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A Probabilistic Approach to Surface Extraction from Range Data
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Abstract

In this research, we proposed a new method to model
complex range data using a parametric model. We first
compute local surface curvatures by quadratic fitting of lo-
cal surfaces, and then extract the curved surfaces and plane
regions from the range data by examining the probability
distribution of local surface curvatures. After extracting
these regions, one shape may be divided into multiple re-
gions by the characteristics of the feature space. Then, af-
ter the parameters of each region are estimated, the fitting
error between regions of the integration candidate is calcu-
lated. Finally, by applying statistical testing techniques on
the fitting error, we establish integration criteria and inte-
grate the regions that satisfy this criteria. From this process,
it is possible to perform a robust surface extraction. Exper-
imental results on real range data show the effectiveness of
the proposed method.

1. Introduction

In recent years, the acquisition of three-dimensional in-
formation of a scene or an object has become vital in many
fields such as virtual reality and object recognition. In ad-
dition, with a rise in the availability of fast, safe, and eco-
nomical range scanners’ capability of wide range sensing,
range data has become an adequate means of acquiring 3D
information of a scene. However, a range image consists
of numerous three-dimensional points, and it is an impor-
tant task to derive a model description from the range data.
In the past, many people have proposed methods concern-
ing the description of three-dimensional objects from the
range data. The approaches for range data modeling can be
roughly divided into methods using volume modeling, and
those using surface modeling. Volume modeling describes

an object using function primitives [1]. In order to describe
the range data of multiple objects or an object with a com-
plicated shape, it is necessary to segment the range data into
primitive parts and then apply a primitive function to them.
On the other hand, surface modeling, such as B-rep, is ex-
pressed by the relationship between the surfaces and their
equations [2].

Using surface methods, range data is first segmented into
regions corresponding to surface patches. Then a descrip-
tion of the scene is constructed from region geometries and
topologies. In this case, the accuracy of the object descrip-
tion is dependent on the results of the region segmentation,
which is the most difficult task in range data processing. At
present, there are no established methods to segment noisy
range data.

In this present research, we generate a feature space his-
togram using local surface curvatures. The stable planar and
curved surface regions are extracted by examining the prob-
ability distribution of the histogram. For the range data con-
taining only a polyhedron, a feature space histogram may be
generated using a normal vector. However, since our aim
is to process range data containing both planes and curved
surfaces with divided regions, the feature space histogram
may be generated using local surface curvature. After some
regions are obtained, on the basis of the parameter of the
quadric surface equation of each region and geometric fea-
tures, the integration between multiple segmented regions
has been carried out. Figure 1 shows an example of the
range data, which consists of some planes and quadric sur-
faces used in this research.

In our approach, we first compute local surface curva-
tures by quadratic fitting of local surfaces, and then extract
curved surfaces and plane regions from the range data by
examining the probability distribution of local surface cur-
vatures. As a result, one shape may be divided into the mul-
tiple regions according to the characteristics of the feature
space. Then, after the parameters of each region are esti-



Figure 1. Test range image.

mated, the fitting error between regions of the integration
candidate is calculated. Subsequently, by applying a sta-
tistical testing technique on the fitting error, we establish
integration criteria and integrate the regions that satisfy the
criteria. Finally, it becomes possible to accomplish a robust
surface extraction.

2. Segmentation of range data

As for segmentation using curvature, there are tech-
niques based on the signs of both Gaussian Curvature (K
) and Mean Curvature (H ) [3, 4, 5]. In these methods,
H andK are used to classify the local surfaces to specified
types of surfaces, due to the combination of the signs of H
and K. The signs ofH andK alone cannot help to distin-
guish surfaces of the same type with a significant difference
in radius length. In this paper, we propose a method that
can solve this problem using the curvature feature space.
First, we compute local surface curvatures by quadratic fit-
ting of local surfaces, and then the regions with different
radius lengths of curvature are extracted by examining the
probability distribution of local surface curvatures.

2.1. A feature space histogram using curvatures

First, we fit quadratic equations to each local surface re-
gion of the range data by the least-squares method using the
following quadratic equation (1). A15 × 15 window cen-
tered on an observation point is used as the local surface
region.

Z = aX2 + bY 2 + cXY + dX + eY + f (1)

(Wherea, b, c, d, e andf are parameters)

The local surface curvatures are computed from the local
surface equation, projected into the feature space, and then
transformed into a histogram. If the local surface curvatures
of a curved surface in the range data obey a Gaussian distri-
bution in the feature space, we can segment the range data
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Figure 2. (κ1, κ2) Feature space histogram.

into curved surfaces by extracting Gaussian distributions in
the feature space. A feature space histogram generated from
Gaussian and Mean Curvature is used in some methods, but
the usage ofK > 0 andH = 0 does not exist in this space.
Moreover, due to the non-linear relation betweenH andK,
the distributions of the curvatures are deformed Gaussian.
In this research, we use the feature space composed of the
principal curvatures ofκ1 andκ2.

In this case, as shown in Figure 2(a), sinceκ1 andκ2 are
projected only into half of the histogram space, the region
with curvatures nearκ1 = κ2, like a plane or spherical sur-
face, does not become a Gaussian distribution, as shown in
Figure 2(b). Then, by folding back the feature space around
the axis ofκ1 = κ2, the range data can be projected into
all of the histogram space, as shown in Figure 2(c). By pro-
jecting the feature space around the axis ofκ1 = κ2, the
distribution on the axis ofκ1 = κ2 becomes a Gaussian
distribution with symmetry, as shown in Figure 2(d).

Until now, we have used a rectangular coordinate system
that sets an axis of coordinates as(κ1, κ2) for the feature
space histogram. However, the following problems have
been detected:

1. Since the change of curvature is very large compared
with the change of radius, a surface with a small radius
has a variance that is larger than a surface with a larger
radius, causing the radius and variance to become non-
linear.

2. In the case of scaling(κ1, κ2), since all the curvatures
in the range data are projected into feature space, a
very large space is needed.
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Figure 3. Feature space histogram of test im-
age.

By using the logarithm of(κ1, κ2), the aforementioned
problems have been solved. When the logarithm is calcu-
lated forκ1 andκ2 independently, the distribution of the
histogram collapses near theκ1 andκ2 axis. Therefore, we
use space( d′

d+1κ1,
d′

d+1κ2), which was calculated from the

logarithm distanced =
√
κ1

2 + κ2
2 of (κ1, κ2).

d =
√
κ1

2 + κ2
2 (2)

d′ =
A

log(1 +Md)
log(1 + d) (3)

whereA is the resolution of the histogram, andMd is the
maximum ofd + 1. In order to use histogram space effi-
ciently, a 1% of the range data which has the largest cur-
vature (i.e., the edge portion in the range data) is removed,
and the rest of the data is projected into the histogram. Fig-
ure 3(a) shows the feature space histogram that only scales
κ1, κ2 in Figure 1. Figure 3(b) shows the feature space
histogram, which was calculated from the logarithm of dis-
tanced =

√
κ1

2 + κ2
2 of (κ1, κ2).

2.2. Extraction of planes and curved surfaces

There are many planar and curved surfaces in range
data, and their local curvature distributions may overlap
in the histogram space creating the possibility of a multi-
distribution. It is very difficult to separate each distribu-
tion from the multi-distribution. In this work, we use the
histogram of local surface curvatures together with space
information in the range data to extract the distribution of
each plane and curved surface.

From this histogram, we identified the highest peak value
and projected it back into the range data. This process of re-
projection produced some discrete pointsPi(i = 1, · · · ,m)
in the curved surfaceSp (or a set of surfacesSpi), whose
values of d′

d+1κ1 and d′
d+1κ2 correspond to the detected

peak. We assumed the points to be approximately equal
to the true curvatures of the surface(s). Because curved
surfaces appear in the range data as regions, we assumed
that for the majority ofPi that their neighborsNij(j =

 

Distribution-A

Distribution-B
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PB

σ

Figure 4. Region extraction from mixed distri-
bution.

1, · · · , n) also belong to the same surface asPi. There-
fore, the neighborsNij , which can be obtained by a dila-
tion operation centered aboutPi, can be regarded as a set
of sample points on the surfaceSp. The neighborsNij are
then used to estimate the mean M and the covariance ma-
trix C of the distribution of the curvatures of the surfaceSp

in ( d′
d+1κ1,

d′
d+1κ2) space, as shown in the following equa-

tions:

M =
1
mn

m∑
i=1

n∑
j=1

kij (4)

C =
1

mn− 1

m∑
i=1

n∑
j=1

(kijk
�
ij −MM�) (5)

wherekij is the projected point of the local surface cur-
vature of the sample points in the( d′

d+1κ1,
d′

d+1κ2) space
histogram.

The planes and curved surfaces are then extracted based
on the distribution estimated above. We first extract the
points whose curvatures are located within the confidence
interval containing2/3 of the population of the distribu-
tions. The extracted points may represent multiple regions
on range data. Then, when we expand these points with a
dilation operation constrained to the confidence interval of
99.9% of the population, some large collected regions are
extracted.

As shown in Figure 4, even if there is a distributionB
with peakPB near another distributionAwith peakPA, two
regions were not extracted as one collected region without
entering the majority of distributionB in the range ofσ
of distributionA. Moreover, since the small region is not
considered to be the object of interest, only the large region
is extracted.

The above process was applied to the remaining range
data until no significant region was extracted.
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Figure 5. Results of segmentation after two
iterations.

Figure 5 shows the results of plane and curved surface
extraction from the range data (Figure 1), where the results
of the first two iterations of surface extraction are illustrated.

Figure 5(a) shows range data and Figure 5(b) shows the
feature space histogram of principle curvature computed
from Figure 5(a). The planar regions in Figure 5(c) are
first extracted from the distribution making pointP1 (Figure
5(b)) the highest peak. Next, the feature space histogram
in Figure 5(d) is generated with the exception of the dis-
tribution of the planar regions in Figure 5(c). The spheri-
cal region in Figure 5(e) is extracted from the distribution,
which makes pointP2 (Figure 5(d)) the highest peak. Then
the feature space histogram (Figure 5(f)) is generated with
the remaining data excluding the distributions in Figure 5(c)
and (e).

Figure 6 shows planar and curved surface regions that
have finally been extracted. A total 35 regions were ex-
tracted, as shown in Figure 6 from the range data.

3. Integration of surface regions

Since the local curvatures in the hyperboloid and ellip-
soid surfaces change, they may be divided into some piece-
wise surfaces. However, these piecewise surfaces will have
similar parameters. Therefore, integration of surface re-
gions is needed. After we estimated the parameters of the
equation of each region, we tested the possibility of integra-
tion of neighboring regions.

Figure 6. Extracted plane and curved surface
regions from range data.

In addition, in the segmentation process the regions are
detected without overlapping each other. Dilation operation
bounded by the discontinuity edges was carried out for each
region. Then the regions of integrating candidates are ob-
tained from the overlapping dilated regions.

The fitting errorsDBi(i = 1, · · · ,m) of point PB of
regionB in the equation of regionA are calculated from re-
gionsA andB as integrating candidates. Finally, examina-
tion of whether it can be integrated by the statistical method
for fitting errorDBi is carried out.

3.1. Estimation of surface equations

For the extracted regions, we estimated their parameters
by fitting the three-dimensional points in corresponding re-
gions by the following equation [6, 7, 8, 9].

(X,Y, Z)A



X
Y
Z


 +B



X
Y
Z


 + C = 0 (6)

A =



a d e
d b f
e f c


 B = (g, h, i) C = j

3.2. Calculating fitting error of regions for integrat-
ing candidates

There are some methods, which calculate the fitting er-
rorsDPi(i = 1, · · · ,m) of point PB in regionRB in the
equation of regionRA by assuming regionsRA andRB are
integrating candidates.

3.2.1 Fitting error according to quadric surface equa-
tion

The residual error, which is obtained by substituting three-
dimensional points for the quadric surface equation can be
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used as the fitting error between the point and the curved
surface. However, the error is not the Euclidean distance
from the three-dimensional point to the curved surface, but
is involved in the scale of the parameter of the quadric sur-
face equation or the value of the parameter influencing the
residual. For example, for the point which protruded from
the spherical surface in distanceε, the residual error be-
comes equation (7). The residual error is clearly propor-
tional to the size of the radius of the curved surface.

X2 + Y 2 + Z2 = (r + ε)2 = r2 + 2rε+ ε2 (7)

On the other hand, if a quadric surface equation is fitted
using both regionRA and regionRB , there is a problem
when the residual errorDPi is calculated for the points in
regionRA andRB. For example, when a quadric surface
equation is fitted to the cluster of points from two planer
regions, it becomes equation (8).

(a1X+b1Y +c1Z+d1)(a2X+b2Y +c2Z+d2)=0 (8)

Thus, small fitting errorDPi will be obtained for all the
points as the associated values with small errors are multi-
plied together.

3.2.2 Error by shortest distance from point to curved
surface

When a segmentPAPB in Figure 7, which connects point
PA in regionRA and pointPB in regionRB, becomes per-
pendicular to regionRA at the pointPA, the segmentPAPB

becomes its shortest. However, it is very difficult to find the
normal vector that passes through both the pointPA andPB

in the regionRA.

3.2.3 Error by approximate shortest distance from
point to curved surface

The approximate shortest distance from a point to a curved
surface is calculated based on the normal vector of the
curved surface. As described above (section 3.2.2), it is
very difficult to find the point in the region that becomes
perpendicular to a region and passes through a pointP of
another region. In this paper, for two regions of integrat-
ing candidates, the approximate shortest distanceDPi from
each pointPi in one region to the surface of the other region
has been calculated.

As shown in Figure 7, for regionRA andRB the number
of points in regionRA is assumed to be greater than the
number of points in regionRB. The following steps have
been adopted to obtainDPi:

1. Assume that the pointPB in regionRB is on the surface
of regionRA, and compute the normal vectorNPB at
pointPB .

2. Let the direction vector beNPB intersecting pointPA by
a straight lineL with regionRA being obtained from
straight lineL, which passes through pointPB.

L

NPB

PB

RegionRB

DPi

NPA

PA
RegionRA

Figure 7. Estimating distance DPi from nor-
mal vector.

3. The normal vectorNPA at pointPA is calculated, and
the approximate shortest distanceDPi between region
RA and regionRB is obtained using the equation (9).

| −−−−→PAiPBi · −−−→NPAi |
| −−−→NPAi |

= DPi (9)

3.3. Integration of regions

For errorDPi of an approximate shortest distance be-
tween a point and a curved surface obtained from the equa-
tion (9), the method which judges whether two regions can
be integrated together is examined in this section.

The largest error permitted in the model is set as a tol-
erance. The method is that if all the fitting errors from the
pointsPBi(i = 1, · · · ,m) in regionRB to regionRA are
within the largest error. Then these pointsPBi are inte-
grated into regionRA.

However, in the case of actual data, all points do not
always satisfy the tolerance, since there is a dispersion of
points at the shortest distance. Therefore, a permissible er-
ror does not need to be one interval. Instead it is made to be
a tolerance using a probability distribution (Gaussian distri-
bution). Hence it is possible to judge whether the regions
can be integrated together using a statistical method.

For example, first let us consider the distribution model-
ing the accuracy necessary for integration when thet-test is
used. This is decided by the measurement accuracy of the
range finder. In the experiment, the mean value is assumed
to be 0 with a variance of 0.5% of the maximum width of
the largest object.

Thus in the distribution modeling, thet-test is carried out
for the necessary precision and the distribution that is ac-
tually composed of the approximate shortest distanceDPi

between regions.
Furthermore, there is a test of the absolute distance us-

ing a simpler method. At first, the upper and lower values
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Figure 8. Results of integration.

falling within the 95% of this distribution are obtained from
the mean and variance of the approximate shortest distance
DPi between regions. Then, the value with a greater dis-
tance from the origin to upper value or to the lower value is
compared with the threshold. If the threshold is smaller than
this value, the integration is carried out. In the experiment,
the threshold is the same value as 0.5% of the maximum
width of the largest object as mentioned above.

3.4. The experiment

In this paper, for the segmented regions in Figure 6,
the approximate shortest distance between the points and
curved surfaces were calculated. We performed the exper-
iment by calculating the absolute distance from each point
to each curved surface with the following results. Further-
more, very similar results of the T-test were obtained.

Figure 8(a) shows the results of segmentation with the re-
gions labelled. Figure 8(b) shows the regions that should be
integrated from range data. Figure 8(c) shows the results of
integration. In the experiment, there were 77 groups of re-

gions as integrating candidates, resulting in 31 groups. The
segmented 35 regions were integrated to 11 regions.

4. Conclusion

In this paper, we proposed a robust method to extract
planer and quadric surface regions from range data. This
is a method in which we compute local surface curva-
tures by quadratic fitting of local surfaces, and then extract
stable planer regions and curved surface regions from the
range data by examining the probability distribution of lo-
cal surface curvatures. For the extracted regions, we esti-
mated their parameters by geometric fitting using the three-
dimensional points in these regions, including some regions
that were integrated based on the approximate distance be-
tween regions.

In this paper, we used the space with calculated the log-
arithm distanced =

√
κ1

2 + κ2
2 of (κ1, κ2) as feature

space. In future work, in order to extract a curved surface
region with greater accuracy, we are planning to generate
the feature space that expedites the extraction accuracy of
the region with the curvature within a certain range, rather
than the extraction accuracy of the region which curvature
is near zero or has a very high value, and carry out a veri-
fication method for noise interference. We are planning to
integrate multi-view range data as well.
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