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Abstract

The Wold texture model considers a textured pattern
being composed of two main types of homogenous ran-
dom fields, namely the deterministic and the indetermin-
istic fields. The two fields can be represented by different
type of models. It is known that, for textures, the multi-
channel model based on Gabor function(Gabor model) is
very effective for representing the deterministic fields, and
a Gaussian Markov Random Field(GMRF) model is very
effective in representing the indeterministic fields. In this
paper, we propose to use both models for texture classifica-
tion, in which features based on each model are integrated
according to the consensus theory. A weighting parameter,
the deterministic energy ratio determined from the spectrum
distribution function, is used as the flexible weight in the
consensus theory. In this way, a wider variety of textures
can be better-represented and hence lead to better classifi-
cation of the textures.

1. Introduction

The classification problem is basically the problem of
identifying an observed textured sample as one of several
possible texture classes by a reliable but computationally
attractive texture classifier. This implies that the choice of
the textural features should be as compact as possible, and
yet as discriminating as possible. In other words, the extrac-
tion of texture features should efficiently embody informa-
tion about the textural characteristics of the image pattern.
Early methods on texture classification were based on sin-
gle model feature which reflected the statistical or structural
properties of texture image. The statistical feature charac-
terizes the texture by statistics of image pixel gray scale val-
ues. These methods give relatively high recognition rate
when the test pattern has random looking texture, but not
for large scale and more structured patterns. The struc-
tural feature assumes that the texture is generated by the

placement of the primitives according to certain placement
rules. These methods usually give good results in classify-
ing structural textures[12][3].

Natural texture usually contains both structural and sta-
tistical properties. Single feature set is insufficient to de-
scribe texture image completely. Combining texture fea-
tures has been suggested by some authors[10][11][9]. Con-
ceptually, the simplest method is the stacked-vector ap-
proach in which multi-model features are concatenated to-
gether into a single feature vector and input to a classifier.
This method is very straightforward and work well if the
features are similar. However, the method is not applicable
when the features cannot be described by a common model,
e.g. the multivariate Gaussian model.

In this paper, we proposed a texture classification method
based on multi-model feature integration by consensus
theory[1]. Two feature sets are extracted from the two com-
ponents of the texture image decomposed from the image
by the Wold-like decomposition[5]. Based on the consensus
rule, two feature sets are combined with a flexible weight.
112 texture classes from Brodatz database[2] were used for
analysis of classification performance.

2. Multi-model Texture Description

A texture field is generally a realization of a regular ho-
mogeneous random field. On the basis of a 2-D Wold-like
decomposition theory for homogeneous random fields[4],
the texture field can be decomposed into two mutually or-
thogonal components: a deterministic component and a
purely indeterministic component. The deterministic com-
ponent corresponds to the structural texture pattern while
the purely indeterministic component corresponds to the
random texture pattern.

2.1. Texture decomposition

Since the deterministic component gives rise to
singularities(1-D and 2-D delta-functions) in the spectral



domain, the estimation of the deterministic components can
be carried out by detecting the spectral harmonic peaks and
their support region.

Harmonic peaks can be found as local maxima in the
power spectrum. The local maxima of the magnitude are
found by searching a ����� neighborhood using a similar
process as in[7]. The size of the neighborhood is chosen
to match the resolution of the estimated spectra so that the
resulting local maxima are separated from each other by
at least two frequencies sample points. Starting from each
harmonic peaks, a region is growing outwards continuously
until the value of the magnitude is lower than a small por-
tion of this peak value( ���	� in this work). This region is
regarded as the peak support region of a harmonic peak.

The decomposition of a homogeneous random field is
based on the decomposition of its spectrum. Denote the
image’s 2D DFT as 
��������� , the corresponding frequency
plane as �����������������! "� , where �#� is the set of frequencies
corresponding to the harmonic peaks and evanescent lines).
The spectrum of the random field can be then decomposed
into the deterministic component
$����������&% ' 
��($���)�*�+�($���)�� "�#�� �-,�.�/10�2�3�46570 (1)

and the indeterministic component
�����������&% ' 
��($���)�*�+�($���)�� "���� �-,�.�/10�2�3�46570 (2)

The deterministic field 58��9:��;<� and the indeterministic field= ��9:��;<� are obtained by computing the inverse DFT of
$���������� and 
����������� , respectively.
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After the above procedure, a texture image is decom-
posed into two component images: deterministic compo-
nent 5	��9:��;<� which exhibits regular(or structural) texture
pattern and indeterministic component = ��9:��;<� which ex-
hibits random(or stochastic) texture pattern. The determin-
istic energy ratio can be defined as:\ % 
$����������
 � �($���)�F]^
 � �($���)� (5)

Figure 1 shows the decomposition of Brodatz texture
D017.

2.2. Feature Extraction

It has been demonstrated that for textures, the multi-
channel model based on Gabor function(Gabor model) is
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Figure 1. Decomposition of Brodatz texture
D017: (a) Original image; (b) Fourier magni-
tude; (c) spectral harmonic peaks; (d) spec-
tral indeterministic component; (e) recon-
struction of deterministic component; (f) re-
construction of indeterministic component;

very effective for representing the deterministic fields, and
a Gaussian Markov Random Field(GMRF) model is very
effective in representing the indeterministic fields.

In this paper, a Gabor filter bank with four scales ��_`%a ��bc�ed �8�e���fdg�8���edih and �fd a cycles/image-width, and six ori-
entations ��jk%ml8� at �	nY��oY�	n���lY�8np��q8�8n����7hY�8n and ���p�	n is
used to extract the features of the deterministic component.
Two Gabor features were extracted from each filtered im-
ages, which are the mean, r U X , and standard deviation,s U X [8]. So, h8_tj features can be extracted, forming ahY_tj -dimensional feature vectoru!v %xw r J�J s J�Jzy�y{y r SV| CKE Z S~} CKE Z s Sg| CKE Z S~} CFE Z�� (6)

To extract the features from the indeterministic compo-
nent, a second order GMRF model was considered. The
parameters of GMRF model ��%��(� E ��� @ �����p������� were esti-
mated from [6] using the least square method. The feature
vector is denoted byu#� %x��� E ��� @ �����p���7�8�Y�rt���s @ � (7)

where �r and �s @ are the mean and variance of the gray level
texture.

Both
u v

and
u �

are used to describe the characteristics
of a texture. The problem now is how can these two feature
vectors be integrated.
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3. Feature Integration by The Consensus The-
ory For Classification

3.1. Consensus Theory

The consensus theory[1] defines general procedures for
combining probability distributions to summarize estimates
from multiple experts with the assumption that the experts
make decisions based on Bayesian probabilities. The com-
bination formula obtained is called a consensus rule.

One of the consensus rule is logarithmic opinion
pool(LOGP). It is described by:� N �����&% X�� I E�� ��� N	� �

� ����� (8)

or �V�Y� � � N ���D���&% XG � I E
� � �V�Y� � � ��� N	� �

� ��� (9)

where ��%xw � E � y{y�y � � X � is a compound vector consisting of
observations from all the data sources, � ��� N	� �

� � is a source-
specific posterior probability and

� � ’s �(4:%��Y� y{y�y ��;<� are
source-specific weights which control the relative influence
of the data sources. The weights are associated with the
sources in the global membership function (

� N ���D� ) to ex-
press quantitatively the goodness of each source.

The consensus theory has shown the advantages of using
multiple data sources in remote sensing application[1].

3.2. Classification using Multi-model Feature Inte-
gration

Suppose we have ; sets of feature vectors due to ;
models,

u %��7
 E � y�y{y ��
 X�� for each texture image 
 ,
where 
 � %-��  E � y�y{y �� Y� � �M��4¡%-�8� y�y{y ��; , 5 � is the dimen-
sion of the feature vector. Let there be ¢ classes denoted� N ��£¤%¥�Y� y{y�y ��¢ ; The goal of the classification is to as-
sign an input image to class � N for which the probability¦ ��� N8� 
 E ��
 @ � y{y�y ��
 X � is maximum, i.e.,§¨ %ª©p« �&¬ ©�N � ¦ ��� N � 
 E ��
 @ � y{y{y ��
 X ��� (10)

where
¦ �(� N	� 
 E ��
 @ � y{y�y ��
 X � is the conditional proba-

bility that � N is the correct class given the observed data
 E ��
 @ � y{y{y ��
 X .
In particular, for the minimum-error-rate classification,

the classification rule can be expressed as the discriminate
function ® N ��
¡�¯% �g�8� � ¦ �(� N	� 
 E ��
 @ � y{y�y ��
 X ��� . Applying
to the consensus theory, we have:® N ��
¡�z% G � � � �g�8� � ¦ �(� N	� 
 � ��� (11)

According to the Bayesian theory:¦ ��� N	� 
 � �&% � ��

� � � N � ¦ ��� N �° N � ��

� � � N � ¦ �(� N � (12)

If we discard the prior probabilities
¦ ��� N � by treating

them equal, the classification rule become to maximize§¨ %ª©p« �&¬ ©�N � G � � � � ��

� � � N ��� (13)

where
� � are the weights that can be derived from the en-

ergy ratio, \ , of deterministic component of a texture class;
and, � ��


� � � N � is the conditional density of individual model
feature vector in class � N .
3.3. Classification Scheme

Texture classification based on multi-model feature in-
tegration is illustrated in Figure 2. The inputs to the sys-
tem are images from one of the ± texture classes. The im-
ages are separated into test and training sets. In the training
stage, two prototypes are trained. They correspond to the
deterministic component ��² E N � and indeterministic compo-
nent ��² @ N � . The training sets are used to estimate the sample
means, covariance matrix of the two prototypes and also the
deterministic energy ratio \ . In this case, a class � N can be
expressed by its two prototypes.

In this paper, an assumption was made that all the texture
images in the database have homogeneous patterns. Under
this assumption, a Gaussian model is assumed for a partic-
ular family of texture features. In this case, the conditional
densities

¦ ��
 � � ² � N �M��4�%³�8��he´�£µ%¶�Y� y{y�y ��¢ is distributed
according to a multivariate normal distribution:¦ ��
 � � ² � N �&% ���h�·<��¸M¹ @ � º � N � E ¹ @» )¼>½�¾ �h ��
 � ¾>r � N ��¿ º � N CKE ��
 � ¾>r � N �ÁÀ (14)

where r � N is the mean vector and º � N the covariance matrix
associated to the class � N :rFÂ Ã*% �± ÄG � I E 


� N
º � N % �± ÄG � I E ��


� N ¾>r � N �O��
 � N ¾:r � N � ¿ (15)

In this case, the decision rule can be shown to be equiv-
alent to§¨ % ©Y« �&¬TÅVÆN ® N ��
 E ��
 @ �% ©Y« �&¬TÅVÆN � � E N�Ç E N ��
 E �<] � @ N�Ç @ N ��
 @ � � (16)
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Figure 2. Block diagram of the classification scheme

where Ç � N ��
 � �O��4t%��Y�Èh is given by

Ç � N ��
 � �&%É��
 � ¾[r � N � º CFE� N ��
 � ¾:r � N ��¿Ê]
�V�Y� � � º � N	� � (17)

Since the deterministic energy ratio \ represents the
share of energy in the spectrum by the deterministic compo-
nents, �6�1¾ \ � thus represent the share by the indeterministic
component. Hence, in equation ( 16),

� E N can be replaced
by \ N , and

� @ N can be replaced by ����¾ \ N � . Then, the final
decision rule can be rewritten as:§¨ %ª©Y« �t¬TÅVÆN � \ N Ç E N ��
 E �<]`�6�#¾ \ N � Ç @ N ��
 @ � � (18)

If a texture is regular, the deterministic component will
be emphasized. Otherwise, if a texture is random, the inde-
terministic component will be emphasized.

4. Experiments

This section presents experiments that test the recogni-
tion capability of the method and compared its performace
with the single model feature methods.

The texture images used in this experiment are from the
Brodatz texture album [2], in which each of the 112 Bro-
datz texture is considered to form one texture class. Each
classes have 200 sample images of size �7hpË��Ì��hpË which
are sampled from the original �)��h��:�e�7h image. All these
200 sample images are divided into two equal subsets, for
training and testing. Each training set consists of 100 im-
ages which are sampled from the top half of the original�)�7h��Í�e�7h texture image, another 100 images sampled from
the bottom half of the texture image for testing.

The classification accuracy is calculated from the con-
fusion matrix which contains information about the correct
classification and misclassification of all classes. Confu-
sion matrix is a ±Î��± matrix, where ± is the number of
classes. For �7�Y��� classification this matrix should be di-
agonal. Results for the classification were calculated based
on individual feature vector and the combination of them by
consensus theory.

Two sets of experiments were performed. In the first
experiment, 16 images were selected from Brodatz album.

Table 1. the deterministic energy ratio \ of
each texture class

class \ class \
D021 0.78056 D080 0.21912
D053 0.76357 D019 0.21766
D020 0.70527 D078 0.21152
D006 0.65546 D057 0.12348
D055 0.45248 D092 0.08768
D083 0.42371 D024 0.05528
D085 0.37742 D029 0.04076
D084 0.29789 D009 0.01876

They exhibit more homogenous and have various appear-
ance with different value of deterministic energy ratio (Ta-
ble 1). Figure 3 shows the 16 images sorted by the deter-
ministic energy ratio. It can be concluded that the larger de-
terministic energy ratio generally corresponds to structural
pattern while the small one corresponds to stochastic pat-
tern. It substantiates that the use of the deterministic energy
ratio as the flexible weight in the multi-model feature com-
bination is reasonable. The classification results are shown
in Table 2.

Table 2. Comparison of the average correct
classification rate of different method for 16
Brodatz textures ���Ï�

method Gabor GMRF Combination
Rate 97.36 94.88 99.63

The second experiment used the whole Brodatz database
(112 classes). In order to evaluate the effectiveness of the
multi-model feature integration, the average correct clas-
sification rates for different types of texture images in the
database are calculated. 112 classes of textures are parti-
tioned into three groups by the deterministic energy ratio \ .
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D021 D053 D020 D006

D055 D083 D085 D084

D080 D019 D078 D057

D092 D024 D029 009

Figure 3. Texture images from Brodatz album
used in this experiment

Group 1 contains 41 texture classes with \�Ð �ed a . The tex-
ture images in this group exhibit structural property. Group
3 contains 19 texture classes with \ÒÑ �fdg�7Ë . The texture
images in this group exhibit random property. The rests are
grouped in the Group 2. The classification results are shown
in Table 3 and Table 4. The group limits are determined
manually by observing the \ values for all 112 textures.

Table 3 gives an overview of the average correct clas-
sification rate of all the 112 texture classes. As expected
that the multi-model feature integration improved the cor-
rect classification rate significantly.

Table 3. Comparison of the average correct
classification rate of different method for 112
Brodatz textures ���Ï�

method Gabor GMRF Combination
Rate 51.84 47.21 61.32

Two conclusions can be drawn from the results shown in
Table 4. One is that the Gabor model is more efficient than
GMRF model in describing the structural textures (results
of Group 1). In contrast, the GMRF model is more efficient
than Gabor model in describing the stochastic textures (re-
sults of Group 3). Yet, the multi-model feature integration
method can improve the correct classification rate signifi-

Table 4. Comparison of the correct classifica-
tion rate of each groups ���Ï�

Method Gabor GMRF Combination
Group1 82.20 63.80 87.02
Group2 58.23 51.00 68.72
Group3 69.23 74.11 80.21

cantly in both kinds of textures.

5. Conclusions

Since the information provided by a single model fea-
ture could be incomplete or imprecise, it is of interest to
integrate multi-model features to obtain a better description
of a texture image. A texture classification method using
multi-model feature integration by consensus theory is pro-
posed in this paper. The texture field is assumed to be a
realization of a regular homogeneous random field, which
is characterized in general by a mixed spectral distribution.
Different from existing methods, the feature sets are ex-
tracted from the different components of texture which are
modelled as different texture models and a weighting pa-
rameter. The deterministic energy ratio determined from the
spectrum distribution function is used as the flexible weight
based on the consensus theory. Experimental results indi-
cate that this method improved the classification accuracy
significantly for a wider variety of texture types.
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