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Abstract

In this paper we propose the idea of approximating an arbi-
trary 3D face model by a linear combination of ”3D Eigen-
faces”. First, a set of 3D face models are constructed by a
face modeling system and the principal component analysis
is performed over the data set. The eigen vectors associated
with the largest eigen values are extracted to form the eigen
space. We call these eigen vectors ”3D Eigenfaces”. Any
face model can then be approximated by a linear combina-
tion of these eigenfaces, thus reducing the whole space of
face shape to the smaller space of these coefficients. We
show that the reconstructed faces using these 3D eigenfaces
are sufficiently close to the original faces. This result can be
applied in image-based reconstruction of 3D face models.

1 Introduction

3D face modeling is of wide interest among not only re-
searchers but also ordinary people. One may imagine that if
building 3D face models is as easy as taking photographs,
such service may be as popular as photographs.

Image-based 3D face modeling has been a popular topic
for many years. A partial list of references include [1, 3, 4,
5, 6, 7, 2]. Many of the early approaches use the frontal and
side views [1, 2, 4, 5]. Later approaches try to use multiple
general views [3, 7].

Underlying most of these approaches is the face mesh
model. Since a face is a curved surface, hundreds of trian-
gular patches are required to represent the shape. Unfortu-
nately, it is impossible to recover the 3D coordinates of all
the vertices, because these vertices are mostly not feature
points detectable from face images.

On the other hand, though face shape differs from per-
son to person in the absolute sense, different faces are sim-
ilar to each other. The number of dimensions to represent
the shape space needs not to be as high as the number of
vertices. To reduce the dimensions, the conventional wis-
dom is to collect a set of 3D face models and use principal
component analysis to find the dominant dimensions.

In this paper, we show a result by such an approach.

Firstly, we built 71 face models using a semi-manual sys-
tem based on frontal and side face images. Then principal
component analysis is performed to extract the 15 dominant
eigen vectors, which we call the 3D Eigenfaces. Any face is
then projected onto these dimensions and represented by a
linear combination of these 3D eigenfaces. By changing the
coefficients of the linear combination, the face varies from
more male-looking to more female-looking, from long faces
to short faces, from narrow faces to wide faces, etc. With
this set of 3D eigenfaces, the original task of determining
the vertices becomes the task of determining the 15 coef-
ficients, thus reducing the number of unknowns from over
one thousand to only 15 in this case. Experiments show that
this set of 3D eigenfaces is powerful enough to approximate
most of the faces we tried.

Similar ideas of using linear space for 3D face modeling
have been reported by Liu, et al. [7]. However, the linear
space is determined by artists in their case. Though each
dimension is semantically well defined, it is not clear if that
space is stochastically optimal.

2 Calculating 3D Eigenfaces

Let a face be represented by a group ofN vertices inR3

which are connected in a special way. We call the way of
connecting these vertices thetopology and the coordinates
of these vertices thegeometry. A typical number of vertices
needed to realistically represent a 3D face is around 400.
This means, a face is described by a vector of dimension
1,200, or equivalently, a point in a 1200-dimensional space.
An ensemble of faces maps to a collection of points in this
large space.

The faces, being similar in the general shape, are not
randomly distributed in this space, and should only cover
a small low-dimensional subspace. Here we apply the con-
ventional wisdom of principal component analysis to find
the vectors in this space which best account for the distri-
bution of face shapes. They are the eigen vectors associated
with the largest eigen values, of the covariance matrix de-
fined by the sample face set. We call these eigen vectors
”3D Eigenfaces”. Let the number of 3D eigenfaces beM .



TheM 3D eigenfaces define the low-dimensional subspace
of face shapes. While theM 3D eigenfaces have the same
dimension as the original sample faces, the subspace is only
a linear combination of theM 3D eigenfaces, and thus, it is
M-dimensional.

Let the sample face set be represented byf i, i = 1, ..., S,
whereS is the number of sample faces. The average 3D face
is first computed by

f0 =
1
S

S∑

i=1

fi (1)

We can then construct the covariance matrix as

C =
1
S

S∑

i=1

(fi − f0)(fi − f0)T = AAT (2)

whereA = [f1 − f0, ..., fS − f0].
Matrix C has a dimension of3N × 3N . We can com-

pute the eigenvalues and corresponding eigenvectors by a
program from [8]. Alternatively, ifS << 3N , we can first
solve aS×S matrix problem, and then find the correspond-
ing eigen vectors [9].

Generally, there areS non-zero eigenvalues. However,
since the sorted eigenvalues decreases quickly, we can keep
the first largest eigenvalues only and abandon the rest while
still being able to approximate the subspace sufficiently
well.

3 Representing an Arbitrary Face by
Linear Combination of 3D Eigen-
faces

Let the number of selected largest eigenvalues beD and the
corresponding eigenvectors beei, i = 1, ..., D.

Assuming that the sample faces are representative of the
face space, we can now claim that the resulting 3D eigen-
faces are sufficient to represent the subspace so that an ar-
bitrary facef can be represented by a linear combination of
the 3D eigenfaces,

f ≈ f0 +
D∑

i=1

ciei (3)

whereci’s are the coefficients for the 3D eigenfaces, which
can be determined by

ci = (f − f0)T ei (4)

The error vector due to the use of the truncated subspace is
defined by

d = f − f0 −
D∑

i=1

ciei =
S∑

i=D+1

ciei (5)

And the error can be quantitized by its norm‖d‖. Since
coefficients after the(D+1)-th are small, the error is small.

We will show in Section 5 how the face shape changes
by varying the coefficients. Note that this representation
can also be used for person identification by comparing the
coefficientsci’s of an input face with the coefficients of all
the faces in the database.

4 Determining the Coefficients from
a Subset of Vertices

Recall that the objective here is to reconstruct a face model
from images. If we knew all the vertices, we would not
have to think about the 3D eigenfaces. Suppose that we
somehow only know a subset of the vertices. We are inter-
ested in knowing how many vertices are needed to correctly
determine the coefficients and thus the face model itself.

Let the number of known vertices beN ′. We can con-
struct a subspace of3N ′ dimensions. Let the vector repre-
senting theN ′ vertices bef ′. It is intuitive that the coeffi-
cients satisfying

f = f0 +
D∑

i=1

ciei

also satisfies

f ′ = f ′0 +
D∑

i=1

cie′i (6)

wheref ′, f ′0, e′i are respectively vectors for theN ′ vertices.
Given these vectors, we can determineci’s in a similar

way as (4). Onceci’s are obtained, we use them to recon-
struct the face in the full dimension.

5 Experimental Results

In this section we report the experimental results. At first
a set of 71 face models are reconstructed by FaceFit-RS-, a
system for manually reconstructing a 3D face model from
a frontal and a side views of the face. FaceFit-RS- is mod-
ified from FaceFit [10], a system sponsored by IPA of the
Japanese government. FaceFit can only be modified using a
frontal view. We modified the system so that the face model
can be deformed based on a side view as well. One of the
examples is shown in Fig. 1. The face model seen from a
new view point is shown in Fig. 2.

We collected 71 such models, and a mean face model
(Fig. 3) is first computed using these 71 models. Then we
computed the eigenvalues and eigenvectors from the covari-
ance matrix.

The sorted eigenvalues are shown in Fig. 4. By looking
at the graph, we decided to use the first 15 eigen values and
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Figure 1: Fitting a polygon model to a frontal face image
by FaceFit -RS-

Figure 2: Face model seen from a new viewpoint

Figure 3: The mean face

associated vectors. These eigenvectors are the so-called 3D
Eigenfaces.

Figure 4: Eigenvalues

5.1 The 3D Eigenfaces

In the following, we show how a face is gradually better rep-
resented by the 3D eigenfaces as the number of 3D eigen-
faces increases.

We show 2 shots of the sequence. Figures 5 and 6 re-
spectively show two faces using the first six 3D eigenfaces
and using all the fifteen 3D eigenfaces. It can easily seen
that the second one is better than the first one.

Figure 5: Face reconstructed from the first 7 eigenfaces

In the following figures 7-10, we show how each 3D
eigenface changes the face shape. Each face shown is the
sum of the mean face and a 3D eigenface exaggrated to a
positive direction or a negative direction by setting the co-
efficients for the 3D eigenfaces to a positive or negative val-
ues.

We have developed a Windows-based system to change
the face shape in realtime by changing the coefficients for
the 3D eigenfaces. The toolbars are shown in Fig. 11.

3



Figure 6: Face reconstructed by all the 15 3D eigenfaces

Figure 7: First coefficient set to 3

Figure 8: First coefficient set to -4

Figure 9: Third coefficient set to 2

Figure 10: Third coefficient set to -2

Figure 11: Changing a textured face model by changing the
coefficients of the 3D eigenfaces
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5.2 Determining the Coefficients

To investigate how many vertices are required in order to
determine the coefficients within a satisfactory error bound,
we prepared 6 data sets, with each set having 15, 20(Fig.12),
25, 30(Fig.13), 35 and 40(Fig.14) vertices shown by black
dots out of the original 409 vertices.

Figure 12: The 20 vertices used

Figure 13: The 30 vertices used

These subsets of vertices are used to compute the coef-
ficients for the 3D eigenfaces. And using these coefficients
we then computed corresponding face models. They are
shown in Fig.15, Fig.16, and Fig.17.

It can be easily seen that the more number of sample
vertices we use, the closer the reconstructed face model is
to the original face. However, the improvement is very slow
after the number of sample vertices is more than 20. We
define the difference between the original model and the re-
constructed model as the square root of the sum of squared
Euclidean distances between the corresponding vertices on
the original model and the reconstructed model. The rela-
tion between the number of input points and the difference
is shown in Fig.18.

Figure 14: The 40 vertices used

Figure 15: Face reconstructed from the 20 vertices

Figure 16: Face reconstructed from the 30 vertices
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Figure 17: Face reconstructed from the 40 vertices

6 Conclusions

Figure 18: The difference decreases as the number of ver-
tices used increases.

In this paper we have proposed to represent the space
of 3D face shapes by the so-called 3D Eigenfaces, which
are the eigenvectors associated with the largest eigenval-
ues of the covariance matrix constructed from sample 3D
face models. These 3D eigenfaces represent a linear sub-
space of the original space of a much larger dimensions.
With these eigenfaces, an arbitrary face model can be rep-
resented by merely a linear combination of these 3D eigen-
faces, thus reducing the problem of determining the posi-
tions of all the vertices in the mesh model to the problem
of determining the coefficients of the linear combination.
We also show that using only a smaller percentage of the
vertices of known 3D coordinates can determine the coef-
ficients precisely enough. Experimental results confirm all
these points. We are developing a system of image-based
face modeling based on the key idea of 3D eigenfaces.
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