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Abstract

Robots which automatically perform outdoor work re-
quire robust and accurate environments. The authors de-
vised a new object recognition method, comparing surface
images of a target object with 2D surface image models
stored in a database. First, range data is segmented into
several regions to obtain stable surface images. Second,
a surface image is compiled from each stable region. The
surface image is comprised of a series of depth values. The
depth value is defined as the height from a tangential plane
on the center point of a region to points on a geodesic cir-
cle. Third, the compiled surface image is compared with
prototypical surface images, so as to identify the classifica-
tion of the region. Lastly, the object’s pose can be precisely
obtained by applying the 3D template matching technique
with the use of a 3D object mesh model. From these pro-
cesses, the proposed method enables robust recognition of
a complex-shaped object. Through the simulation applying
the synthesized 3D model, as well as the outdoor experi-
ment, the validity of the proposed method can be obtained.
The method is expected to allow robot operators to perform
distribution work, such as pole and insulator replacement,
more easily and rapidly.

1 Introduction

A recent trend has seen the accelerated use of robots
at home and in public facilities; and much R&D has been
made into industrial robots and entertainment robots. The
robots currently used at assembly factories have data re-
garding the pose and classification of assembly parts built
into their mechanism in advance, resulting in a limitation of
work tasks. In order for flexible and complicated work to
be performed by robots, advanced object recognition tech-
nology is indispensable. Various methods used to recognize
target objects have been discussed in previous papers. Most
of these methods are for recognition in a structured indoor
environment. However, general recognition techniques that

only recognize the characteristics of a target object’s shape
cannot precisely identify complicated shapes. In an outdoor
situation, the environment (e.g. illuminant, robot’s pose to-
wards the target object) has unlimited variations. It is dif-
ficult for outdoor work robots to recognize an unstructured
and complicated object using conventional methods. The
authors propose a new method that can accurately recognize
target objects with complex shapes in various, cluttered en-
vironments. This method features the use of range data seg-
mented into several regions to obtain stable surface images
with less error, and the application of 3D object mesh mod-
els stored in the computer. The algorithm devised for this
method was simulated at first, and its validity subsequently
confirmed after examining the recognition rate using this
method. The theory and procedures involved in this pro-
posed method are described herein, along with verifications
made through experiments.

2 Object Recognition Method
Applying 3D Range Data

A laser range sensor with enhanced capabilities and
lower costs will enable a wider applicable range of ob-
ject recognition methods using 3D data. Research was
made into various object recognition methods using dif-
ferent techniques [1][2][3][4][5][6], for instance the Eigen
space method [7][8][9] and the Spin image method using
distance histograms [10]. However, some of these require
much time for recognition processing and a huge reference
database. Although other methods of recognizing objects
exist, such as by identifying a 3D object’s surface using
several parameters [11][12] or using the region segmenta-
tion technique [13][14], these methods are not suited for
recognizing objects with complicated shapes.

We have proposed a similar method using range images
in a previous paper [15]. Satisfactory recognition was made
when applied to simple shapes; however, recognition re-
mained hindered when the shapes were complicated. The
Spin image, a technique whereby the planes of an object are



rotated, was presented by Johnson, et al [10]. This method
featured the projection of the range and height from one
given point of the measured data to another point as a 2D
image for object recognition. While this technique renders
a fairly robust recognition, it does not include rotation data
because the 2D image obtained is based on the distribution
histogram. Thus, high calculation costs were necessary to
determine the pose (rotation direction) of the object.

To rectify this problem, we focused on using character-
istics of the object’s surface, which do not vary for trans-
lation and rotation, and devised a method based on surface
images. The surface image is defined as a distribution of
heights from the tangential plane to points on a geodesic cir-
cle. By incorporating the techniques of region segmentation
and temperate matching, the method enables the extraction
of a stable portion from the range image, contributing to ro-
bust recognition. The proposed method’s procedural flow is
described below:

1. Segment range data into several regions applying pla-
nar fitting technique.

2. Compile surface images applying the range data, start-
ing from the center point of each region.

3. Calculate the similarity of the compiled surface images
with the image models pre-registered in the database.

4. Correct the pose of the target object with the template
matching method, using a 3D object model to mini-
mize errors and improve recognition precision of the
object’s pose.

2.1 Segmentation of range data

In compiling the surface image, selecting each region’s
optimal point of the measured range data is crucial. While
it is effective to determine points on or near edges, or with
great curvature, the direction of the normal of these points
may be unstable. A more stable point is extracted by ap-
plying region segmentation. The range data measured is
divided into several regions by employing planar fitting, re-
sulting in a comparatively stable group of points. Minor
regions, such as noise, are removed. The region growth
method [16] is thus incorporated into the proposed method.

2.2 Compilation of surface image at each region

After identifying the optimum points, the point (rmidi )
around the center of each region is calculated and an indi-
vidual surface image is compiled from this point. As shown
in Fig. 1 (a) and (b), the surface image is obtained by plot-
ting the height between the compiled tangential plane and
another point. The surface image is defined as being a 2D

plane, as illustrated in Fig. 1 (c) with the point (rmidi) as the
origin. Respective pixels are sought by the equation below;
thus, intensity is indicated.

Ii;j = h(uk; vl) (1)

Where

uk : ui�1 � uk < ui (2)

vl : vj�1 � vl < vj (3)

h(uk; vl) : average value ofh(uk; vl) (4)

The direction (normal vector ofrmidi) of the tangential
plane at the point (rmidi ) contains errors. The more the
distance from (rmidi) increases, the more errors its height
measurement contains. In addition, the surface image is ar-
bitrary when in a rotating direction and therefore is difficult
to handle. To reduce the influence of such errors, the sur-
face image is developed in a polar coordinate system. From
this, the height of the point located further from (rmidi) can
be leveled, compared to that of the point (rmidi). The cur-
vature around the center point of each region is identified as
the characteristic quantity. The direction with the greatest
curvature is defined as having a rotating angle of 0 degrees.
By developing the image surface within the polar coordi-
nate system on the base of this direction, the correlation
of an object with characteristic curvature can be easily and
quickly calculated.
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Figure 1. Compilation of surface image

The proposed method needs far fewer points to compile
surface images compared to the Spin image method which
requires many points to compile spin images because rota-
tion data to determine translation and rotation factors are
lacking. Since the maximum direction of curvature may not
be obtained in a stable manner, depending on the shape of
the surface, the correlation operations are repeated by slid-
ing the surface image models against the surface images,
in order of greater curvature. This results in surface image
matching. If there is little difference in the scale of curva-
ture, such as for a plane, it becomes necessary to calculate
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the correlation for 36 sliding times (for instance, at 10 de-
gree intervals) of the rotating direction. However, the ex-
periment also showed that when distribution equipment had
comparatively greater curvature, a maximum of 8 sliding
times was required.

2.3 Similarity calculation of surface image

The correlation coefficient can be used to judge whether
the surface image obtained through the measured range data
is identical to the database model. The linear correlation co-
efficient (Pr:Person’s r) was incorporated into the proposed
method. Calculation of this coefficient is formulated as fol-
lows:

Pr =

P
i(hri �

�hr)(hmi
� �hm)qP

i(hri �
�hr)2
qP

i(hmi
� �hm)2

(5)

Where

i = 1; : : : N (6)

Here, the valueN is the quantity of pixels in which range
data exists in both the surface image and the database
model. The valuehri indicates the intensity of the surface
image, andhmi

indicates that of the database model. Val-
ues �hr and �hm indicate the average value ofhri andhmi

,
respectively.

2.4 Robust matching of surface
image with its database model

A satisfactory recognition of the classification and pose
of the object is not always obtained, even when the sur-
face image compiled from the center point of the range data
is obtained, and even if a higher correlative surface image
model is successfully found from the database. This is be-
cause the calculation for the correlation coefficient is de-
rived from only a single given point obtained from a region,
and because the normal vector includes errors. To solve
this, we proposed finding a correlation method for surface
images at several points. Here, the manner in which these
several points are selected is crucial. While selection at ran-
dom is effective to an extent, it is difficult to select several
points on the same target object when several other objects
exist in the work environment. To obtain several points on
the same object, it is necessary to perform many calcula-
tions for the correlation coefficient.

Here, we applied the local correlation coefficient in or-
der to obtain several points on the same object. These points
were identified from the higher local correlation coefficient
calculations between the database surface image model and
the surface image compiled from the range data which had

the highest correlation coefficient. The center point of the
local region or the sub-segmented area (3�3 pixels) is de-
fined as the point in the second stage (named as a 2nd can-
didate point) in compiling the surface image. When the lo-
cal region selected has a higher correlation coefficient, the
range data must be contained within both the surface image
and its database model. There is a high probability that the
point obtained at the 1st stage and the 2nd candidate point
will appear on the same object. By comparing the corre-
lation coefficient of the surface image at the 2nd candidate
point with that of the database model at the 2nd candidate
point, a robust matching of surface images can be obtained.
The procedure for selection of second order points is illus-
trated in Fig. 2. In the experiment, we compiled the surface
images by selecting three 2nd candidate points.

Object

Scene image Database model

(1) 1st stage

Selected point

(2) Matching

(3) High correlation 
      coefficient

(5) Matching

(4) 2nd stage

Figure 2. Robust matching of surface image

2.5 Calculation for object pose

There is a great probability that a 3D object model, cor-
responding to the database surface image model, exists in
the measured range data when the highest correlation coef-
ficient value is obtained. The pose of the model is calculated
using an affine transformation.

Affine

(�!e0 ;
�!
t0 )

transformation
�! (�!e1 ;

�!
t1 ) (7)

Where

e0: local coordinate system of the surface
image model selected

t0: origin of coordinates of the surface
image model

e1: local coordinate system of the surface
image based on the range data

t1: origin of coordinates of the surface
image based

Next, the pose of the 3D object model calculated by the
affine transformation is plotted towards the voting space to
determine the real pose, as shown in Fig. 3. The data of
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the object classification and pose identified at each region
are plotted towards the voting space, and those exceeding
pre-set threshold values are selected as candidates for com-
parison with the stored range data. Multiple candidates exist
for rotational symmetrical objects, making it difficult to de-
termine the classification and pose of these objects within
the voting space. To solve this issue, surface images similar
to the candidates registered in the database were compiled.
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Rz

o o

:Model type = A
:Model type = B
:Model type = C

Voting space for translation Voting space for rotation
: ( Rx, Ry, Rz ) are X-Y-Z  fixed angle

Figure 3. Voting space for seeking translating
factor and rotating factor

It is possible to find the classification and pose of the
3D object model from the voting space. However, they are
not precise because the surface images are created from dis-
persed data. For better precision, the pose of the model pro-
jected into the range data must be corrected by applying the
temperate matching technique (3DTM method) [17]. This
enables full recognition of the object’s pose.

3 Experiments

3.1 Simulation using geometric
models

A simulation is conducted using synthesized data and
several 3D objects compiled in the computer in order to
clarify the characteristics of the robust object recognition
method proposed by the authors using surface images of 3D
objects. Four different CAD objects were developed in the
computer, and the surface images for each object were com-
piled in advance. In addition, sensor models were prepared
to simulate the group of 3D points found when a laser range
sensor measured a target object. Data from the four CAD
objects observed from various directions were used for the
simulation.

We examined the influence of measurement noise at-
tributable to resolution (e.g. tolerable error, performance)
of the sensor, as well as the error of the target object’s shape,
by mixing noise into the 3D data. The noise mixed in had
a normal distribution with an error average of zero. We ex-
amined its standard deviation, which was (�).

The CAD models used for simulation are shown in Fig.
4. Seven viewing directions were used, as shown in Fig.
5. They comprised 6 directions out of the 12 peaks of a
regular icosahedron, and 1 frontal viewing direction. When
the target object is a perfect sphere, different viewing di-
rections do not affect the data as the object looks the same
from any point, resulting in a single direction. Fig. 6 shows
several example images with various noise levels. Table 1
shows the simulation results, where (a) indicates the num-
ber of successful results achieved when using a seven-view
direction (although a single viewing direction was used for
spherical objects), which implies complete recognition for
all seven directions. The value (b) indicates the estimated
pose of the object obtained by calculating the surface im-
ages, and (c) indicates the error between the corrected poses
in the 3DTM. The cylinder’sY -axis and sphere were not
taken into account for the experiment. The noise applied
had three patterns:�=5[mm], 10[mm], and 15[mm]. The
success of recognition was confirmed visually after 3DTM
was carried out. A favorable simulation result was obtained
for the ellipsoid. However, for the cylindrical and octago-
nal objects, the more mixed error increased, the more dif-
ficult it became to identify the difference between the two
shapes. As a result, recognition was less successful. At
the same time, however,satisfactory noise robustness was
achieved, considering that the repetitive measurement error
of the range sensor used for the experiment was less than 2
[mm].

SphereEllipsoid Cylinder Octagonal cylinder

Figure 4. CAD models used for simulation

3.2 Experiment in an outdoor
environment

Kyushu Electric has employed distribution work robots
to execute replacement of electric wires and insulators
mounted on poles, as illustrated in Fig. 7. The opera-
tor remotely controls the robots from the ground, applying
3D laser range sensors and CCD cameras [19]. The series
of work tasks involved are difficult for linemen who lack
relevant expertise. To make robot operation for overhead
work more efficient and less time consuming, it is essential
that even operators without special skills can manipulate the
robot. By applying the method proposed by the authors,
operators will be relieved of the complicated task of ma-
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Table 1. Simulation results
Model Scanned data with noise

No noise 5 mm 10 mm 15 mm
(a) 7 7 7 6

Ellipsoid (b) 6.95 7.04 7.74 11.02
(c) 1.54, 7.96, 4.41 3.45, 7.25, 3.98 6.96, 15.66, 14.35 3.64, 7.18, 4.05
(a) 7 6 5 4

Cylinder (b) 1.96 1.97 5.60 6.94
(c) 16.23, -, 10.41 20.14, -, 18.01 21.04, -, 10.23 16.54, -, 3.22
(a) 1 1 1 0

Sphere (b) 6.71 8.68 2.79 -
(c) - - - -
(a) 7 4 4 2

Octagonal cylinder (b) 6.59 11.09 5.63 13.32
(c) 3.72, 1.94, 6.10 13.14, 6.57, 11.09 15.07, 2.52, 8.13 3.29, 1.21, 0.49

(a): Number of successful times (ellipsoid, cylinder and octagonal cylinder: 7 trials; sphere: 1 trial)
(b): Initial translation error [mm]
(c): Initial rotation error (X-Y-Z fixed angle [deg.])
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Figure 5. Viewing directions used for simula-
tion

nipulating the robot, and the tasks outlined above will be
completed more quickly. This method is expected to be in-
corporated within fully automatic distribution work robots,
which are currently being developed by Kyushu Electric.
Insulators mounted on poles are targeted as particularly im-
portant recognition objects, as they need to be located and
worked on frequently.

3.2.1 Compilation of surface images and 3D objects

In the experiment, one of the laser range sensors manufac-
tured by Pulstec was used. This sensor is capable of pro-
viding range data outdoors, and is effective when applied
to outdoor tasks such as distribution work. The insulators
used for the experiment were actual service insulators with

Sigma = 0 Sigma = 5 Sigma = 10 Sigma = 15

Figure 6. Examples of noise mixed in (for an
ellipsoid)

a length of 20 – 35 [cm] and a width of approximately 10
[cm]. The experiment set out to compile 3D geometric mod-
els of distribution equipment and the surface images of each
of these. The CAD system may be used to compile these
models and images, but complicated shapes such as insula-
tors are not applicable. To solve this problem, the range data
of an object from several viewing directions was obtained
and triangle patches were produced. The final model was
obtained by aligning and integrating the triangle patches.
[18]

The surface images were compiled in the manner de-
scribed in section 2.2 by executing region segmentation at
each point. No surface images were produced for minor re-
gions to minimize the volume of data to be stored. Even
though the data of minor regions were not stored, recog-
nition accuracy was not affected because of the number of
regions with large areas. In addition, rotating angles for
plotting the surface image onto the polar coordinates were
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  Eight degrees of freedom
  Double insulation on boom
   and robot
  Three automatic tracking 
   cameras
  One 3D range sensor
  Dual-armed cooperative 
   control with force control

Figure 7. Semi-automatic hot-line work robot

determined as 10 [deg.], and the distance from the center
point was set at 5 [mm] spans. These specifications were
defined from the resolution of the laser range sensor and
the surface image model size found from the experiment re-
sults.

3.3 Recognition using the proposed method

Three types of 3D objects were used in the experiment,
as illustrated in Fig.8. All were identical to the types of
distribution equipment in service. Fig. 9 shows six image
scenes on which recognition was experimented. Study was
made in different theoretical situations, such as when part of
an object was shielded or when several objects were present
within a single datum.

(a) Type I (b) Type II (c) Type III
1439 surface images 1007 surface images 1119 surface images

Figure 8. Three types of 3D objects (insula-
tors)

Fig. 10 shows the relation between the surface image
and the curvature of the range data of scene 1. The sur-
face images were rearranged according to maximum curva-
ture direction in order to compile the surface images at sev-
eral points from the central point of each region obtained by
the region segmentation. In the left figure, the area around
point P is similar to a cylinder in shape. The surface im-
ages are rearranged automatically, setting the point where

Scene 1 Scene 2 Scene 3

Scene 4 Scene 5 Scene 6

Figure 9. Six image scenes based on range
data

the curvature is the largest at 0 [deg.], shown in the figures
on the right. Then, the surface image was matched with the
database model at several points to obtain a robust matching
performance.

Fig. 11 shows an example of scene 1. In the first stage,
a stable point (pointP of Fig. 11 (a)) from the region seg-
mentation was selected and the surface image was matched
with a database model. Next, a point with a correlation
coefficient higher than the database model was selected as
the 2nd candidate point. In the experiment, we pre-set the
extraction of three 2nd candidate points at this stage. The
points indicated asA, B andC on Fig. 11 (a) and (b) were
each defined as 2nd candidate points. Thus, four points in
total were used for the matching process. The matching re-
sult determined a surface image compiled from a point of
the 1st stage; thus the classification and pose of the target
object were selected. Then the 3DTM method was applied
to determine whether the classification and pose of the tar-
get object obtained using surface images had been correctly
identified. For this process, we paid attention in particular to
distance errors in corresponding points from the 3D object
and range data. The use of 3DTM allowed us to accurately
recognize the target object’s pose. Fig. 11 (c) illustrates
an object whose 3D object obtained from the surface image
matching has been superimposed onto the range data. A
favorable recognition performance was achieved.

The results of the experiment with different scenes are
indicated in Table 2. Successful recognition was found for
each scene. The table shows the difference between the
target object pose obtained from surface image matching,
and the pose corrected by the 3DTM process for different
scenes. As it was difficult to find the exact pose of the target
object, we carried out visual observation to find out whether
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the work robot would be able to perform its task.
The use of 3DTM, together with region segmentation,

contributes to more accurate recognition of a target object’s
pose. In addition, error in the distance between the 3D ob-
ject obtained by the 3DTM and the range data measured
contributes to verifying whether the data result obtained
from surface image matching is correct.

The time required for recognition is about 50 [sec] (Pen-
tium III 866MHz) on average. To calculate the correlation
coefficient of the surface image, 1.5 times this average time
are required if maximum curvature data are not used.
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Figure 10. Relation between surface image
and curvature (for scene 1)

Table 2. Recognition Results
Results

Scene No. translation rotation error [deg.]
error [mm] x y z

1 3.74 0.32, 3.41, 2.52
2 5.79 0.15, 1.06, 14.58
3 9.69 1.14, 1.64, 1.55
4 5.30 2.65, 0.69, 2.17
5 22.77 7.01, 0.312, 2.58
6 18.81 6.12, 20.36, 1.92

Rotation

error : X-Y-Z fixed angle [deg.]

4 Conclusions

We have proposed a new object recognition method, not
only applicable for distribution work robots but also for
robots employed in various other fields. Focus was made
on object recognition using the surface images of the target
object together with region segmentation, to reduce errors
of the normal on tangential planes and thus identify the sur-
face image. The proposed method is summarized below:

� Characteristics of the surface shape of the target object
are used.

(a) 1st stage

Surface image Database surface
image model

Surface image Database surface image model

High correlation
coefficient

A

B

C

A

B

C

A major region

(c) Refinement of pose

(b) 2nd stage

Superimposition of 3D 
model onto the range data

Refined pose 

3DTM 

Figure 11. Selected points for the second
matching stage

� A 2D surface image is compiled by transforming to po-
lar coordinates according to the distance between the
3D range data and the tangential plane.

� The region segmentation method is used to compile
stable surface images.

� The correlation coefficient is calculated using plural
surface images at the 1st and 2nd stages, enabling ro-
bust recognition.

The series of simulations revealed that the proposed
method has robustness against noise. The results of the ex-
periment achieved satisfactory recognition even for an ob-
ject with a complicated shape, such as distribution equip-
ment. At present, recognition time of about one minute
is required, but research is being made into shortening the
recognition time required for searching the surface images.
In the future, the proposed method will be incorporated into
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distribution work robots. Additional focus will be placed on
further improvement of the method’s recognition rate.
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