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Abstract
Two new algorithms for estimation of non-rigid

motion in range data in the absense of correspon-
dence information are presented. We derive a
new relationship between Gaussian curvatures and
other differential-geometric parameters before and af-
ter small deformation. This relationship depends lin-
early on derivatives of a motion model, which provides
a closed-form, least squares solution for motion esti-
mation. The first algorithm built solely on the new
relationship demonstrates significant improvement of
motion and correspondence estimation accuracy on
certain artificial shapes; however, its poor numerical
conditioning results in higher error in the presense of
inaccurate values of differential-geometric parameters.
The second algorithm combines the Gaussian curva-
ture relationship with the previously known relation-
ship between unit normals before and after deforma-
tion. The combined algorithm achieves higher accu-
racy of motion and correspondence estimation.

1 Introduction
In this work we address the problem of non-rigid

motion and correspondence estimation in range im-
ages in the absense of any prior information other than
the images before and after motion. Even though this
problem has attracted considerable attention in the re-
cent decade, no robust method, suitable to a variety of
applications, is currently known. Some well-known al-
gorithms are suitable for particular applications, e. g.
left ventricular motion tracking [1, 2, 3, 13], or cerebral
cortical surface correspondence estimation [15]; how-
ever, they contain application-specific features that
cannot be used for different problems. Other meth-
ods impose certain restrictions on the type of non-
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rigid motion they can handle. The examples of such
methods are the seminal work of Chaudhuri and Chat-
terjee [4, 5], which present a solution for estimation of
symmetric or positive-definite non-rigid deformations
in the Helmholtz motion model, or the work on re-
stricted classes of non-rigid motion [8, 9] applicable to
homothetic or conformal motion.

Our objective is to develop algorithms that can
work under significantly more stringent conditions.
The specific requirements we impose are the follow-
ing:

a. The algorithm must handle general elastic non-
rigid motion.

b. Correspondence between points in images is as-
sumed unknown.

c. Only the 3D shape data, but no other prior infor-
mation, is available.

d. The algorithm must be able to estimate motion
of any point in the image – not necessarily the
points with some favorable features.

For this scenario the selection of available methods
is rather sparse. We cannot use the physically-based
modeling because it requires prior knowledge of the
physical properties of objects. Neither can we use
feature-based non-rigid registration methods, such as
[6, 7, 14], because of their search for specific features.
The most attractive algorithms under our assumptions
are the two differential-geometric algorithms based on
relationships between unit normals and Gaussian cur-
vatures before and after deformation [10].

The algorithms developed in this paper are founded
on the new relationship between Gaussian curva-
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tures1. Our interest in Gaussian curvature stems from
the fact that this quantity is an intrinsic property of
a surface. For this reason we believe that the change
in Gaussian curvature is a good characterization of
surface motion. Unlike the Gauss’s equation used in
[10], our new relationship is linear with respect to
the motion model. Consequently, minimization of the
squared violation of this relationship results in stan-
dard linear system of normal equations. This system
has a unique closed-form solution, which constitutes
a significant computational improvement over the so-
lution based on non-linear optimization proposed in
[10].

Furthermore, linearity of our error function allows
it to be combined, in a weighted fashion, with the error
function of the unit normal algorithm. The new hybrid
unit normal/Gaussian curvature algorithm, proposed
in this paper, combines the favourable properties of
its constituents.

2 Background
We assume the reader is familiar with basic con-

cepts of differential geometry. The parametric surface
is denoted as r(u, v), its derivatives as ru(u, v) etc. In
the differential-geometric approach the motion func-
tion is assumed to be a function s(u, v) of parameters
rather than that of coordinates of the point on a sur-
face. Throughout this work we assume the motion
model is affine:

s = au + bv. (1)

The goal of the motion estimation algorithm is, given
the surfaces r and r′ before and after motion, to esti-
mate the parameters of the motion function such that
it transforms the surfaces one into another: r′ = r+s.
Obviously, affine motion is not powerful enough to
model complicated global motions, but it is a good
enough estimate locally in a neighborhood of a point
of interest. The algorithms presented in this paper
can be also applied for higher-order motion models.

Since point correspondence between two range im-
ages is assumed unknown it must be estimated along
with the motion. This is done by hypothesizing cor-
respondence between the point of interest p0 ∈ r and
some p′j ∈ r′. For the fixed correspondence one can
estimate the motion and compute the error E(p, p′j)
of this motion model. By repeating this procedure for
a number of candidate points p′j one can select the
correspondence that minimizes the motion estimation
error.

1Due to space constraints only a schematic derivation is pre-
sented. The details will be provided in the forthcoming journal
paper.

Within this generic motion/correspondence estima-
tion framework the difference between individual al-
gorithms lies in the estimation and evaluation of the
motion model s. Let E,F ,G denote the coefficients of
the first fundamental form, L, M , N the coefficients
of the second fundamental form, D =

√
EG− F 2 the

discriminant. Gaussian curvature can be expressed in
terms of coefficients of the second fundamental form
and the discriminant as:

K =
LN −M2

D2
, (2)

or in terms of coefficients of the first fundamental form
only as:

K = − 1
2D

[(
Gu

D

)

u

+
(

Ev

D

)

v

]
. (3)

Unlike the previous Gaussian curvature algorithm, de-
rived from Eq. (3), we will use Eq. (2) and will defer
substitution of particular surface and motion models
until later stages in the derivation. This will allow us
to see the linear structure of the relationship, and will
also make our algorithm extensible for other surface
and motion models.

3 Derivation of the Algorithm
3.1 Preliminaries

Let ab denote an open product product between
two vectors2, which is a linear operator. The gradient
operator of a vector-valued function represents the 3
directions of the greatest increase of each of the func-
tion’s components along a given surface. Assuming
that parametrization is orthogonal, i.e., F = 0 and
D2 = EG, the gradient of the motion function s is the
following operator:

∇s =
1
E

rusu +
1
G

rvsv. (4)

With the notation and definitions above, the rela-
tionship between the Gaussian curvatures before and
after motion can be stated as follows [16]:

K ′ = K(1− 2 div s + (∇∗ · ∇s) · n), (5)

where

∇∗ =

[
ru

(
N ∂

∂u −M ∂
∂v

)
+ rv

(
L ∂

∂v −M ∂
∂u

)]

LN −M2
.

One can see that Eq. (5) defines a 2-component mo-
tion model consisting of the divergence and the gra-
dient components. Both components are linear in the
motion function: divergence is linear by definition, lin-
earity of the gradient component follows from simple
examination of the expression for ∇∗.

2It can also be seen as a 3× 3 matrix abT .
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3.2 Derivation of the Error Function
We define the error function as the error of violation

of Eq. (5):

ε = ∆ + 2K div s +
(Ξ · ∇s) · n

D2
, (6)

where

∆ = K −K ′

Ξ = ru

(
N

∂

∂u
−M

∂

∂v

)
+ rv

(
L

∂

∂v
−M

∂

∂u

)
.

(7)

Let us further investigate the quantity (Ξ · ∇s). First
we need the expressions for derivatives of the gradient
operator ∇s. The open products of vectors can be
differentiated using the usual product rule (see [17],
for example). After some algebra we obtain

∂

∂u
(∇s) =

ruusu + rusuu

E
− 2rusu

ru · ruu

E2

+
ruvsv + rvsuv

G
− 2rvsv

rv · ruv

G2

and similarly ∂
∂v (∇s). Using associativity of scalar

and open products c · ab = (c · a)b, and the or-
thogonality assumption, whereby all terms including
F = (ru · rv) vanish, we then obtain the following
expressions:

ru ·
(

∂

∂u
∇s

)
= −ru · ruu

E
su +

ru · ruv

G
sv + suu (8)

and similarly for other 3 terms.
Finally, committing ourselves to the affine model

(1) and using the definition of divergence (e.g., [16]),
we obtain the following error function :

ε = ∆+
1

D2
[G(ru ·a)+E(rv ·b)+α1(n ·a)+α2(n ·b)].

(9)
where

α1 =
1
E

(−NΓuuu + LΓvuv + MΓuuv −MΓvuu)

α2 =
1
G

(NΓuuv − LΓvvv −MΓuvv + MΓvuv).

(10)
and Γ’s are the Christoffel symbols.
3.3 Minimization of the Error Function

One can easily see that the error function (9) is un-
derconstrained, since it contains only one constraint
and 6 parameters in a and b. To overcome this prob-
lem we collect the error contributions εi for a number
of points in the neighborhood.

To avoid tedious calculations of derivatives, we col-
lect the point-specific data in the respective matrices:

ε ≡ [ε1, . . . , εk]T [k × 1]

∆ ≡ [∆1, . . . , ∆k]T [k × 1]
N ≡ [n1, . . . ,nk] [3× k]

A1 ≡ diag(α1
1, . . . , α

1,2
k ) [k × k]

A2 ≡ diag(α2
1, . . . , α

1,2
k ) [k × k]

D ≡ diag(D1, . . . , Dk)−1 [k × k]
E ≡ diag(E1, . . . , Ek) [k × k]
G ≡ diag(G1, . . . , Gk) [k × k]
K ≡ diag(K1, . . . ,Kk) [k × k]

Ru ≡ [(ru)i, . . . , (ru)k] [3× k]
Rv ≡ [(rv)i, . . . , (rv)k] [3× k]

B = [A1NT − 2KGRu, A2NT − 2KERv] [k × 3]

x ≡ [a,b]T [6× 1].

Then the constraints representing Eq. (5) for all
points of interest can be expressed as the following
matrix equation, linear in x:

ε = ∆ + D−2Bx. (11)

Consequently the squared-error function to be mini-
mized is:

εT ε = (∆ + D−2Bx)T (∆ + D−2Bx). (12)

Using the chain rule for the first differentials [12] one
can find the differential of the function εT ε:

D(εT ε) = 2(∆ + D−2Bx)T D−2B.

Then we equate to zero the gradient of the er-
ror function—which is the transpose of the first
differential—and thus obtain the familiar normal sys-
tem of linear equations:

BT D−4Bx = −BT D−2∆. (13)

3.4 Hybrid Unit Normal / Gaussian Cur-
vature Algorithm

Let εN
i denote the the point-wise error function of

the unit normal algorithm, defined as3.

εN
i = ∆ni + ni × curl s, (14)

and let εG
i denote the error function (9) of the Gaus-

sian curvature algorithm. We propose that the com-
bined point-wise error of the hybrid algorithm be com-
puted as

εi = (εN
i · εN

i ) + ωi(εG
i · εG

i ), (15)
3The unit normal algorithm was proposed in [10], with the

point-wise error above used in [11].
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where the weighting coefficient ωi is equal to either the
mean curvature Hi or the square root of the Gaussian
curvature Ki at the point of interest. The choice of
the weighting factor is motivated by a heuristic obser-
vation that the unit normal algorithm achieves bet-
ter accuracy of correspondence estimation of relatively
flat surfaces while the Gaussian curvature algorithm
on more curved surfaces4. Therefore we would like
the impact of the Gaussian curvature error function
to have the effect proportional to curvedness of the
surface.

Minimization of the combined error follows the
same course as in section 3.3. The resuling linear sys-
tem essentially contains a “weighted sum of two linear
systems” of the respective algorithms:

(BT
NBN + BT

GΩD−4BG)x =

− (BT
N vec∆N + BT

GΩD−2∆G), (16)

where Ω ≡ diag(ω1 . . . ωk), and the indices N , K indi-
cate that the correspondent quantities are taken from
the unit normal or the Gaussian curvature algorithms.

4 Experiments on Artificial Shapes

We first compare the performance of the unit
normal, the Gaussian curvature and the hybrid al-
gorithms on artificial shapes, on which magnitude
of the deformation can be controlled. The experi-
ment consists of applying the uniform affine defor-
mation with parameters a = (0.001, 0.001, 0.001) and
b = (0.001, 0.001, 0.001) to a set of 49 points equally
spaced on a quadric. Different parameters of the
quadric are considered. The magnitude of the affine
motion is multiplied by the parameter δ in the range of
1 to 1000. The true correspondence used in the defor-
mation model is one-to-one; however, in the algorithm
it is assumed unknown, and the search for the correct
correspondence is carried out in a 7× 7 neighborhood
around the point of interest.

The relative performance of the unit normal and
the Gaussian curvature algorithms depends on the sur-
face properties. On the surfaces with higher curvature,
such as in Figures 1 and 2, the Gaussian curvature al-
gorithm yields lower correspondence error, while on a
flatter surface of Figure 3 the unit normal is a clear
winner. The hybrid algorithm successfully attains the
accuracy of the best of its components.

4The square root is taken of the Guassian curvature to com-
pensate for the qudratic nature of this parameter, since intu-
itively a weighting factor should be a linear value.
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Figure 1: Correspondence error of the Gaussian curva-
ture (GC), the unit normal (UN) and hybrid (UNGC)
algorithms for the quadric with a = c = 1.
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Figure 2: Correspondence error of the Gaussian cur-
vature (GC), the unit normal (UN) and the hybrid
(UNGC) algorithms for the quadric with a = c = 0.1.
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Figure 3: Correspondence error of the Gaussian cur-
vature (GC), the unit normal (UN) and the hybrid
(UNGC) algorithms for the quadric with a = c = 0.01.
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5 Real Motion Experiments
An ultimate test of any motion estimation algo-

rithm is how this algorithm can handle motion be-
tween real shapes. Since several assumptions have
been made in the derivation of the algorithms pre-
sented in this paper, most notably, the assumptions
of small motion, orthogonal parametrization and the
particular motion model, validity of these assumptions
needs to be verified on real data.
5.1 Cyberware Data

The facial 3D data collected from the Cyberware
range scanner contains ground truth correspondence
information between selected points of interest. This
information is obtained from visual images of a sub-
ject with paint markers applied to his/her face. Our
evaluation parameters include:

• correspondence error :
√

(uc − ū)2 − (vc − v̄)2.

• Let p0 denote the point of interest before mo-
tion, p̄′ – true corresponding point after motion,
p′c – computed corresponding point after motion.
Then the relative image error is defined as

||p̄′ − p′c||
||p̄′ − p0|| . (17)

The relative image error (averaged over all points
of interest) measures the 3D error due to erro-
neous correspondence estimation, relative to the
magnitude of motion.

• Let p′1−1 denote the point after motion under one-
to-one correspondence. Then the image error im-
provement ratio is computed as

||p̄′ − p′1−1|| − ||p̄′ − p′c||
||p̄′ − p′1−1||

. (18)

This quantity reveals improvement in image error
relative to the one-to-one correspondence (which
does not need correspondence estimation and can
be assumed by default). This measure can be
negative, implying that correspondence estima-
tion has brought in more confusion than a simple
guess.

We now compare the Gaussian curvature and the
hybrid algorithm with the two previous versions of the
unit normal algorithm: the ”old” (as in [10]) and the
modified (as in [11]). Figure 4 shows the correspon-
dence error, the relative image error and the image
error improvement ratio for 7 data sets used in our
study.
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Figure 4: Comparison of the new algorithms on the
real motion, 7 data sets. Unit normal (UN), Gaussian
curvature (GC) and the hybrid (UNGC) algorithms.

The accuracy of the Gaussian curvature algorithm
is not as good in comparison with the unit normal al-
gorithm as it was observed for artificial shapes. It may
have something to do with the flatness of a surface,
since the unit normal algorithm featured better for
flat surfaces; however, a more serious problem was dis-
covered with the Gaussian curvature algorithm during
the experiments. The numerical conditioning of the
left-hand side matrix of the Gaussian curvature algo-
rithm is noticeably worse than that of its counterpart
of the unit normal algorithm. In general, condition-
ing of all differential-geometric algorithms is mediocre.
The ratio between the largest and the smallest sin-
gular values was observed to be at least 105, which
makes singular-value decomposition a preferred solu-
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tion method. Thresholding of excessively small singu-
lar values is also required. Conditioning of the Gaus-
sian curvature algorithm is, however, in the range of
108 − 109 compared to 105 − 106 of the unit normal
algorithm. This difference does not manifest itself in
the artificial shape experiments where the accuracy
of estimation of the differential-geometric parameters
is high (at least 15 − 16 significant digits for double-
precision floats), well below the smallest singular value
of a scaled left-hand side matrix. On the real shapes
the accuracy of estimation of differential-geometric pa-
rameters is much lower, at about 5− 6 significant dig-
its for Gaussian curvature. As a result the solution to
the linear system can have strong numerical errors and
correctness of motion and correspondence estimation
is doomed.

On the other hand, the idea of combining the unit
normal and Gaussian curvature error functionals in a
hybrid algorithm is promising. On five data sets this
algorithm exhibits the smallest correspondence error
and the best values of other measures. Since the val-
ues of the Gaussian curvature are usually much smaller
than 1 for the observed shapes, the hybrid linear sys-
tem is very similar to the system of the unit normal
algorithm, yet the small adjustment leads to better
results.

We further validate the proposed algorithms by
means of visualization. In these experiments motion
and correspondence estimation is performed on every
fourth point on the image before motion5. The estima-
tion results are used to compute the surfaces on 8 in-
termediate images. Estimated correspondence is used
to determine motion field on the surfaces, and points
on intermediate surfaces are taken at equal intervals
along the motion field vectors. The remaining points
of the intermediate shapes are obtained by interpo-
lation. The sequences of the computed intermediate
shapes for the first data set are shown in Figure 5.
Each frame contains the images reconstructed by four
algorithms: the ”old” unit normal algorithm in the
upper left, the modified unit normal algorithm in the
upper right, the Gaussian curvature algorithm in the
lower left and the hybrid algorithm in the lower right.
The sequence of frames should be read top to bottom,
left to right. The first (upper left) and the last (lower
right) frame in each image contains true images before
and after motion.

If the correspondences are perfectly estimated, the
sequence of intermediate images displays a smooth
transition from the first to the last. Incorrectly esti-

5More precisely, on every second point of an image subsam-
pled by 2.

Figure 5: Transformation between two 3D images
based on correspondence computed different algo-
rithms. Cyberware data.
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(a) unit normal algo-
rithm

(b) hybrid algorithm

Figure 6: Visualization of correspondences computed
by the unit normal and hybrid algorithms. Data set
1.

mated correspondences give rise to the ”ripple”. The
smoother the images, the more accurate correspon-
dence estimation. One can see from the images in
Figure 5 that the accuracy of correspondence estima-
tion of the two unit normal algorithms is very sim-
ilar, the pure Gaussian curvature algorithm exhibits
somewhat worse, and the hybrid algorithm the best
correspondence estimation accuracy.

Another way to visualize correctness of correspon-
dence estimation is to to draw connections between
the corresponding points between the shapes before
and after motion. Such visualization is shown in Fig-
ure 6. One can see where correspondence is estimated
incorrectly. Both algorithms miss the point that is ini-
tially located on a nose. This point moves to the left
cheek on the shape after motion. On the two points on
the upper lip the hybrid algorithm does a much better
job than the unit normal algorithm. One can see that
the new points computed by the hybrid algorithm are
located approximately above the points on the lower
lip, as on the shape before motion. The new points
computed by the unit normal algorithm are noticeably
skewed in the opposite direction. On the remaining
points correspondence is estimated correctly.
5.2 Data from Structure-from-Motion Al-

gorithm
The data obtained from the structure-from-motion

algorithm of Zhou and Kambhamettu allows one to
perform a different kind of quantitative evaluation of
correspondence estimation. Since this data was origi-
nally recorded on a 30 frames/s video camera the true
intermediate images are available.

The setup of the experiment is similar to the ex-
periments on Cyberware data presented in section 5.1.
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Figure 7: Intermediate image approximation error of
the unit normal (UN) and the hybrid (UNGC) algo-
rithms.

The surfaces represent a 460×460 depth image with a
large portion of it being background. The background
points are excluded from consideration; points of in-
terest equally spaced on a grid of step 8 are selected
from the remaining points. After correspondence has
been computed the counterparts of the points of in-
terest in intermediate images are selected at regular
intervals along the motion vector field. These points
are placed in locations on a surface selected at regular
intervals along the field of parameter displacements
(u, v) −→ (u′, v′). Finally, the intermediate image er-
ror is computed as mean-squared error of the interme-
diate points of interest and the points at corresponding
locations of the true intermediate images. For the pur-
pose of visualization the remaining non-background
points on intermediate shapes are computed by inter-
polation.

The intermediate image approximation error of the
unit normal and the hybrid algorithms is shown in
Figure 7. One can see that on this data the hybrid
algorithm displays a small but consistent improvement
over other algorithms. The absolute values of the error
are rather large, but this is due to a large amount of
noise in the data.

Visualization of the intermediate images is shown
in Figure 8, for the four algorithms. The lower im-
age error of the hybrid algorithm manifests itself in
a smoother surface. The overall motion is estimated
surprisingly well for such a noisy shape.

6 Conclusions
We have presented two new algorithms for non-rigid

motion and correspondence esimation in 3D shapes.
Both algorithms are build on a new, linear relation
between the Gaussian curvatures before and after mo-
tion. The second algorithm, which is the most success-
ful in our practical application, combines the objective
functions based on the Gaussian curvature and the
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Figure 8: Transformation between two 3D images
based on correspondence computed different algo-
rithms. Structure-from-motion data.

unit normal information. Both algorithms are compu-
tationally efficient and provide stable solutions.
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