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Abstract

Imagescontainstepedges,line featuresand manyfea-
ture typesthat are somewhere betweenthe two. Tradi-
tional gradient basededge operators are tunedto detect
stepedges, and henceare unable to properly detectand
localizeother feature types.ThePhaseCongruencydetec-
tor is usedas a tool to identify the different feature types
foundin images. It is shownthat there is a continuumof
feature typesbetweenstepedgesand lines, and that most
imageshavea broaddistribution of all thesefeature types.
It is concludedthat in typical imagesgradientbasedoper-
ators detectand localizeonly a small fraction of features
correctly.

1. Introduction

In generaltheedgedetectionliteraturehasconcentrated
on thedetectionof stepedges.Theprincipalcriteriabeing
usuallythegooddetectionandlocalizationof stepfeatures
in the presenceof noise. This is typified by the work of
Sobel[18], Marr andHildreth [12], Canny [3, 4], andmany
others. A very limited amountof work hasbeendoneon
thedetectionof otherkindsof features.Someexceptionsto
this arethe line detectionwork of Canny [3], thedetection
of peaksandroofsby PeronaandMalik [17], thedetection
of stepsandbarsby WangandJenkin[20], andthecatalog
of featuretypesdevelopedby Aw, OwensandRoss[1, 2].

The emphasison the detectionof step edgesis mis-
placed.Imagescontaina wide varietyof edgetypes,many
of which are somewherebetweena stepanda line. This
papershows that onecandescribea continuumof feature
typesbetweenstepedgesandlines, andthat most images
have a broaddistribution of all thesefeaturetypes. The
emphasisof computervision researchon the detectionof
stepedgeshasresultedin edgedetectorsthat can fail to
find, and/orincorrectlylocalize,valid featuresthatarerec-
ognizedby thehumaneye.
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Figure 1. Fourier series of square and triangular
waveforms, and sum of the first four terms.

2. What is a feature?

The classicalapproachto edgedetectionhas beento
think of edgesas being points of high intensity gradient.
Ratherthanthink of featuresin differentialtermsan alter-
native approachis to think of featuresin the frequencydo-
main. Imageprofilescanbethoughtof asbeingformedby
aFourierseriesasshown in Figure1.

Notice how the Fourier componentsareall in phaseat
the point of the stepin the squarewave, andat the peaks
and troughsof the triangularwave. Congruency of phase
at anyangleproducesa clearly perceivedfeature.We can
generalizeour FourierSeriesexpressionto generatea wide
rangeof waveformswith theequation
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whereG is thephaseoffsetdefiningtheangleatwhichphase



congruency occursat features,and K is the exponentthat
describestherateof amplitudedecaywith frequency in the
series.

Figure 2 shows threegratingsconstructedusing equa-
tion 1 for amplitudedecayexponentsof LJM N�O 8 , and

8 MPN . In
eachgrating G , theoffsetat which congruenceof phaseoc-
curs, is variedfrom 0 at the top of the gratingto Q R at the
bottom. Visually this correspondsto a patternwherewe
perceive a stepedgeat the top changingto a line feature
at the bottom. This interpretationof the featuretypesre-
mainsthe samefor all threegratings. This indicatesthat
changingtheamplitudedecayexponent,while varying the
‘sharpness’of thefeatures,doesnotchangeourvisualclas-
sificationof featuretype of stepat the top of eachgrating
to line at the bottom. This is despitethe large variationin
profiles. It would appearthat the perceivedfeaturetype is
purely a function of the angleat which phasecongruence
occurs.

A gratingof this kind revealsthe limitationsof gradient
basededgedetectors.Figure3 shows the responseof the
Canny detector. At the top of the grating pattern,where
the featureis a purestepedge,onegetsa singleresponse.
However, at all otherpointswe obtaina doubleresponse,
one on eachside of the featurepoint. The Canny detec-
tor markspoints of maximal intensity gradient(as it was
designedto do). This exampleshows that pointsof maxi-
mal gradientdo not necessarilycorrespondto thelocations
wherewe perceivefeatures.

3. The Phase Congruency detector

So, what is a feature?Ratherthanassumea featureis
a point of maximal intensity gradient, the Local Energy
Model postulatesthat featuresare perceived at points in
an imagewherethe Fourier componentsaremaximally in
phase.

This model was developed by Morrone et al. [15]
and Morrone and Owens [14]. Other work on this
modelof featureperceptioncanbe found in Morroneand
Burr [13], Owenset al. [16], Venkateshand Owens[19],
and Kovesi [6, 7, 8, 10, 11]. The work of Morrone and
Burr [13] hasshown thatthis modelsuccessfullyexplainsa
numberof psychophysicaleffectsin humanfeaturepercep-
tion.

Themeasurementof phasecongruency atapointin asig-
nalcanbeseengeometricallyin Figure4. ThelocalFourier
componentsat a location . in thesignalwill eachhave an
amplitudeS 4 -�.)/ anda phaseangle G 4 -�.)/ . Figure4 plots
theselocal Fouriercomponentsascomplex vectorsadding
headto tail. The sumof thesecomponentsprojectedonto
therealaxisrepresentsT -�.)/ , theoriginal signal.Themag-
nitudeof the vectorfrom the origin to the endpoint is the
LocalEnergy, U V -�.W/ U .

(a)

(b)

(c)

Figure 2. Interpolation of a step feature to a line
feature by continuously varying the angle of con-
gruence of phase from 0 at the top to Q R at the
bottom. Three amplitude decay exponents, L�MPN ,8 M L and

8 MPN are shown in subplots (a), (b) and (c)
respectively. Profiles of the gratings correspond-
ing to congruence of phase at 0, Q X , Q Y and Q R are
shown on the right.

Figure 3. Raw Canny edge strength response on
the grating shown in Figure 2(b).
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Figure 4. Polar diagram showing the Fourier
components at a location in the signal plotted
head to tail. The weighted mean phase angle
is given by GZ-�.)/ . The noise circle represents the
level of V -�.W/ one can expect just from the noise
in the signal.

The measureof phasecongruency developedby Mor-
roneet al. [15] is

[�\^] -�.)/10 U V -�.W/ U_ 4 S 4 -�.W/ M (2)

Underthisdefinitionphasecongruency is theratioof U V -�.)/ U
to theoverallpathlengthtakenby thelocalFouriercompo-
nentsin reachingthe endpoint. If all the Fourier compo-
nentsarein phaseall thecomplex vectorswouldbealigned
andtheratio of U V -�.)/ U ` _ 4 S 4 -�.)/ would beone. If there
is no coherenceof phasetheratio falls to a minimumof 0.
Phasecongruency providesa measurethat is independent
of the overall magnitudeof the signalmaking it invariant
to variationsin imageillumination and/orcontrast. Fixed
thresholdvaluesof featuresignificancecan then be used
overwide classesof images.

It canbe shown that this measureof phasecongruency
is a function of the cosineof the deviation of eachphase
componentfrom themean

[�\ ] -�.)/a0 _ 4 S 4 -�b�ced*-:GZ-�.W/gf Gh-�.)/i/_ 4 S 4 -�.W/ M (3)

This measureof phasecongruency doesnot provide good
localizationas it is a function of the cosineof the phase
deviation, it is also sensitive to noise. Kovesi [8, 10]
developed a modified measureconsistingof the cosine
minus the magnitudeof the sine of the phasedeviation;
thisproducesamorelocalizedresponse.Thisnew measure
alsoincorporatesnoisecompensation:
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The term � -�.)/ is a factor that weights for frequency
spread(congruency over many frequenciesis moresignif-
icant than congruency over a few frequencies). A small
constant,� is incorporatedto avoid division by zero. Only
energy valuesthatexceed� , theestimatednoiseinfluence,
are countedin the result. The symbols ��� denotethat
the enclosedquantity is equal to itself when its value is
positive,andzerootherwise.

In practicelocal frequency information is obtainedvia
banksof filters in quadraturetunedto differentspatialfre-
quencies,ratherthanvia the Fourier transform. The cur-
rentimplementationusesoriented2D Log Gaborfilters [5].
Thesefilters allow arbitrarily large bandwidthfilters to be
constructedwhile still maintainingazeroDC componentin
theeven-symmetricfilter. For detailsof this phasecongru-
ency measureandits implementationsee[10, 11, 9].

4. What feature types do images contain?

Having a featuredetectorthat finds featuresat all an-
gles of phasecongruenceallows us to interrogateimages
to determinewhat featuretypesarepresent,andtheir rel-
ative frequency. As a by-productof the phasecongruency
calculationonecanrecordtheweightedmeanphaseangle,GZ-�.)/ at eachpoint in the image. It shouldbe notedthat
theweightedmeanphaseanglewill varywith orientationat
eachimagepoint. HereI have chosento recordthe mean
phaseanglecorrespondingto the orientationhaving maxi-
mumlocalenergy.

Theweightedmeanphaseanglewill lie in therange f^�
to � . As one movesaroundthe phasecircle an angleofL indicatesan upward going step, � ` 9 indicatesa bright
line feature,� indicatesa downwardgoingstep,and � � ` 9
indicatesadarkline feature.

Giventhatit makesnosenseto differentiatebetweenup-
wardanddownwardgoingstepsthe phasedatais ‘folded’
backonitselfmappinganglesgreaterthan� ` 9 andlessthanf^� ` 9 backinto the range � � ` 9 . While onecansensibly
differentiatebetweenbright and dark line featureshere I
havechosennot to makeadistinctionbetweenthetwo. Ac-
cordinglythephasedatais further‘folded’ to mapanglesin
therangeL to f^� ` 9 backinto therangeL to � ` 9 . Thissim-
plifies therangeof featuretypesto a scalethatvariesfrom
‘step’ through‘step/line’ to finally ‘line’.

Figure5 shows the outputof the phasecongruency de-
tectoronthetestgratingalongwith thefeatureclassification
determinedby theweightedmeanphaseangleat thefeature
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Figure 5.
(a) Output of the phase congruency operator on
the grating shown in Figure 2(b); compare this to
Figure 3.
(b) Feature classification given by weighted
mean phase angle.

point.
Evenonasimpleidealized‘blocksworld’ typeof graph-

ics image one finds a very rich range of feature types
present.Figure6 shows the raw phasecongruency output,
the Canny edgestrength,the featureclassification,and a
histogramof featuretypeoccurrence.Notethedoubledre-
sponseof theCanny operatoron thesphereandhow it gets
‘lost’ atsomepointsonthetorus.Theocclusionboundaries
of curvedsurfacestypically producehybridfeaturesthatare
somewherebetweena stepand a line; two suchsections
throughthe imageare shown. At thesepointsa gradient
basedoperatorwill producea doubleresponseat thepoints
of high gradientthatoccuron eachsideof thefeature;one
or bothof theseresponseswill beincorrectlylocalized.

Figures7 and8 show asimilarsetof resultsontwo more
naturalimages. The histogramsindicatethat in eachcase
thedistributionof featuretypespresentis verybroadwith a
biastowardsahigherfrequency of step-like featureswithin
the images. MATLAB codefor the calculationof phase
congruency andfeatureclassificationis availablefor those
wishingto replicatetheresultspresentedhere[9].

5. Conclusion

This paperhasarguedthat it is useful to think of fea-
turesin termsof their Fourier components,ratherthan in
termsof intensitygradients. This allows us to describea
widerangeof featuretypeswithin theframeworkof asingle
model. Featuresareassumedto lie at pointsof high phase
congruency, andthe angleat which thecongruency occurs
describesthe featuretype. Experimentsindicatethat im-
agescontainfeaturetypesof all phaseangles,with a broad
distribution. Accordingly it canbeconcludedthatgradient

basedoperators,which look for pointsof maximuminten-
sity gradient,will fail to correctlydetectandlocalizealarge
proportionof featureswithin images.Attemptsat produc-
ing sub-pixel localizationof featureswith gradientbased
detectorsare,literally, misplaced.
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Figure 6. Features on a synthetic blocks world image.
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Figure 7. Features on a building image.
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Figure 8. Features on Lena.
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