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Abstract 
 

In this paper, we present a new method for camera 
calibration using concentric circles. We demonstrate that 
camera calibration is possible using two views of a 
concentric circle with known size. A new method to 
determine the position of the projected center of the circle 
is introduced. Based on the accurate estimation of the 
projected circle center of two sets of 3-D concentric 
circles, the proposed calibration method estimates the 
intrinsic camera parameters using two sets of 3-D 
concentric circles obtained from the same viewpoint. 

We validate the performance of the method using both 
synthetic and real images. Our method shows a 
comparable performance with respect to similar 
calibration methods using a plane. The use of concentric 
circles, however, greatly simplifies the calibration 
problem. We also demonstrate the feasibility of the 
proposed calibration method through the recovery of 3-D 
structure of an object, placed on a turntable, using a 
sequence of images taken from the static cameras. 
  
1. Introduction 
 

Inferring 3-D information about the scene from 2-D 
images has been an important research issue in computer 
vision for the last two decades. Although there are 
techniques to estimate 3-D information from uncalibrated 
cameras, calibrated cameras have been extensively used to 
extract metric information from images. Camera 
calibration is to estimate the intrinsic and extrinsic 
parameters of the camera. 

Calibration methods can be generally categorized into 
two classes: the traditional methods using the calibration 
target[1, 2, 3] and the new self-calibration methods.[4, 5]  
In the traditional camera calibration approaches using the 
calibration target, the accuracy of calibration depends on 
the accuracy of the image measurements of the calibration 
pattern. Therefore, it is important to extract the correct 
image coordinates of the calibration pattern.  

Ellipses have been actively used for pose estimation as 
well as for camera calibration [6, 7, 8, 9]. Especially, a 
projected circle appears as an ellipse in the image plane, 
and the 3D position of the circle can be extracted from 
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single image using the inverse projection model of the 
calibrated camera [6]. These ellipse-based techniques have 
been applied to some machine vision applications such as 
factory automation and automatic assembly. 

In this paper, we introduce a method to determine the 
exact position of the projected circle center using a set of 
concentric circles without radii information. With an 
accurate estimation of the projected circle center, we 
present a novel calibration algorithm based on the physical 
properties of the concentric circles. Unlike other plane 
based calibration approaches, the proposed method is not 
based on the concept of the absolute conic, but the other 
metric and Euclidean invariants such as angles, length 
ratio and length. With less information, the proposed 
method shows comparable performance with other 
calibration methods using planes. 

This paper is organized as follows: In section 2, we 
derive a method to find the exact position of the projected 
circle center with concentric circles using their imaged 
ellipses. Section 3 describes the proposed calibration 
method using two concentric circles. We present 
experimental results to show the feasibility of the method 
using both synthetic and real image data in section 4. In 
section 5, we apply the calibration method to the recovery 
of 3-D structure of an object from multiple images taken 
by static cameras. Finally, we conclude the paper in 
section 6. 
 
2. Concentric circles 
 
2.1 Ellipses and 3-D circles 
 

Let the origin of the world reference frame be located at 
the center of the 3-D concentric circles. The Z-axis is 
perpendicular to the 3-D circle plane. The coordinates of a 
circle point can be represented as [ ]TYX 10=mX . For 
the pixel coordinates of the corresponding image point 

[ ]Tssysx=x , we have 
 

[ ] mXTRCx =                              (1) 
where s is a scale factor, R and T represent the relative 
rotation and translation between the world reference frame 
and the camera coordinate frame, respectively. C 
represents the camera intrinsic matrix and is denoted as 
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where ku and kv are scale factors to convert from metric to 
pixel units, f represents the focal length, u0 and v0 are the 
coordinates of the principal point in pixels, and γ denotes 
the skewness of the CCD plane.  

Eq (1) can be simplified as 
 

[ ] PXXTrrCx 21 ==                     (3) 
where r1 and r2 represent the first two columns of rotation 
matrix R, X represents [X,Y,1]T. 

A 3-D circle centered at (X0, Y0) with the radius r is 
22

0
2

0 )()( rYYXX =−+−  and in a matrix form it 
becomes  
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For the corresponding image ellipse, we have 
 

0=AxxT                               (5) 
where A is a 3 x 3 matrix representing the image ellipse. 
 
From Eqs. (4) and (5), we obtain 
 

1TQPPA −−=λ                             (6) 
where λ is the scale factor. 

 
2.2 The projected center of 3-D circle 
 

We introduced a new projective invariant related with 
the projected circle center and centers of the 
corresponding imaged ellipses [16]. We also proposed an 
algorithm to determine the position of the projected circle 
center with a set of the concentric circles using the 
proposed invariant property and cross ratio. However, this 
method needs the radii information of the concentric 
circles.  

In this section, we derive a new algorithm to find the 
position of the projective circle centers using the 
concentric circles without radii information of them. 

Assume that the concentric circle center is located at the 
origin of the world coordinate system. The circle Q is a 
diagonal matrix expressed as Eq. (4). Because we set the 
concentric circle center at the origin of the world 
coordinate system, CT describes the position of the 
projected circle center by Eq. (3). 

 

With Eqs. (3) and (6), we have  
[ ]( ) [ ]( ) 1

21
T

21 TrrCQTrrCA −−=λ      (7) 
 

If Q is the degenerated conic whose entities are all zero 
except the last one, we obtain CT up to scale from conic 
equation. 

( ) ( ) 1T1T CTCTQPP −−−− = λ                  (8) 
 
For two ellipses from the same homography P. Eq (6) 

becomes 
 

1T PQPA −−= 111λ , 1
2

T
2 PQPA −−=2λ          (9) 

 
Taking the inverse on Eq (7), we obtain  

( ) ( ) TPQPA 1
1

1
1

1

1 −− =
λ

, ( ) ( ) TPQPA 1
2

1
2

2

1 −− =
λ

  (10) 

 
Subtracting the two equations, we have 
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From Eq. (13), we notice that both sides of the Eq. (11) 

satisfy the rank 1 condition.  
From Eqs. (3) and (11), we finally obtain. 
 

( )( )TT1
∆ CTCTPPQ ~−                (14) 

 
The ratio of the scale factors in Eq. (12), α, is 

determined to satisfy the rank 1 constraint of Eq. (12) with 
simple algebraic manipulations. 

Overall procedures to find the position of the projected 
circle center consist of 

(1) Finding two ellipses corresponding to concentric 
circles in the image 

(2) Obtaining the inverse matrix of the ellipse matrices. 
(3) Determining the ratio of the scale factors, 

21 / λλα = , using the rank 1 constraint. 
(4) Computing the rank 1 matrix of Eq. (12)  
(5) Decomposing the matrix with one vector and its 

transpose. This vector expresses the position of the 
projected circle center in homogeneous coordinates. 
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2.3 Experiments for the projected circle center 
 

Assume that we have identified a set of image points 
belonging to each ellipse by any existing ellipse fitting 
algorithms. Using the resulting parameters of ellipses, the 
centers of ellipses are determined by the algorithm 
presented in the previous section. 

Figure 1 shows a result to determine the projected 
center of 3-D circle from a real image of two concentric 
circles. In Figure 1, the small white cross indicates the 
position of the projected circle center. This result 
demonstrates that the proposed method accurately 
estimates the position of the projected center without radii 
information of the concentric circles. 

 

   
Figure 1. An experimental result to determine the 

projected center of 3-D circle using a pair of concentric 
circles 

 
3 Camera Calibration 
 

In this section, we present an algorithm to calibrate the 
camera intrinsic parameters using an accurate estimation 
of the projected circle center. The basic assumptions of 
the proposed algorithm include that: 

(1) The skew of camera is negligible; 
(2) The CCD sensor cell size is provided; and  
(3) The radii of 3-D circles are given. 
 

 
Figure 2. The proposed camera calibration system using 

two sets of concentric circles. 
 
A schematic of our camera calibration system is 

depicted in Figure 2. The angle between planes 1 and 2 
can be arbitrary. This means camera calibration is possible 
with two or more images of a single plane taken from 
different viewing directions. 

If we have rough initial guesses for the intrinsic 
parameters with some knowledge about cameras such as 
sensor cell size, we can estimate the circle pose in 3D 
space. Using the circle pose estimation algorithm [6], we 
can find the 3-D position of the circle supporting plane, 
the normal vector and distance, denoted by in  and di.  

Naturally, the concentric circles are on the same plane. 
Therefore, the supporting plane of each circle must be 
identical in the case of the concentric circles. The same 
supporting plane is expressed with the same normal vector 
and the same distance from the origin. These two 
constraints are metric invariants, angle and length ratio.   

In addition to these constraints, we can apply the 
Euclidean constraint using the known radius of each 
concentric circle. These are depicted in Figures 2 and 3. 
With erroneous estimates of the intrinsic parameters, the 
normal vector and distance to the circle-supporting plane 
are not the same in spite of the same plane like 1n , 2n  in 
Figure 3. 

 
Figure 3. Projected concentric circles and its supporting 
plane: 1n  and 2n  represent calculated normal vectors 
from ellipses C1, C2 using the wrong estimates of the 

intrinsic parameters. 
 

 
Figure 4. 3D reconstruction of the 3D points on the 

circle-supporting plane. 
 

With the plane normal 1n =(n1x ,n1y,n1z) and distance d1, 
the circle supporting plane is expressed as vector (n1x , n1y, 
n1z, d1). The reconstruction of the 3D position of conic 
point can be achieved by simple manipulations of the 
plane equation as shown in Figure 4. The proportional 
constant α is calculated as 

fnynxn
d

xxx 321

1

++
−=α                         (15) 

 
where f  is the estimated focal length. 
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The cost function for minimization consists of the 
difference of the unit normal vectors of the circle-
supporting plane, the distance to the plane from the origin 
of the camera coordinate system, and the radius estimation 
error which are able to calculate from the reconstructed 
3D location of the conic points and the exact center points 
estimated by the method described in section 2. 

Taking into account all the constraints discussed so far 
leads to a cost function  
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where Ri is radius of the circle i, and Rci(ni,di) is radius 
estimation function on the points of the circle i using 
points on ellipses and estimated circle center. α, β, γ, λ, 
ρ1, ρ2, ρ3, and ρ4 are the weighting factors representing the 
confidence of each constraint. 

Using a nonlinear minimization technique, the values of 
the intrinsic parameters are estimated, starting from rough 
initial guesses. The reconstruction of the 3D position of 
conic point can be achieved by simple manipulations of 
the plane equation. Depending upon the noise level of the 
images, we may achieve better performance by adjusting 
the weighting factors for a higher noise level.  

The algorithm works in the following steps: 
(1) Find the ellipses of the projected concentric circles. 
(2) Calculate the projected center of the concentric 

circles with the way of section 2. 
(3) Estimate the supporting plane of the concentric 

circles with rough guess of the intrinsic parameters. 
(4) Find the normal vectors and distance to the circle-

supporting plane. 
(5) Calculate the estimated 3D position of the points on 

the ellipses with result (4). 
(6) Make cost vector with result of (4) and (5).  
(7) Assign proper weight value to each element of the 

cost vector. 
(8) Estimate the camera intrinsic parameters using 

nonlinear minimization with Eq. (16). 
 

4. Calibration experiments 
 

Experiments with both synthetic data and real data are 
carried out. For the estimation of the 3D position of the 
projected circle, we use the Kanatani’s algorithm [6] for 
the calibrated cameras. Ellipses are fitted by a direct least 
square method of Fitzgibbon [10]. The well-known 
Levenberg-Marquardt algorithm is used for nonlinear 
minimization.  

 

4.1 Experiment using synthetic image 
 

For synthetic data, we set f=6.5mm, the principal point 
at (310, 220) pixels, and the radius of concentric circles of 
40 and 80 mm, respectively. The physical cell size is 
assumed as (0.0068, 0.0067). Figure 5 shows the example 
synthetic images of the concentric circles. 

The results of the experiment are summarized in Table 
1. The algorithm converges well independent of the initial 
values and the resulting errors are very small.  

To find out the noise characteristic of this algorithm, we 
have made the noise analysis using the synthetic data with 
the round-off error. Table 2 shows the round-off noise 
effect and at least half-pixel edge detection is needed for 
accurate calibration. 

 

   
Figure 5. Synthetic concentric circles used for 

calibration experiments. 
 

Table 1. Intrinsic parameters using synthetic data 
 U0 V0 αu αv 

Real 310 220 960.7 965.9 
Initial 320 240 1182.4 1188.9 

Estimated 310 240 960.7 965.9 
Error -0.73×10-6 -0.84×10-6 -1.2×10-4 -1.0×10-6 

 
Table 2. Estimation error by round-off noise  

Noise 
Level U0 V0 αu αv 

1 33.0775 28.7837 86.4111 86.8793
1/2 5.1829 5.5378 2.9189 2.9347 

1/10 3.9214 5.9354 4.8519 4.8782 
1/100 0.0749 0.0195 0.1439 0.1447 

 
4.2 Experiments using real images 
 

 For a calibration target shown in Figure 6, the 
concentric circles with radius of 40 and 80mm are printed 
on a paper using a commercial laser printer. To find the 
ellipses in the image, we detect the edge in the image 
using a Canny operator [14] that finds edges with the sub-
pixel accuracy.  

Figure 6 shows an image taken by a SONY XC-003 
color camera with 8 mm lens, and the physical cell size is 
provided by the manufacturer as (0.0068, 0.0067). Using a 
Matrox Corona color frame grabber, the images are 
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captured with the resolution of 640x480 pixels. Figure 7 
shows the fitted conics. 

For the comparison of performance, we calibrate the 
same camera with a similar plane based algorithm – 
Zhang’s method [3]. The results of this experiment are 
shown in Table 3. In spite of the less number of images, 
and no known 3D point feature set, it is possible to 
intrinsically calibrate the camera with comparable 
performance. 

 

    
Figure 6. Real images of concentric circles used for 

calibration. 
 

Table 3. Intrinsic parameters using real images 
 U0 V0 αu αv 

Zhang 306.70 240.44 1104.2 1112.5 
Initial 320 240 1182.4 1188.9 

Proposed 309.37 246.01 1104.7 1110.7 
 

    
Figure 7. Conic fitting results: edges are computed by a 

sub-pixel Canny edge operator. 
 

5. Application to 3-D structure recovery 
 
In this section, we verify the feasibility of the proposed 

calibration method through the recovery of the object 
surface with multiple images by a probabilistic voxel 
coloring algorithm [15] . It is assumed that the object is 
placed on a turntable and two static cameras capture the 
images of the object at the different turntable positions as 
shown in Figure 8.  

The accurate camera calibration is necessary for the 
successful recovery of  3D structure in voxel coloring. In 
this paper, camera calibration is carried out in two steps: 
the camera is intrinsically calibrated by the proposed 
method using concentric circles and the subsequent 
extrinsic camera calibration is followed. Extrinsic camera 
parameters use four concentric circle centers, which are 
placed on the same plane and evenly distributed from the 
rotation axis of the turntable as shown in Figure 9. The 

four projected circle centers are extracted using the 
proposed method. Extrinsic camera parameters are 
determined by a method which is based on Jacobian-based 
visual servoing concept [17]. Figure 9 shows the 
calibration results of extrinsic camera parameters of two 
cameras, in which the estimated world coordinate system 
is depicted.  

 Figure 10 shows 4 sample images out of 24 input 
images of a 3-D object. The voxel coloring method has 
successfully recovered the 3-D structure as shown in 
Figure 11. 

 
 

 
Figure 8. An experimental setup consists of two 

static color cameras and a turntable on which concentric 
circle patterns are printed for calibration. 

  
6. Conclusions 
 

In this paper, we have proposed a novel camera 
calibration algorithm using concentric circles. For finding 
the accurate position of the projected circle center, we 
develop an algorithm based on the planar concentric 
circles without radii information. The proposed calibration 
algorithm is based on the quite simple geometric 
characteristics. However, it uses quantities each of which 
has natural physical meaning for non-linear minimization. 
In synthetic and real image experiment, our method has 
shown the comparable performance with the existing 
similar algorithm, but with just two views of a planar 
pattern. 

We have applied the proposed camera calibration 
method to voxel coloring algorithm, which can extract the 
3-D shape with multiple calibrated images taken from the 
different viewpoints to verify the accuracy of the proposed 
method. The reconstruction results using the new 
calibration algorithm are reasonable.  

Work is currently underway to find a linear solution for 
an initial estimation with the non-zero skew and the 
optical distortions using a planar concentric circles 
pattern. 
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Figure 9. Results of extrinsic camera calibration of two 

cameras: three white lines represent each calculated 
coordinate axis 

 

   

   
Figure 10. Four sample images of a sequence of 24 input 
images for a test object.: left two images are from upper 
cameras and right two images are from lower cameras 

 

  
(a)                                        (b) 

Figure 11. Rendered images from the recovered 3-D data 
with the same camera viewpoint of input image: (a) the 

upper left image is rendered image, the upper right image 
is original input image, the lower left image is color 

represented recovered voxel space, the lower right image 
is the depth map from the camera viewing position, (b) . 

The rendered image with a new camera viewpoint. 
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