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Abstract

We address the problem of direct internal calibration
of a camera from a set of known angles between optical
rays. A pen-size laser crosshair projector is used to
generate a reference pattern whose angular features are
known. Each known angle between a pair of optical rays
imposes one angular constraint on the internal camera
parameters. Several constraints form a system of
equations, which is solved for the internal parameters.
Because the angular constraints are given in the standard
coordinate system of the camera, the internal parameters
are recovered directly, that is without referring to any
world coordinate system. An advantage that follows, is
that calibration does not require precise measurements of
3-D coordinates of reference points. The final calibration
parameters as well as the first order radial distortion
parameter are computed by nonlinear optimization. We
analyze an accuracy of angular values between optical
rays and present experimental results of camera
calibration. Angular calibration is fast, robust and easy
to implement method, which is suitable for quick “off-
lab” calibration of cameras.

1. Introduction

Recent advances in camera self-calibration could not
yet eliminate standard calibration from those computer
vision applications where metric information is essential.
Numerous articles on the subject of camera calibration,
which have been published recently, confirm continuous
interest in the problem. Below we review only some
recent publications out of the enormously large field of
research dedicated to camera calibration and self-
calibration.

Vast majority of photogrammetric calibration
techniques uses precise distance measurements for a set of
3-D reference points. The classical Direct Linear
Transform (DLT) calibration method [1], [22] recovers
the 5 internal and 6 pose parameters of a fully projective
camera from the images of at least 6 known 3D points by
solving a system of linear equations. The disadvantage of
the DLT is that it deals with the ideal projective camera
model, which means that optical distortion has to be
removed beforehand. Also, the entries of the camera
perspective projection matrix recovered by the DLT
depend on some irrelevant coordinate system where the

actual reference measurements were done. Finally, the
perspective projection matrix ought to be broken down
into the internal and the pose parameters of the camera
[7]. Despite of cumbersome implementation, the DLT is
widely popular in the computer vision community [30],
[6]. A calibration technique that became classical was
proposed by Tsai in [29] and developed further in [13]. It
recovers the intrinsic and optical distortion parameters
from the nonlinear equations describing the projection of
3-D points onto pixels. A complete set of the camera
internal parameters and the first order radial distortion
parameter is computed as a result of nonlinear
optimization.

Recently developed DLT-like methods consider a
more restrictive camera model by assuming that some
internal parameters (these are normally aspect ratio and
skew) are pre-calibrated [8], [21], [5], [28]. For example
the “4-points” method suggested by Triggs in [28]
assumes that the focal length is the only unknown internal
parameter, whereas the “5-points” one considers both the
focal length and the principal point as unknowns.
However the performance analysis made Triggs indicates
that traditional “6-points” DLT calibration is always
preferable compared to the 4- and 5-points methods when
there are more than six 3-D reference points available.

Contrary to DLT-like calibration, self-calibration does
not use any calibration object [16], [20]. The rigidity of
the scene provides in general two constraints on the
internal parameters of the moving camera from its single
displacement. Consequently, correspondences between
three images taken by the same camera with fixed internal
parameters are sufficient to recover both the internal and
the pose parameters [15], [9]. It was shown that self-
calibration can be applied for a camera with varying focal
length and principal point, but fixed aspect ratio and zero
skew [5], [11], [18]. However, the problem that was not
addressed is the varying lens distortion for a zooming
camera: changes in distortion parameters are noticeable
and applying the pinhole model to undistorted images can
not be justified. While self-calibration approach is
flexible, it is not stable [2]: the results are not always
reliable because there are many parameters to estimate. In
addition, there are several types of camera motion, for
which self-calibration is a degenerate problem, i.e. there
exist ambiguous solutions [24]. Serious numerical
instabilities occur for one of the most natural imaging
situation when the camera moves on a sphere and focuses
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the sphere’s center: the focal length can not be estimated
even when the other intrinsic parameters are known [26].

Since traditional calibration uses known world
coordinates, and advanced self-calibration is generally not
stable, neither is suitable for quick “off-lab” calibration of
cameras. Other calibration techniques tried to tackle the
problem by using vanishing points for orthogonal
directions [3], [14], geometric objects like spheres [17] or
planar surfaces [25], [27], [31], whose images display
invariant properties, or special camera motion [4], [10],
[23].

A fact exploited by angular calibration is that a
projective camera is uniquely defined by a certain number
of optical rays. In our calibration setup a laser crosshair
generates a specific geometrical pattern. The image of the
crosshair footprint contains a set of pixel pairs whose
angular configuration is known. Each pair of pixels
defines a non-linear constraint on the internal camera
parameters. When several constraints are put together, a
system of equations is formed. This system is solved for
the camera internal parameters.

The work of Stein [23] is the most closely related with
this paper and we would like to point out the differences.
Stein’s calibration method also exploits angles but uses
them in the “reverse” order. A highly accurate rotary
platform provides pure rotations of the camera. This
requires special mechanical equipment. The angles of
rotations are measured and used in the minimization
process to make them consistent with the camera internal
parameters.

The paper is organized in 4 Sections. In Section 2.1 an
experimental setup for angular calibration is described.
The mathematical model used for angular calibration is
given in Section 2.2. Maximum likelihood solution for the
projective camera model is described in Section 2.3.
Section 2.4 deals with optical distortion. Accuracy of the
angular values is investigated in Section 2.5. Experimental
results of calibration are given in Section 3. Concluding
remarks are made in the last section.

2. Angular Calibration
2.1 The calibration setup

An experimental setup for calibration includes a
camera and a pen-size laser crosshair projector. ([12],
Figure 1, left) The laser is equipped with an optical head,
which splits its beam into two planar sheets. When these
are projected onto a plane, the laser footprint is a cross. A
fan angle of the laser, subtended by the point of crosshair
origin (i.e. the point where the two planar sheets originate)
and the end points of the projected crosshair footprint, is
known with high accuracy.

In the calibration setup, both the camera and the laser
are attached next to each other and are fixed on a tripod so

as to ensure the closest possible location of the camera
optical center and the laser beam. In practice, we simply
tape the camera and the laser together before fixing them
on the tripod. The whole procedure takes about 5 minutes.
One condition must hold: the viewing angle of the camera
must exceed the fan angle of the laser crosshair, so that
the camera observes the end points of the crosshair
footprint in its field of view. If the above mentioned
conditions are satisfied, the image of the footprint merely
depends on the shape of objects the laser crosshair is
projected upon. This is easy to see if we consider a
thought experiment where 1) the camera optical center
coincides with the crosshair origin and 2) the camera axis
is parallel to the laser beam. In this case, it is quiet clear
that the footprint image will not depend on the shape of
scene objects at which the laser is projected. In reality,
however, a small displacement between the camera and
the laser origin can not be avoided. This causes slight
variations in the shape of the footprint image.

 

Figure 1. Left: Laser crosshair projector: commercial product
of LASIRIS Inc. Right: Undistorted footprint image used for

calibration.

However, if the distance between the crosshair origin
and 3-D points highlighted by its footprint on a scene is
much larger than the distance between the camera and the
laser, the difference in angles that the projected footprint
points subtend with respect to the camera optical center
and the crosshair origin will be minuscule. We, therefore,
assume that the angle between a pair of optical rays,
defined by two pixels that are images of the two
“opposite” endpoints on the footprint, is equal to the
laser’s fan angle. In fact, we shall show that for any
realistic calibration setup a relative error for this angle
does not exceed 0.6%. The endpoints and the center of the
crosshair footprint are clearly seen from large distances
and can be accurately extracted in the image. All these
make the angular calibration technically easy and reliable.

2.2. Angular relations

We consider a full projective pinhole camera model as
in [7]. The 3 x 4 perspective projection matrix P~  depends
on the five internal parameters. When P~  is expressed in
the coordinate system attached to the camera (i.e. standard
coordinate system with its origin in the optical center, axis
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Z along the optical axis and the image plane defined by
the axis X and axis Y) it is given by:
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where αu, αv, are the scaling factors, (u0, v0), is the
principal point and θ  is the camera’s skew angle.
Consequently, five constraints on the camera internal
parameters, given in the standard coordinate system,
define the camera model fully.

Consider a 3-D line <C,m> defined by a pixel m and
the camera optical center C as in Figure 2. In the standard
coordinate system this line, which is called the optical ray
defined by m, is given by:

mPM ~1−= λ                               (2)
where P is the leftmost 3x3 submatrix of P~ , and

[ ]1,,~
21 mm=m  is the homogeneous coordinate vector of

m. The end point of the 3-D vector M gives a point M on
the optical ray <C,m> as λ - varies between -∞ and +∞.

Consider a pair of pixels m and n, which are the
images of the “opposite” end points of the crosshair
footprint M and N. Let <C,m>, <C,n> be the two optical
rays, defined by m and n, respectively. Each optical ray
can be expressed in the form of equation (2). Now, take
into account that distances from L and C to any of the
footprint points in the object space such as S, N, M, Q and
O, are at least ten times that of the distance between L and
C. Under this assumption, the angle between the optical
rays <C,m> and <C,n> is practically equal to the fan angle
γ subtended by the rays <LM> and <LN>. A scalar
product of the two 3-D vectors which define <C,m> and
<C,n> expresses this assumption:

γcosNMNM =T                       (3)

Here M and N be the two 3-D vectors that define <C,m>
and <C,n>, respectively. Expansion of (3) to pixel
coordinates using (1) and (2) for the camera with zero
skew (θ = 90°) yields:
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Each laser crosshair footprint provides four
independent constraints (angles) on the camera internal
parameters. The two constraints are provided by the
“opposite” endpoints of the footprint, whereas the other

two arise from a combination of the cross’ center with the
two endpoints which are not aligned. Therefore, given a
single image of the crosshair, it is possible to calibrate a
zero skew camera by solving a system of four equations
such as (4).
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Figure 2. Geometry of the calibration setup. L is the crosshair
origin, and C is the camera’s optical center. Angle γ =∠ MLN is
the fan angle of the laser crosshair. MSNQO is a 3-D footprint of
the laser crosshair. Note, that four angles subtended by the
footprint center O and each end point with respect to L, are half
that of γ. |LC| is a distance between L and C, which is small
compared to a distance between L and any arbitrary point on the
crosshair footprint.

Unfortunately there is no practical way to rewrite
these equations in the form of a linear system for which
the least squares technique is applicable. However, we
have used equation (4) to estimate the initial values of the
four internal parameters, which are then refined with
nonlinear minimization. The procedure is as follows. Set
the coordinates for the principal point to the coordinates
of the central pixel of the image. Set αu to the one of the
image size. Pick up a pair of pixels that are the images of
the opposite ends of the crosshair footprint and use their
coordinates to set up equation (4) using also the values for
αu and (u0, v0). This is a quadratic equation with respect to
the variable 1/av

2. If the discriminant of this equation is
positive, solve it for the positive real root and find the
value for av. If the discriminant is negative, update the
value for au so that it becomes positive and solve the
quadratic equation once again to find estimation for av.

2.3. Maximum likelihood estimation

Final calibration for the full projective camera is
obtained using more angular measurements. Let us assume
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that we are given k images of laser crosshair footprints.
Five reference points, namely end/center footprint points,
are detected in each of the images. These points define
four independent angular relations such as (4) for each
image. Assuming that the image points are corrupted by
independent and identically distributed noise, the
maximum likelihood estimate for the parameters can be
obtained with the least square approach. We minimize the
sum of errors in the known angles over the whole set of
the reference pairs of optical rays:
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where M i and N i are the 3D vectors which define the i-th
pair of optical rays with the angle γi between them. γi is
equal to the fan angle of the laser crosshair when the
vectors M i and N i are subtended by the endpoints of the
crosshair footprint, and it is equal to the half of the fan
angle value if one of these vectors is subtended by the
footprint’s center. Combining (2) and (5) and introducing
a symmetric matrix 1−−= PPB T , the target function (5)
is given by:
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Minimizing (6) by varying the values of the five
parameters: 00 ,,,, vucvu αα  is a nonlinear minimization
problem, which is solved with the Levenberg-Marquardt
algorithm as implemented in [19]. It requires an initial
guess for the values of the unknown parameters, which is
obtained as described at the end of the previous
subsection.

2.4. Accounting for radial distortion

So far, we have assumed that pixel coordinates are not
subjected to optical distortion. To account for lens
aberration the undistorted coordinates (m1,m2) and (n1,n2)
used in the angular relation (4) have to be substituted by
their distorted counterparts (m1

d,m2
d)  and   (n1

d,n2
d)

observed in the real image. To a good degree of accuracy
lens aberration is modeled by radial distortion only and,
moreover, for industrial machine vision applications only
one term in approximation of radial distortion is needed.
According to the broadly cited work of Tsai [29]: “any
more elaborate modeling not only would not help but also
would cause numerical instability”. We, therefore, use the
first order approximation for the ideal pixel coordinates in
the image:
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where 2
02

2
01

2 )()( vmumr dd −+−= . Combination of (7)
and (6) defines the target function, which has to be
minimized with respect to the complete set of the 5
internal parameters, i.e. 00 ,,,, vucvu αα , and the radial
distortion parameter k1. As before, this is solved with the
Levenberg-Marquedt algorithm setting the initial value for
k1 to zero.

2.5. Accuracy of the angular values

Let us now investigate how accurate our assumption
is concerning the angles between the end/center points of
the crosshair footprint viewed by the camera. For
simplicity, we consider the calibration setup in 2-D
(Figure 3). As above, L is the crosshair origin and C is the
camera optical center. The two 3-D points M and N are a
pair of the “opposite” endpoints the projected footprint
and γ is the fan angle of the laser. The distance d between
the laser and the camera is much less than the distance
from L to M or N, i.e. the ratios sdd « 1 and tdd «

1. Applying the cosine theorem to the triangles LMN and
CMN, after some algebra we obtain:
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Using first order Taylor expansion in the small d we
obtain the following approximation for the angle γ́ :
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Assuming for instance that ts dddd ~  ~ 0.01, and γ ≅
ϕ ≅  45°, the relative error for γ́  is given
by: %2.0=γδγ .
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Figure 3.Geometry of the calibration setup in 2-D.

Similar geometrical consideration in 3-D suggests that:
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Consequently, the relative error for γ́  in 3-D does not
exceed 0.6%.
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It follows from (7) that there is an optimal laser/camera
setup when the difference between the angles γ́  and γ is of
second order in d:
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Though it is difficult to provide the optimal value for
the angle ϕ in practice, (8) still provides a certain
rationale for the optimal adjustment of the calibration
setup. Assuming, for instance, ts dd ≈ and γ = 45° the
optimal value for the angle ϕ is about 80°.

3. Calibration results

The camera calibrated was the VS 500 CCD camera
with 2.8 mm Iris lens (i.e. with 95°/71° horizontal /
vertical angle of view). Image resolution was 640 x 486
pixels. The fan angle of the laser crosshair was equal to
60°. No special equipment except the camera and the laser
projector fixed on the tripod was used for calibration.
Four laser footprint images were acquired with the laser
attached to the different sides of the camera, of which one
example is shown in Figure 1, left. Neither care was taken
concerning orientation of the laser crosshair or the shape
of the surface the laser was projected at. Both the d⁄ds and
d⁄dt distance ratio were at about 0.005. The initial values
for the camera’s skew and the distortion coefficient k1
were set to zero. Final calibration was obtained by
nonlinear optimization as described in Section 2.3.

It was observed that nonlinear minimization converges
rapidly (for 3 iterations) on a stable minimum which
remains the same even though initial values for the
internal parameters vary by about 100% of their values.
Both, the full projective model as well as the more
restrictive model with zero skew were computed. One can
see from Table 1, which lists the calibration results, that
the camera has very small skew and noticeable non-square
pixels.

Our calibration results were compared to the ones
obtained by the DLT [6]. A rigid cubical frame of about
1m x 1m size with bright markers on the frame sides was
used as a calibration target. The image was undistorted
using the calibrated parameter k1. 3-D coordinates of the
markers were precisely measured using photogrammetric
technique. Pixel coordinates of the markers were localized
accurately by a center of gravity algorithm. Two reference
sets of 3-D and 2-D coordinates were the input to DLT
calibration. The results of the DLT calibration given in the
last column of Table 1 illustrate the convergence between
the two calibration techniques.

Angular1 Angular2 DLT
αu 331.59 330.75 322.73
αv 419.12 420.37 415.17
αv/αu 1.26 1.27 1.28
u0 295.02 294.62 282.1
v0 234.13 236.02 234.03
θ 89.63° 90°-fixed 90°-fixed
k1 -8.53e-7 -8.51e-7 None

Table 1. The internal calibration parameters computed by the
angular and DLT calibration. First column: the results of angular
calibration for the full projective model. Second column: the
results of angular calibration assuming zero skew. Third
column: the results of DLT calibration assuming zero skew.

4. Conclusions

We have presented a novel technique for direct
internal calibration from known angles. A set of optical
rays defined by the 3-D pattern as generated by the laser
crosshair projector is computed. The angles between the
pairs of optical rays from the set are known and used for
calibration. The full projective camera model with the five
internal parameters is considered. First, initial values of
the four internal parameters are estimated. Second, the
five internal parameters and the first order radial
distortion parameter are computed with the maximum
likelihood estimation. It takes about 3 iterations for non-
linear minimization to converge on a global minimum.
Calibration appears to be pretty stable with regard to
different initial values required by nonlinear minimization.
The results of angular calibration are consistent with those
ones obtained by the traditional DLT.

The novelty of angular calibration lies in the direct use
of angles between the optical rays defined by particular
points in the laser pattern (footprint ends, center). The
method lies between DLT-like calibration and calibration
from pure rotation, because it uses angular values –as in
calibration from pure rotation - and these values form a
reference set, instead of 3D reference coordinates used by
the DLT calibration. The angular calibration is “one run”
procedure that extends to many angles and finds an
optimal solution by non-linear minimization of least
squares.

Several advantages distinguish the angular calibration.
First, it does not require any distance measurements, thus
eliminating an extra source of errors. Second, angular
calibration is specifically targeted on a direct recovery of
the internal camera parameters while working naturally in
the standard coordinate system. Third, the calibration
setup is rather simple: all what is required is a small and
low power consuming laser. Because the crosshair
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generates a clear footprint image, it is easy to extract the
center and endpoints which are critical for calibration.

The angular calibration does not challenge precise “in-
lab” calibration techniques but rather suggests a quick
alternative method for outdoor calibration. Given an
initial guess for the internal parameters, the angular
calibration can be converted into a fully automatic
procedure. This, in turn, makes the idea attractive for the
use by mobile robots. The technique is also directly
applicable for calibration of cameras by images of stellar
objects: the precisely known relationship between Earth
and stellar objects that define angles between respective
viewing rays may be used to set up the angular relations
required for calibration.
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