ACCV2002:The 5th Asian Conferencen ComputenVision, 23-25January2002,Melbourne Australia. 1

Edges Are Not Just Steps

PeterKovesi
Departmenbf ComputerScience& Softwae Engineering
TheUniversity of WesternAustralia
Crawley, WA. 6009
pk@cs.uwa.edu.au

Abstract

Images contain stepedges, line featuesand manyfea-
ture typesthat are somevhere betweenthe two. Tradi-
tional gradient basededge opemators are tunedto detect
stepedges, and henceare unableto properly detectand
localizeotherfeature types. The PhaseCongruencydetec-
tor is usedas a tool to identify the different feature types
foundin images. It is shownthat there is a continuumof
feature typesbetweerstepedgesand lines, and that most
imageshavea broaddistribution of all thesefeatuie types.
It is concludedthat in typical imagesgradientbasedoper
ators detectand localize only a small fraction of featules
correctly

1. Introduction

In generalthe edgedetectionliteraturehasconcentrated
on the detectionof stepedges.The principal criteriabeing
usuallythe gooddetectionandlocalizationof stepfeatures
in the presenceof noise. This is typified by the work of
Sobel[18], Marr andHildreth[12], Canry [3, 4], andmary
others. A very limited amountof work hasbeendoneon
thedetectiorof otherkinds of features Someexceptiongo
this arethe line detectionwork of Canry [3], the detection
of peaksandroofsby PeronaandMalik [17], the detection
of stepsandbarsby WangandJenkin[20], andthe catalog
of featuretypesdevelopedby Aw, OwensandRoss[1, 2].

The emphasison the detectionof step edgesis mis-
placed.Imagescontaina wide variety of edgetypes,mary
of which are somavherebetweena stepanda line. This
papershaws that one candescribea continuumof feature
typesbetweenstepedgesandlines, andthat mostimages
have a broaddistribution of all thesefeaturetypes. The
emphasiof computervision researchon the detectionof
stepedgeshasresultedin edgedetectorsthat can fail to
find, and/orincorrectlylocalize,valid featureshatarerec-
ognizedby thehumaneye.

s(z) = Z ﬁsin[@n + 1)z +7/2]

n=0

Figure 1. Fourier series of square and triangular
waveforms, and sum of the first four terms.

2. What isafeature?

The classicalapproachto edge detectionhas beento
think of edgesas being points of high intensity gradient.
Ratherthanthink of featuresin differentialtermsan alter
native approactis to think of featuresin the frequencydo-
main Imageprofilescanbe thoughtof asbeingformedby
aFourierseriesasshavn in Figurel.

Notice how the Fourier componentsareall in phaseat
the point of the stepin the squarewave, and at the peaks
andtroughsof the triangularwave. Congrueng of phase
at any angle producesa clearly percevedfeature. We can
generalizeour Fourier Seriesexpressiorto generatea wide
rangeof waveformswith theequation

o

s(z) = Z msin[@n + 1)z + ¢] (1)

n=0

whereg is the phaseoffsetdefiningtheangleatwhich phase



congrueng occursat features,andp is the exponentthat
describegherateof amplitudedecaywith frequeng in the
series.

Figure 2 shaws three gratingsconstructedusing equa-
tion 1 for amplitudedecayexponentsf 0.5, 1, and1.5. In
eachgrating¢, the offsetat which congruencef phaseoc-
curs, is variedfrom 0 at the top of the gratingto 3 atthe
bottom. Visually this corresponddo a patternwherewe
perceve a stepedgeat the top changingto a line feature
at the bottom. This interpretationof the featuretypesre-
mainsthe samefor all threegratings. This indicatesthat
changingthe amplitudedecayexponent,while varying the
‘sharpnessbf thefeaturesdoesnot changeour visualclas-
sification of featuretype of stepat the top of eachgrating
to line at the bottom. This is despitethe large variationin
profiles. It would appearthatthe perceved featuretypeis
purely a function of the angleat which phasecongruence
occurs.

A gratingof this kind revealsthe limitations of gradient
basededgedetectors.Figure 3 shows the responsef the
Canry detector At the top of the grating pattern,where
the featureis a pure stepedge,onegetsa singleresponse.
However, at all otherpointswe obtaina doubleresponse,
one on eachside of the featurepoint. The Canry detec-
tor markspoints of maximalintensity gradient(asit was
designedo do). This exampleshavs that points of maxi-
mal gradientdo not necessarilcorrespondo the locations
wherewe perceve features.

3. The Phase Congruency detector

So, whatis a feature? Ratherthan assumea featureis
a point of maximal intensity gradient, the Local Eneigy
Model postulatesthat featuresare perceved at points in
animagewherethe Fourier componentsare maximally in
phase.

This model was developed by Morrone et al. [15]
and Morrone and Owens [14].  Other work on this
model of featureperceptioncanbe foundin Morrone and
Burr [13], Owenset al. [16], Venkateshand Owens[19],
and Kovesi [6, 7, 8, 10, 11]. The work of Morrone and
Burr [13] hasshawvn thatthis modelsuccessfullyexplainsa
numberof psychophysicagffectsin humanfeaturepercep-
tion.

Themeasuremerdf phasecongruenyg atapointin asig-
nal canbeseengeometricallyin Figure4. Thelocal Fourier
componentst a locationz in the signalwill eachhave an
amplitudeA,,(z) anda phaseangle¢,(z). Figure4 plots
theselocal Fourier componentsscomplex vectorsadding
headto tail. The sumof thesecomponentgrojectedonto
therealaxisrepresentd’(z), the original signal. The mag-
nitude of the vectorfrom the origin to the endpoint is the
Local Eneny, |E(z)|.
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Figure 2. Interpolation of a step feature to a line
feature by continuously varying the angle of con-
gruence of phase from 0 at the top to 7 at the
bottom. Three amplitude decay exponents, 0.5,
1.0 and 1.5 are shown in subplots (a), (b) and (c)
respectively. Profiles of the gratings correspond-
ing to congruence of phase at 0, ¢, 3 and 3 are
shown on the right.

Figure 3. Raw Canny edge strength response on
the grating shown in Figure 2(b).
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Figure 4. Polar diagram showing the Fourier
components at a location in the signal plotted
head to tail. The weighted mean phase angle
is given by #(z). The noise circle represents the
level of E(z) one can expect just from the noise
in the signal.
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The measureof phasecongrueng developedby Mor-
roneetal.[15] is
|E(x)|

PCy (117) = m . (2)

Underthisdefinitionphasecongrueng s theratioof | E(z)|
to the overall pathlengthtaken by thelocal Fouriercompo-
nentsin reachingthe endpoint. If all the Fourier compo-
nentsarein phaseall the complex vectorswould bealigned
andtheratio of |E(z)|/ 3_,, An(x) would beone. If there
is no coherencef phaseheratio falls to a minimum of 0.
Phasecongruenyg providesa measurehatis independent
of the overall magnitudeof the signal makingit invariant
to variationsin imageillumination and/orcontrast. Fixed
thresholdvaluesof featuresignificancecan then be used
overwide classe®f images.

It canbe shawvn that this measureof phasecongrueng
is a function of the cosineof the deviation of eachphase
componenfrom the mean

_ Y An(cos(é(z) — ¢(x))
>onAn (z) '

This measureof phasecongrueng doesnot provide good
localizationas it is a function of the cosineof the phase
deviation, it is also sensitve to noise. Kovesi [8, 10|
developed a modified measureconsisting of the cosine
minus the magnitudeof the sine of the phasedeviation;
this producesa morelocalizedresponseThis new measure
alsoincorporatesoisecompensation:

PC(x) 3)

PCQ(.Z’) =

D W(2)[An(2)(cos(¢n (2)— () —| sin(dn (z) —d(2)) )T
En An(z)+e :
(4)

The term W (x) is a factor that weights for frequengy
spread(congrueng over mary frequenciess more signif-
icant than congruenyg over a few frequencies). A small
constantg is incorporatedo avoid division by zero. Only
enepy valuesthatexceedT’, the estimatechoiseinfluence,
are countedin the result. The symbols| | denotethat
the enclosedquantity is equalto itself when its value is
positive,andzerootherwise.

In practicelocal frequeny informationis obtainedvia
banksof filters in quadraturg¢unedto differentspatialfre-
guenciesratherthanvia the Fourier transform. The cur-
rentimplementatiorusesoriented?2D Log Gaborfilters[5].
Thesefilters allow arbitrarily large bandwidthfilters to be
constructedvhile still maintainingazeroDC componentn
the even-symmetridilter. For detailsof this phasecongru-
eng/ measurandits implementatiorseg[10, 11, 9].

4. What feature types do images contain?

Having a featuredetectorthat finds featuresat all an-
gles of phasecongruenceallows us to interrogateimages
to determinewhat featuretypesare presentandtheir rel-
ative frequeng. As a by-productof the phasecongrueng
calculationone canrecordthe weightedmeanphaseangle,
¢(z) at eachpoint in the image. It shouldbe notedthat
theweightedmeanphaseanglewill varywith orientationat
eachimagepoint. Herel have chosento recordthe mean
phaseanglecorrespondingo the orientationhaving maxi-
mumlocal enegy.

Theweightedmeanphaseanglewill lie in therange—n
to m. As one movesaroundthe phasecircle an angle of
0 indicatesan upward going step,7/2 indicatesa bright
line feature,r indicatesa downward going step,and3x /2
indicatesa darkline feature.

Giventhatit makesno senseo differentiatebetweerup-
ward and downward going stepsthe phasedatais ‘folded’
backonitself mappingangleggreatethans /2 andlessthan
—m/2 backinto the range+x/2. While one cansensibly
differentiatebetweenbright and dark line featuresherel
have chosemotto make adistinctionbetweerthetwo. Ac-
cordinglythe phasedatais further‘folded’ to mapanglesn
therange0 to —7 /2 backinto therange0 to 7 /2. Thissim-
plifies the rangeof featuretypesto a scalethatvariesfrom
‘step’ through'step/line’to finally ‘line’.

Figure 5 shows the outputof the phasecongrueng de-
tectoronthetestgratingalongwith thefeatureclassification
determinedy theweightedmeanphaseangleatthefeature
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Figure 5.

(a) Output of the phase congruency operator on
the grating shown in Figure 2(b); compare this to
Figure 3.

(b) Feature classification given by weighted
mean phase angle.

point.

Evenonasimpleidealizedblocksworld’ typeof graph-
ics image one finds a very rich range of feature types
present.Figure6 shavs the raw phasecongruenyg output,
the Canry edgestrength,the featureclassification,and a
histogramof featuretype occurrenceNote the doubledre-
sponseof the Canry operatoronthe sphereandhow it gets
‘lost’ atsomepointsonthetorus. Theocclusionboundaries
of curvedsurfacedypically producehybridfeatureghatare
somavherebetweena stepand a line; two such sections
throughthe imageare shovn. At thesepointsa gradient
basedoperatowill produceadoubleresponsetthe points
of high gradientthatoccuron eachsideof the feature;one
or bothof theseresponsewiill beincorrectlylocalized.

Figures7 and8 show a similar setof resultsontwo more
naturalimages. The histogramsndicatethatin eachcase
thedistribution of featuretypespresenis very broadwith a
biastowardsa higherfrequeng of step-like featureswithin
the images. MATLAB codefor the calculationof phase
congrueng andfeatureclassificationis availablefor those
wishingto replicatetheresultspresentedhere[9].

5. Conclusion

This paperhasarguedthatit is useful to think of fea-
turesin termsof their Fourier componentsratherthanin
termsof intensity gradients. This allows us to describea
widerangeof featuretypeswithin theframework of asingle
model. Featuresareassumedo lie at pointsof high phase
congrueny, andthe angleat which the congrueng occurs
describeghe featuretype. Experimentsindicatethat im-
agescontainfeaturetypesof all phaseangleswith a broad
distribution. Accordinglyit canbe concludedhatgradient

basedoperatorsyhich look for pointsof maximuminten-
sity gradientwill fail to correctlydetectandlocalizealarge
proportionof featureswithin images. Attemptsat produc-
ing sub-pixel localizationof featureswith gradientbased
detectorsre,literally, misplaced.
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Figure 6. Features on a synthetic blocks world image.
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Figure 7. Features on a building image.
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Figure 8. Features on Lena.
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