccw
y , (5)

and the two projections can concisely be expressed as

m̃1 = P̃1M̃, m̃2 = P̃2M̃. (6)

When matching the image of a space point to its corre-
sponding image, the epipolar line is useful as a constraint.
It is computed a follows: First, the 3-D world coordinates
M̃1 of point projection m̃1 (on the sensor plane) are com-
puted, then the optical center of the camera at position CP1

as given by C̃1 = T̃R̃ccw
y (0, 0, 0, 1)T is computed, and

then both of these points are projected onto the sensor plane
of the camera at position CP2, resulting in points m̃1,2 and
ẽ2. The line through m̃1,2 and ẽ2 is the epipolar line used
for matching. In rotational imaging, epipolar lines are not
parallel to the x-axis of the image coordinate system, but if
the rotation angle between two views is small, they can be
considered as being approximately parallel to the x-axis.

3.2 Optical system modeling

The accuracy of reconstruction of 3-D space points
strongly depends on accurate modeling of all system com-
ponents, including the optical system. Since reconstruction
by rotational imaging involves camera rotations around an
axis that does not pass through the camera’s optical center,
the spatial locations of the optical centers have to be deter-
mined accurately after each rotation. For achieving this, the
pinhole model commonly used for representing the optical
system for stereo imaging is no longer adequate. Instead,
we represent the optical system as a thick lens for which in
place of the pinhole two nodal points N ′ and N ′′ are used
[7].

The imaging light rays are assumed to pass through these
two nodal points as is shown in Fig.2 in the context of

the rotational imaging system, with the camera being de-
picted in standard pose. The figure shows how a space point
M1 = (X1, 0, Z1)T in world coordinates is projected onto
the sensor plane at m1 = (u1, 0)T (in image coordinates).
The distance between the two nodal points is denoted H, the
distance between space point M1 and anterior nodal point
N ′ is denoted g, and the distance between posterior nodal
point N ′′ and the sensor plane is denoted by b.
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Figure 2. Optics

The two nodal points split the projecting ray into a ante-
rior ray and a posterior ray, both of which have the same di-
rection. Between the nodal points, the ray is assumed to run
along the optical axis of the system (i.e. we actually assume
a ”pin-pipe” in place of the commonly assumed pin-hole).
Although the real optical center of the lens is located some-
where between the two nodal points, in this idealized model
of imaging we can assume that the optical center of the sys-
tem is located at anterior nodal point N ′. Thus, the distance
between the center of rotation and the optical center is given
by

Zc = H + b + Z0 (7)

With this geometric set-up the projection matrix of the cam-
era becomes

P̃ =




b 0 0 0
0 b 0 0
0 0 1 0


 (8)

We assume that the lens’ focal length f and distances g
and b are related by Gauss’s lens equation

1
f

=
1
g

+
1
b
. (9)

Provided that focal length f and distance b are fixed (as is
usually the case), only space points with distance g to the
plane containing anterior nodal point N ′ that satisfy Gauss’
lens equation are projected onto the sensor plane with a un-
blurred image. Consequently, locations of point images not
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satisfying Gauss’ lens equation will be estimated with some
small error. We neglect this error.

3.3 Metric reconstruction of space points

Metric reconstruction of a space point M of which we
know only its two projections m 1 and m2 at camera posi-
tions CP1 and CP2 can be carried out by several methods.
Probably the most often used method consists of formulat-
ing this problem as a least squares estimation problem [8].
We used a different method which is based on the intersec-
tion of two projection rays.
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Figure 3. Reconstruction

In this method, 3-D space points are reconstructed from
the point’s images m1 and m2 by projecting the two images
backward through the two nodal points N ′ and N ′′ and then
determining the intersection of the two projecting rays. This
situation is shown in Fig.3. The locations of the anterior
nodal points are indicated by position vectors C1 and C2

(which are centers of the optical system), and those of the
posterior nodal points are indicated by C ′′

1 and C′′
2 . The two

projecting rays b1 and b2 can be described as equations of

straight lines given in parametric vector form:

g1(λ1) = C1 + λ1 ·b1, g2(λ2) = C2 + λ2 ·b2 (10)

where b1, b2 are vectors connecting the space point im-
ages m1 and m2 with the two posterior nodal points. Ide-
ally, these two lines would intersect each other at the sought
space point M, but due to the discrete nature of the image
sensor’s sampling array, estimation errors and other inaccu-
racies in system parameters such exact intersections rarely
exist. Therefore in practice the best estimate of M will
be given by two points on the two lines whose distance is
minimal. Assuming that this happens when λ1 = λ∗

1 and
λ2 = λ∗

2, space point M is determined as

M = (g1(λ∗
1) + g2(λ∗

2))/2 (11)

3.4 Stereo image matching based on prediction of
match locations

In the proposed rotational imaging system a 3-D space
point is reconstructed from two images of the point; these
images are acquired while the camera is pointing in two
different spatial directions. Assuming a base direction in
which the part of the scene to be reconstructed is located,
the camera has to carry out at least two rotations for acquir-
ing these two images. A control algorithm for acquiring
images that are taken in the two “optimal” directions is de-
scribed in this section.

In order to obtain the most accurate reconstruction, the
rotation angle between the two camera orientions should
be as large as possible. (Evidence for this assumption
was found through simulations.) Consequently, the cam-
era should be rotated in a way that a space point to be re-
constructed would be projected onto the sensor plane near
opposite rims of the sensor’s area. However, the disparities
will be large in this case, which is equivalent to a high risk
of mis-matches. In order to nontheless be able to achieve
good reconstruction accuracy as well as a low rate of mis-
matches, we adopt an imaging control strategy that obtains
the reconstruction in three steps:

1. Only a small-angle rotation guaranteeing high match-
ing reliability is used for preliminary, low-accuracy re-
construction of the space point, then

2. optimal rotation angles are predicted together with
search intervals near the rims of the two images in
which the matches are likely to occur, and finally

3. accurate reconstruction is carried out based on the pre-
dicted match locations using the optimized, wide base-
line distance of the two camera positions.

The search intervals used in the control algorithm are de-
rived from knowledge of the near and far limits of the op-
tical system’s depth-of-focus range, as well as near and far
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limits of the depth error range estimated for each prelimi-
narily reconstructed space point.

Although matching itself is carried out by the sum-of-
absolute-differences (SAD) method within a small window
region placed on the gray-scale images, these matches are
computed only at locations where edge points occur. Edge
points must satisfy two conditions: (1) the magnitude of
the gray-scale gradient vector must exceed a pre-determined
threshold, and (2) the direction of the gradient vector most
be roughly aligned with the direction of the epipolar line on
each image. The locations of edge points are determined
to sub-pixel accuracy based on computing zero-crossings
of the interpolated Laplacian-of-Gaussian of the gray-scale
image.

Although for simplicity reasons the above control algo-
rithm is stated for the case of reconstruction of only a sin-
gle edge point, the algorithm actually used is more sophis-
ticated since it carries out the matching and reconstruction
for groups of similar feature points. This allows to signif-
icantly reduce the total number of camera rotations needed
for matching, making the system more efficient.

4 Experimental results

The mathematical description presented in the preceding
section allows to examine the fundamental properties of 3-
D space point reconstruction based on rotational imaging
by simulating the effects that errors in various system pa-
rameters may have. From such simulation results we have
concluded that the rotational imaging system should be de-
signed to have a long distance Z0, a long focal length f , and
the rotation angles always should be adjusted to the largest
possible values, but the most crucial choice would be the
device for measuring rotation angles – its accuracy must be
very high.

We have built a pan-tilt mechanism for rotating a
monochrome CCD camera with a 646x485 pixels sensor
and a lens with focal length of approx. 50 mm (refer to
Fig.1(a)) and used it for experiments. The stepping mo-
tors built into the mechanism have an angular resolution
of 0.01◦ and mechanical backlash is prevented by a har-
monic drive gear. For obtaining the following results we
used mainly target objects that were placed approximately
1500 mm from the mechanism’s center of rotation. The re-
sults are as follows:

Accuracy of general stereo image matching: A bunch
of artificial flowers made of textile was placed at a distance
of approximately 1500 mm from the origin of the world
coordinate system under usual laboratory lighting and had
the rotational imaging system automatically obtain feature
points and their matches. Among them, mis-matches were
detected manually by sorting out those feature points whose
3-D reconstruction was obviously wrong. The number of

such mis-matches out of 1547 extracted feature points was
79, which is equivalent to an error rate of 5.11%. In a
separate experiment a small toy bird made of plastic and
painted on the surface was imaged. The number of matched
points was 434, among which 11 points (2.53%) were ob-
vious errors. It should be noted that these matches were
non-periodic pattern matches.

Accuracy of matching in the presence of occlusions
For this experiment, one planar board with well-identifiable
feature points was placed at a distance of 1490 mm from
the origin of the world coordinate system (Z = 1490mm)
and another planar board was placed at a distance of Z =
990mm in such a way that some of the feature points on
the board in the back were not visible from one of the two
camera positions. When under these conditions the system
automatically estimated the 3-D locations of extracted fea-
ture points, it did not return any mis-matches.

Accuracy of matching in the presence of periodic pat-
terns For this experiment, planar chess board patterns were
placed at location Z = 1490mm, with the boards’ ori-
entation being orthogonal to the Z-axis. The edge points
of the chess patterns served as feature points. The width
of the chess pattern squares was varied during the experi-
ment. The results are summarized in Table 1 where n is the
number of extracted feature points, m is the number of mis-
matched points, and the right-most column shows the error
percentage. The system is able to handle periodic patterns
flawlessly up to a certain period below which the prediction
based-control algorithm begins making mistakes.

Table 1. Mis-matches due to periodicity of
scene.

square width [mm] n m %
44.5 1381 0 0.00
31.6 1362 0 0.00
19.2 2179 0 0.00

6.3 3955 0 0.00
4.0 2800 245 8.75
3.5 3931 293 7.45

Precision of reconstructed 3-D coordinates: Fig.4(a)
shows the histogram of distance estimation results obtained
for a planar target object containing albedo edge points that
had all the same Z-world coordinate values (Z = 1490mm)
and where aligned vertically. The average of the esti-
mates was 1501.68mm (i.e. an absolute average error
of 11.68mm or 0.78%), and the standard deviation was
16.12mm.

Errors occurring when the 3-D locations of horizontally
aligned feature points on the same test board are estimated

5



are shown in Fig.4(b). The error appears to have a quasi-
periodic footprint. This indicates that the error is mainly
attributable to the error of the stepping motor’s rotation an-
gle which is specified by the maker as about 2′, having an
almost periodic characteristic. It can be shown through sim-
ulations that the stepping motor’s rotation angle error of
about 2′ causes a distance error of about the magnitude ob-
served.
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Figure 4. Errors of depth measurement

From the above results it can be concluded that rotational
imaging systems are able to avoid match errors in the pres-
ence of occlusion and periodic patterns. The precision of
3-D reconstruction (mainly the distance estimate) is with
about 1% quite acceptable for many applications, but if it
would be possible to improve the measurement of the rota-
tion angle, much better results can be expected.

5 Conclusion

In this paper we have examined whether the accuracy
of 3-D space point reconstruction from image pairs can be
improved by using rotational imaging. We described the
mathematical foundations of such a system together with
the control algorithm needed for achieving optimal recon-
struction results. We examined the properties of this method

based on quantitative simulation results and the results of
experiments carried out with a laboratory implementation
of the rotational imaging mechanism and processing soft-
ware. These results show that the rotational imaging ap-
proach leads to low matching errors and does not cause mis-
matches in the presence of occlusions and periodic image
patterns. 3-D reconstruction accuracy was very good for X,
Y coordinate values, and the accuracy of the range estimate
(Z coordinate) was approximately the same as in existing
systems. We found that the result for range estimation is
due to rotation angle inaccuracies of the stepping motors
used in the mechanism, and we believe that much better
results can be achieved if improved rotation angle measure-
ment methods are used.
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