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Abstract 
 

We propose a novel method of  lip synchronization by 
re-using training video as much as possible when an 
input voice is similar to training voice sequences. Initially, 
face sequences are clustered from video segments, then by 
making use of sub-sequence Hidden Markov Models, we 
build a correlation between speech signals and face 
shape sequences. From this re-use of video, we can 
decrease the discontinuity between two consecutive 
output faces and obtain accurate and realistic synthesized 
animations. Our method can synthesize faces from input 
audio in real-time without noticeable delay. 

Since acoustic feature data calculated from audio is 
directly used to drive our system without considering its 
phonemic representation, our method can adapt to any 
kind of voice, language or sound.  
 
 

1. Introduction 
 

Movement of the lips and chin during speech is an 
important component of facial animation. Although the 
acoustic and visual information of the speakers have 
vastly different characteristics, they are not completely 
independent since lip movements must be synchronized to 
speech. Using voice as the input, lip synchronization finds 
the correlation between lip movements and speech signals. 
This technique can be used in many applications such as 
video-phone, live broadcast, long-distance education, and 
movie dubbing. 

In the last ten years, much work has been done in the 
area of face synthesis and lip synchronization. Techniques 
based on the methods of Vector Quantification (VQ) [1], 
Neural Networks [2,3,4], Hidden Markov Models [5,6,7] 
and Linear Predictive Analysis [8] have been proposed to 
map speech to lip movements. Most of the systems are 
based on a phonemic representation (phoneme or viseme). 
For example, Video Rewrite [9] re-orders existing video 
frames based on recognized phonemes. Since different 
people speak in different tones, considerable information 

will be lost in a phoneme-based approach. Moreover, the 
phonemic representation for different languages is also 
different. Brand introduces a method of generating full 
facial animation directly from audio signals, which is 
based on HMMs [6]. Although this method has achieved 
reasonable results, its animation is simplified by use of a 
mean face configuration with only 26 learned states. 

Restricted by algorithm efficiency, all the 
aforementioned systems cannot support real-time face 
synthesis. Recently, several methods have been proposed 
towards this end. Goff et al. described the first prototype 
of the analysis-synthesis of a speaking face running in 
real-time [10]. They used five anatomical parameters to 
animate the lip model adapted to speech with a 200ms 
delay between audio and video. Huang and Chen 
implemented a real-time audio-to-visual mapping 
algorithm that maps the audio parameter set to the visual 
parameter set using a Gaussian Mixture Model and a 
Hidden Markov Model [11], but no delay data was 
mentioned. Morishima presented a real-time voice-driven 
talking head with a 64ms delay [12]. He converted the 
LPC Cepstrum parameters into mouth shape parameters 
by a neural network trained by vocal features. 

A primary reason for the delays in the previous real-
time algorithms is that future video frames need to be 
processed to ensure reasonable accuracy in synthesis.  Our 
proposed method circumvents this problem with the use of 
video sequences.  When acoustic data is determined to 
correspond to a given video sequence, strong future 
information is available to promote synthesis accuracy.   
Additionally, there are no discontinuities between 
consecutive faces in training videos, so we capitalize on 
this characteristic by re-using video as much as possible 
when the input voice is similar to voice sequences used in 
training. We implement this idea by building a map from 
the audio signals to short sequences of the training video 
using Hidden Markov Models. If the number of short 
sequences is more than 100, our animation can be 
composed of hundreds of different face configurations, 
and therefore most details of lip and chin movements 
during speech can be shown in our synthesized result. 
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 Compared to [1-8], our non-real-time approach 
obtains more accurate and realistic animation. Since 
acoustic feature data calculated from audio is directly 
used to drive our system, unlike [9] our method can adapt 
to any kind of voice, including non-speech voices. In 
particular, voices pronounced by different people in 
different languages can drive our system satisfactorily. 
The output is a sequence of face shapes that can be used 
to drive 2D, 3D, or image-based talking heads. By 
adjusting some parameters, our method can be used in the 
application of real-time face synthesis, where each face 
can be synthesized within the time interval between two 
consecutive frames (40ms for 25Hz animation). Although 
the performance of this real-time system is slightly lower 
than that of the non-real-time system, the results are 
nevertheless satisfactory. Compared to [10-12], our 
method can synthesize more realistic animations, has 
higher efficiency, exhibits no delay between audio and 
video, and adapts better to different kinds of voices. 

The remainder of the paper is organized as follows. 
First, our approach is outlined in Section 2, and then our 
system is described in detail in Section 3. We present our 
results in Section 4. Lastly, the conclusion is given in 
Section 5. 
 
2. Our approach 
 

Our approach to lip synchronization is designed for 
real-time execution with highly continuous video. To 
produce better continuity of the generated lip motion, we 
utilize and re-use sequences from training video since 
consecutive frames naturally form a smooth progression.  
These face sequences, empirically chosen to be five 
frames in length, and their associated acoustic feature 
vector sequences are clustered from a training video to 
form 128 representative sequences. 

The five frames of a face sequence comprise fifteen 
different sub-sequences: 1, 2, 3, 4, 5, 1-2, 2-3, 3-4, 4-5, 1-
2-3, 2-3-4, 3-4-5, 1-2-3-4, 2-3-4-5 and 1-2-3-4-5.  For 
each sub-sequence, we create a HMM which is initialized 
using its acoustic feature vector sequence. To train a sub-
sequence HMM, we search through training videos for 
other sequences whose face shapes, defined by feature 
points, are similar to the five face shapes of this sequence, 
then use their corresponding acoustic data for training. 

However, differences in faces and viewing 
environments among the training videos may lead to 
errors in face shape estimation, which is described in 
Section 3.1.  Because of these differences, many face 
sequences in the videos are unused in training these 
HMMs, and consequently, the acoustic data used for 
training does not include all voice sequences present in 
the training videos. If an input voice differs from those in 
the training sequences, some distortions may appear in the 

exported face sequence. To reduce this error, we consider 
face states as well as face sequences.  Face states are 
representative face shapes clustered from a training video, 
and are handled like unit-length sequences. By 
introducing face states into our algorithm, a broader range 
of voice data is modelled because while many five-frame 
sequences from a training video are discarded, individual 
frames are all usable for face state HMMs. Training a 
HMM for each state using all training data gives a method 
for handling atypical acoustic data that may arise from 
unmodelled vocal sequences or unusual intonations. 

To incorporate such kinds of disparate HMMs into a 
single framework, Rabiner [18,19] proposed a high 
performance connected digit recognition system using the 
level building algorithm. For recognizing digits from an 
input voice, the level building algorithm computes the 
digit string with the maximum probability. Instead of 
using level building for speech recognition, we apply it to 
lip synthesis. We additionally introduce a search range 
parameter that limits the length of the observed sequence. 
In our search for the face shape sequence that best 
matches the input acoustic vector, the probabilities of both 
the face state HMMs and face sequence HMMs are 
calculated by the Viterbi algorithm, and the product of the 
segment probabilities gives the path probability.  The face 
state or face shape sequence that has the greatest 
probability is then exported.  A detailed description of this 
method is presented in the following section. 

 
3. System overview 
 

In the training phase, sequences of the training video 
including synchronized speech are prepared. With the 
vocal and facial data obtained from the training video, we 
create face states and face sequences, and then train their 
corresponding HMMs, which are used for face synthesis.  

In the synthesis phase, our system computes vocal data 
from the input audio and exports face shapes synthesized 
by the combination of face state HMMs and face sequence 
HMMs. In the output phase, we prepare a contour image 
of a head as the background, deleting the eyes, nose, lips 
and chin. With the assumption that eye movement is 
independent of lip movement while speaking, we model 
eye action as independent eye blinking and eyeball 
movement. Finally, we copy the eyes and facial contour to 
the background and export the combined image. 
 
3.1. Signal Processing 
 

To obtain useful vocal data, we calculate the Mel-
Frequency Cepstrum Coefficients (MFCC) [14, 15]. 
These coefficients are known to be useful for speech 
recognition and robust to variations among speakers and 
recording conditions. 
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In our training video, the woman is accustomed to 

leaving her mouth open when she is not speaking, so we 
must separate silent frames and voice frames, or else the 
training result will be affected by this uncertainty. We 
develop a simple method based on the energy of each 
frame to perform this task. An energy histogram of 80 
seconds of audio is first computed. This histogram 
exhibits two peaks, one indicating the energy center of the 
silent frames and one indicating the energy center of the 
voice frames. We take the average of the two peaks to 
separate these types of frames, and only the voice frames 
are used for training and synthesis. A face shape with a 
closed mouth is considered to be a silent frame. 

To obtain facial data, we use the eigenpoints algorithm 
[16] to label the face and to identify the mouth and its 
shape, as shown in Figure 1A. Then we smooth the 
control points and enforce symmetry in Figure 1B. Figure 
1C displays the output points that show the shape of the 
mouth, nose and chin. The upper line marks the lower 
eyelids, which we assume to be stationary during speech. 
      In our system, a PAL video sequence (25fps) is used 
as training data. The audio sampling rate is 44100Hz with 
16-bit resolution. We calculate 12-dimensional MFCC 
coefficients and one energy parameter every 10ms, and 
map one image frame to four vocal frames. 
 
3.2. Hidden Markov Models 
 

Using the techniques mentioned above, 2000 face 
shapes and 8000 acoustic vectors are computed from 80 
seconds of training video. After excluding all the frames 
labeled as silent, we obtain about 1500 short sequences, 
from which we cluster 128 sequences. Each sequence 
contains not only five face shapes, but also 20 acoustic 
vectors. The distance between two sequences for 
clustering is composed of the distance between their face 
shapes and the distance between their acoustic vectors. 
From each of these sequences, fifteen sub-sequences are 
used for HMM training. In addition, sixteen face shape 
states are also clustered from all the face shapes and are 
used for HMM training as well. The sequence length, the 
number of sequences and the number of face states are all 
experimentally determined. With this approach, we can 

not only synthesize faces from input audio in real-time, 
but also obtain accurate and realistic animation. For 
processing the voice data, we must calculate the average 
12-dimensional MFCCs and the energy parameter of the 
input audio. These parameters can vary with different 
recording conditions and people, so we subtract them 
from the input acoustic feature vectors. Then we expand 
the 13-D vectors to 27-D [17] composed of five acoustic 
feature groups: Energy (E, ∆E, ∆∆E), MFCCs 1-5,MFCCs 
6-12, ∆MFCCs 1-6, ∆∆MFCCs 1-6. 

We utilize a left-right discrete HMM with four states. 
Five HMM models are created for each face state or sub-
sequence according to the five acoustic feature groups. 
Since our system maps an image frame to four vocal 
frames, we assign at least four quantized vectors of the 
vocal frames to the observed sequences of HMMs. In the 
synthesis stage, five probabilities are computed by the 
Viterbi algorithm. The product of the five values is the 
output probability of that face state or sub-sequence. 
 
3.3. Training 
 

The state HMMs and sequence HMMs are trained 
separately. We generate face state indices from the face 
shapes in the training videos. Then the state HMMs are 
trained using the Baum-Welch algorithm by mapping one 
face state to the corresponding acoustic feature vectors. 

We initialize the sub-sequence HMMs of each 
sequence using its acoustic feature vectors. The sub-
sequence HMMs should adapt to not only the acoustic 
vectors of the sequence, but also to the acoustic vectors of 
other similar sequences in the training video. For short 
sequences in the training video where face shapes are 
similar to the five face shapes of a clustered sequence, the 
corresponding acoustic feature vectors will be included as 
observed data of the 15 sub-sequence HMMs of that 
sequence. In this way, the sequence HMMs cover a wider 
range of voices, and the more than 600 face shapes in the 
sequences are enough to generate realistic animations. 
 
3.4. Synthesis 
 

The input audio is composed of sound frames, 
separated by noise frames. A level building structure is 
then created for each segment The maximal probability 
and the optimal face sequence of each path are calculated 
by the function ProcessPath. This function and its 
variables are as follows: 

PrevS: the previous face sequence number. 
PrevT: If PrevS is –1, it is the previous face state 

number. Otherwise, it is the previous face shape 
number of the sequence. If PrevT is –1, the 
previous frame is silent. 

S: the current face sequence number. 

A. tracking            B. control points          C: output 
 
Figure Figure Figure Figure 1. Three steps in our system to obtain. Three steps in our system to obtain. Three steps in our system to obtain. Three steps in our system to obtain
facial data.facial data.facial data.facial data.    
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T: If S is –1, it is the current previous face state 
number. Otherwise, it is the current face shape 
number of the sequence. 

n: the current line number. 
N: the total number of lines in the path. 
P: the maximal probability of the path 
StateP: the maximal probability of the face states 
StateN: the face state that has the maximal probability 
SeqP: the maximal probability of the sub-sequences 
L: the length of the current line 

 
function ProcessPath( ) 
 
PrevS  � –1 
PrevT  � –1 
P         �   1 
FOR    n = 1    To    N    DO 
{ 
 Calculate the probabilities of the 16 face states 
 StateP � the maximal probability 
 StateN � the optimal face state 
 IF    PrevS ≠ –1    THEN 
 { 
  SeqP � the probability of the sub-sequence  
        (PrevT+1) – (PrevT+2) – ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ – (PrevT+L) 
        of the sequence PrevS 
  IF    SeqP ≥ StateP    THEN 
  { 
   T    � PrevT + L 
   S    � PrevS 
   P   � P * SeqP 
   GOTO Jump 
  } 
 } 
 Calculate the probabilities of the sub-sequence 
   1 – 2 – ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ – L 
  of the 128 sequences 
 SeqP � the maximal probability 
 S       � the optimal sequence 
 IF    SeqP ≥ StateP    THEN 
 { 
  T   � L 
  P   � P * SeqP 
  GOTO Jump 
 }  
 S   � –1 
 T   � StateN [Export the best face state] 
 P   � P * StateP 
Jump: 
 PrevS � T 
 PrevT � S 
} 
RETURN P 

Finally, we export the face sequence of the path with the 
greatest probability. 

Sometimes sound frame segments are very long, 
causing our program to search a large number of paths. To 
improve the efficiency, we limit the level number of the 
structure to 10 and divide long segments into short parts. 
The initial values of PrevS and PrevT are set as the last 
values of the previous part. 

 
3.5. Real-time Face Synthesis 
 

If the search range and the maximal level of the level 
building structure are set to 1, our method can be used in 
real-time face synthesis applications. 

Before performing real-time synthesis, we first do 
some initialization. Our system will ask the user to input 
several seconds of voice audio, from which an energy 
histogram is formed and an energy threshold is computed. 

In the real-time synthesis phase, if the energy of the 
input frame is less than this threshold, we will consider it a 
silent frame, and a face shape with a closed mouth will be 
assigned to it. We also calculate the average MFCC 
coefficients and the energy parameter of the initialization 
voice and subtract them from the input acoustic data 
before synthesis. Then we use the function ProcessPath 
mentioned in Section 3.4 to synthesis the face shape. Each 
time we process 40ms of input voice and return only one 
face shape. The values of S and T of the previous frame 
are also used to calculate the current S and T. 

 
4. Results 
 

In this section, we provide experimental results of our 
algorithm for both non-real-time and real-time face 
synthesis.  To reiterate the requirements of our system, we 
utilize 9600 HMMs for the face sequences (5 acoustic 
features x 15 subsequences per face sequence x 128 face 
sequences) and 80 HMMs for the face states (5 acoustic 
features x 16 face states).  The input to each subsequence 
HMM is four vocal frames for each subsequence element, 
and to each face state HMM is four vocal frames, where 
each vocal frame consists of a 12-D MFCC vector plus 
one energy parameter.  The output for each face 
subsequence or face state is the product of the five 
probabilities given by its five HMMs.  The system output 
is the face shape of the subsequence or state that has the 
highest probability. 
 
4.1. Non-real-time Face Synthesis 
 

 We recorded eleven segments of videos that are about  
 80 seconds long. The face states and sequences were then  
clustered from the segment with the best tracking of face 
points by the eigenpoint technique. After initialization, the 
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face state HMMs and face sequence HMMs are trained 
using 20000 face shapes and 80000 acoustic feature 
vectors extracted from ten segments of videos. The 
remaining segment is then used to test our algorithm. 
Video discontinuities occur between consecutive frames 
in the following instances: one is a silent frame and the 
other is a voice frame, both are associated with face shape 
states, one comes a face shape state and the other from a 
face sequence, and each is from a different sequence. 

To reduce the magnitude of discontinuities, both 
previous and subsequent faces are used to smooth the 
current face by coefficient averaging. On the other hand, 
closed mouths must be protected from being smoothed 
when plosions (/b/, /p/) are pronounced. Therefore, we 
appropriately adjust coefficients in different cases to find 
a best match between the original and synthesized faces.  

Two examples of synthesized output frames are given 
in Figure 2.  In Figure 3B and C, we compare the lip 
heights of the synthesized faces with the original ones 
when the system inputs several seconds of a person’s 
voice. The slopes of the two curves are similar in most 
cases. At the same time, our curve matches the input 
sound wave and phonemes accurately. Although the two 
curves still have great differences in some cases, most of 
these cases occur in low energy frames such as silent 
frames (points a, b, c). How to build an appropriate model 
for low energy frames is still an open question.  

In Figure 3B, three types of symbols indicate the 
model that is used to synthesize the face shape of a frame. 
Except for the silent frames, most sound frames are 
synthesized by the sequence HMMs. Although only a few 
frames are synthesized by the state HMMs, the face state 
HMMs are necessary for two reasons. First, the state 
HMMs are trained from all kinds of voices, while the 
sequence HMMs are trained only from videos in which 
the face shape sequences are similar to one of the 
clustered sequences. Since the state HMMs model a 

broader range of voices, they are needed when the input 
voice is much different from those used to train the 
sequence HMMs, such as at point d. Second, as described 
in the function ProcessPath, the maximal probability 
returned by the state HMMs serves as a standard value to 
judge whether the face shape synthesized by the sequence 
HMMs is accurate or not.  

We invited different people to try our system. The 
synthesized result matched their voice accurately, and the 
animations seem very realistic. Although we trained our 
system using the English voice of a woman, the system 
can adapt to different kinds of languages, including 
Chinese. Other sounds such as laughs and catcalls can also 
drive our system.  

 
4.2. Real-time Face Synthesis 
 

Using the same model and the test video as in Section 
4.1, we tested our real-time program. In real-time 
synthesis, only previously seen faces are used to smooth 
the current face, and we also adjust the coefficients for 
different cases to find a best match between the original 
and synthesized faces. In this way we not only obtain 
continuous animations, but also protect closed mouths 
from being smoothed when plosions are pronounced. 

With the audio used in Figure 3, we have found that 
although there is slightly greater difference between the 
lip heights of the synthesized faces and the original lip 
heights, our result matches the input audio well.  

The synthesis time for each 40ms speech segment is 
less than 22ms on a 733 MHz Pentium � PC. Therefore, 
people cannot detect any delay between input audio and 
synthesized video. 

 
5. Conclusion 
 

In this paper, we have introduced a novel method of lip 
synchronization based on Hidden Markov Models. By re-
using training video sequences as much as possible, we 
can obtain realistic and accurate synthesized animations. 
By using the acoustic feature data calculated from audio 
to generate animations, our method can adapt to all kinds 
of voices. By adjusting some parameters, we can 
synthesize face shapes in real-time.  

Although we tested our method with 2D faces, our 
method is also adaptable to 3D and image-based faces. 
More work will be done to find a best match between the 
synthesized animation and the input audio. 
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