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Abstract
Compared with machine-printed characters, hand-

writings have variety of shape deformations. One

of the important goals of character recognition is to

�nd some qualitative features that are invariant un-

der deformation of shapes. In this paper, we propose

a method for structural analysis of on-line handwrit-

ten curves based on topological turning patterns. The

topological turning pattern is described by initial di-

rection, directional change, and in
ection number of

the curve, computed from directional features of the

segments that constitute the curve. The mathemat-

ical properties of the topological turning pattern is

explained along with the experimental results of the

method on numerals.

1 Introduction

Structural pattern recognition attempts to describe

objects using mathematical models suitable for fur-

ther processing. The basic idea is that a complex pat-

tern can be described recursively in terms of simpler

subpatterns [1]. Because the models are clearly de-

scribed, it has a few attractive properties: it does not

require a large amount of training data, recognition

performance on new data is guaranteed in contrast to

the \black box" approach in which the function from

the input to the output is unclear, and the number of

features used to describe a class of pattern may vary

from one class to another.

Nishida [2] proposed an algebraic description of

the curve structure that tries to integrate local fea-

tures (line segments or primitives) into global features

(primitive sequence label or PS-label in their term)

that are invariant in the number of primitives that

constitute a primitive sequence. The biggest advan-

tage of their method is that extremely \clear" alge-

braic description is obtained in the high level by ap-

plying operations to objects on the lower level. How-

ever, since the method was developed for o�-line pro-

cessing of handprinted characters, it contained sev-

eral problems in order to be applied to on-line pro-

cessing of handwritings. The major problems on-line

users encounter is that temporal information which

is crucial in on-line processing is not properly incor-

porated in their description system. In their scheme,

the head and tail of a segment is determined by the

coordinate values of the points and have nothing to

do with the time sequences of stroke end points| an

inconsistency with the common descriptive custom in

on-line handwriting analysis.

This paper presents a new structural description

method of on-line curves that resolves all the above

problems. In this method, a single curve is analyzed

into a single compact representation regardless of the

winding complexity. The segments of a curve are con-

catenated always at its head or tail without overlap-

ping.

Section 2 provides a brief explanation of structure

of a single curve, while Sec. 3 discusses the relation

of multiple curves. Section 4 describes an application

of our description method to character recognition,

showing the experimental results on numerals.

2 Structure of a Curve

The set of points de�ning a curve generally results

in large volume of data and it is necessary to express

the curve in a more compact way, yet without any loss

of signi�cant information. Linear piecewise polygo-

nal approximation [3] is the most frequently used one

that produces a polygon which closely resembles the

original curve. In this research, a polygonal approxi-

mation method based on the split and merge method

is adopted for obtaining a piecewise linear curve that

�ts to the original curve within an acceptable error

range. Henceforth, our discussions will be restricted

to piecewise linear curves. For convenience we shall

usually omit the words \piecewise linear," and when-

ever we speak of \curves" we mean piecewise linear

curves.
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2.1 Structure of line segments

A curve consists of a set of line segments (sim-

ply called segment from now on) concatenated in se-

quence. When a segment s runs from a point t to a

point h, the point h is called the head of the segment,

and t the tail. The points that correspond to a head

or tail of some segments are called knots.

In order to simplify formulas and thereby clarify

ideas, we shall use some notations. A segment s that
has knots h and t as its head and tail is denoted

as s : t 7! h. A single segment may constitutes a

curve. However, most curves consist of two or more

segments. The curve formed by only two segments

has simplest non-trivial structure, and we shall call

such curve a basic arc. When a basic arc c is formed
by concatenating two segments s and t, c is repre-

sented in terms of s and t as follows:

c : s �! t (1)

In the above \concatenation" notation, the object

in the tail side of the arrow is assumed to be gener-

ated before the object in the head side. The curve

is formed by unifying the head of the object in the

tail side of the arrow and the tail of the object in the

head side of the arrow.

Remark 1. Note that each segment of a curve is di-

rectional, and no two consecutive segments in a curve

are collinear. For a segment s : (tx; ty) 7! (hx; hy),
we shall denote by ~s the vector (hx � tx; hy � ty)
which we call the segment vector of s.

The direction of a segment is classi�ed into eight

classes. For a segment s, if � is the angle between ~s
and the positive x-axis, the directional index i of s is
de�ned as follows:

1) i = 1 if � > �� and � � � (2)

2) i = 2 if � >
1

4
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Figure 1: All the types and the corresponding indices

of direction used in our description system.

where, � = �=8. All the types of direction used in

our description are illustrated in Fig. 1.

De�nition 1 (Direction of a segment) Let s be

a segment. The number dir(s) 2 f1; � � � ; 8g calculated
by (2) is called the direction of s.

It is possible to associate a sign to a basic arc ac-

cording to its orientation. If we turn counterclockwise

in traveling the arc from the �rst to the last segment,

we shall call the orientation positive orientation, and

the other one negative orientation.

De�nition 2 (Orientation of a basic arc) For a

basic arc a : s �! t, the orientation of a, ori(a), is

decided by the sign of det(~s; ~t) =

���� ~sx ~sy
~tx ~ty

����as

ori(a) =

�
1 : det(~s; ~t) > 0

�1 : det(~s; ~t) < 0
(3)

Remark 2. The orientation of an open curve is de-

rived from the orientation of its basic arcs if and only

if all the basic arcs have uniform orientation. In that

case, the orientation of the curve is de�ned by the

orientation of one of its basic arcs.

Now, we want to measure how much a segment

turns away from the direction of its predecessor.

De�nition 3 (Directional change of a basic arc)

Let a : s �! t be a simple arc, and point p the

knot commonly possessed by s and t. We de�ne the

curvature of a at p and the directional change of a as

cura(p) =

�
mod(dir(t) � dir(s) + 8; 8)
mod(dir(s) � dir(t) + 8; 8)

(4)

dc(a) = ori(a) � cura(p): (5)
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If cura(p) = 0 for every knot p in a curve a, a is a

straight line. If cura(p) � 2 for some knot p, a makes
an acute angle at p and p is called a corner point. In

a basic arc a : s �! t, if the value of dc(a) is known,
dir(s) can be calculated from dir(t), and vice versa,

by the formula

dir(t) = mod(dir(s) + dc(a) + 7; 8) + 1 (6)

dir(s) = mod(dir(t) � dc(a) + 7; 8) + 1

which we shall indicate with the notations

dir(t) = dir(s)� dc(a) (7)

dir(s) = dir(t) 	 dc(a):

A useful expression for a general curve c : s0 �!
�

sn can be obtained by successively applying the for-

mula (7) on the basic arcs of a curve:

dir(sn) = dir(s0)�

nX
i=1

dc(si�1 7! si): (8)

Observing the formula (8) reveals that the termP
n

i=1
dc(si�1 7! si) is the directional change of c and

can be simply expressed by dc(c). Thus, the de�ni-

tion of directional change can be extended from basic

arc to curve:

De�nition 4 (Directional change of a curve)

For any curve c : s0 �!
� sn, it's directional change

is de�ned as the sum of the directional changes of

every basic arc embedded in c:

dc(c) =

� P
n

i=1
dc(si�1 7! si)

(
P

n

i=1
dc(si�1 7! si)) + dc(sn 7! s0)

(9)

The sequence of dc(si 7! sj)'s which appear in the

formula (??) characterizes how a curve turns on the

plane and will be called turning pattern of the curve.

Remark 3. In a curve there may exist two or more

segments that have the same direction and appear in

a sequence. We call such segment sequence straight

arc. Owing to straight arcs, the turning pattern ob-

tained by the de�nition given above can contain 0's,

which are extraneous information in calculating the

directional change of the whole curve. Therefore, as

a step of abstraction we can eliminate 0's from turn-

ing pattern and make a new compact turning pattern

which we call topological turning pattern. The geo-

metric interpretation of the topological turning pat-

tern of a curve is to take every straight arc in the

curve and shrink it into one segment �xing the two
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Figure 2: Instances of idr-dc equivalent curves.

end points of the arc. The curve created according

to a topological turning pattern is called a topological

curve. Note that the topological curve contains no

straight arc but preserves the turning characteristic

of the original curve.

2.2 First abstraction of the shape of

curves

We shall now take the �rst step in algebrization of

the shape of curves. We introduce two fundamental

properties of a curve that allows di�erentiation of in-

tuitively di�erent curves. First, we give the measure

a name:

De�nition 5 (idr-dc characteristic) For any

curve c, X2(c) =< idr(c); dc(c) > is the idr-dc

characteristic. idr and dc denote the initial direction

(= dir(s0)) and the directional change, respectively.

Based on the idr-dc characteristic, other many useful

properties can be computed. Therefore, we call the

idr and dc properties fundamental properties, and

the other properties derived from the fundamental

properties derived properties. For example, the �nal

direction of curves is a derived property, as will be

explained below.

Example 1. Instances of curves with the idr-dc code

are illustrated in Fig. 2. Notice that the number

of in-between strokes vary but the shapes maintain

similarity by possessing the same idr-dc values. In

other words, X2 value of a curve is invariant under

\sub-divisional variations" of the curve illustrated in

Fig. 2.

When two curves c1 and c2 have same idr-dc char-
acteristic, we say they are idr-dc equivalent. The

summary of arguments in this section is formalized

by the following theorem:
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(-2)

(-2)

(0)

(+3) (+1)

inf(c)= -1
dc(c)= 0

   (a)

inf(c)= 0
dc(c)= 0

   (b)

Figure 3: Instances of curves with inf codes. Circled

segments are in
ection segments. Numbers written

besides knots enclosed in parenthesis are directional

changes.

Theorem 1 Any two curves c1 and c2 have the same

initial and �nal direction i� they are idr-dc equiva-

lent.

2.3 Second abstraction of the shape of

curves

The dc-characteristic of a curve measures only the

total turning angle of the curve as a whole, and does

not check the change of orientations of the embedded

arcs. Therefore it cannot di�erentiate the symbols `{'

and `Z' or `C' and `"'. In order to check the winding

characteristic of a curve properly, we introduce a new

measure:

De�nition 6 (In
ection index) Let c and T(c) =

dc1dc2 � � � dcn be a curve and its turning pattern.

Without loss of generality, we can assume that c does
not contain straight arcs. The in
ection index of c is

de�ned as

inf(c) = sn where,

s = ori(dc1)

n = the no. of i (2 � i � n) , dci�1dci < 0

The segments si for which dc(si�1 7! si)dc(si 7!
si+1) < 0 are called the in
ection segments.

Example 2. Instances of curves with the inf code are

illustrated in Fig. 3. Notice that the curves (a) and

(b) have same dc values but vary in inf numbers.

De�nition 7 (idr-dc-inf characteristic) For any

curve c, X3(c) =< idr(c); dc(c); inf(c) > is the idr-

dc-inf characteristic. inf(c) is the in
ection number

of c.

rot(c)= 1

(+2)

(+1)

(+2)
(+1)

(+2)

rot(c)= 0

(+1)
(+2)

(+1)

(-2)

(-1)(-2)

(-1)

(+2)

Figure 4: Examples of closed curves with their rota-

tion indices. The arrow segments indicate the �nal

segments.

2.4 Closed Curves

In a closed curve, the initial segment is not no-

ticeable and idr does not have much to do with the

whole shape of the curve. Therefore, we set a conven-

tion that idr(c) = 0 for any closed curve c. Closed

curves have the remarkable property that their di-

rectional changes are 8 multiplied by an integer (cf.

[4, 5]).

De�nition 8 (Rotation index of a closed curve)

The rotation index of a closed curve c is de�ned as

rot(c) = dc(c)/8.

The rotation index of a curve is a derived property

because it can be computed from dc(c) which is a

fundamental property.

Theorem 2 (Rotation index of a closed curve)

For any closed curve c, rot(c) = �n, where the sign

coincides with the natural orientation of the curve.

In Fig. 4 are some examples of curves with their rota-

tion indices. Observe that the rotation index changes

sign when we write the curves in opposite direction.

The rotation index of closed curves is a topological

invariant [6].

In closed curves, the rotation index is a useful prop-

erty which distinguishes topologically di�erent closed

curves. For instance, as illustrated in Fig. 4, the sym-

bols `0' and `8' can be distinguished by their rotation

indices.

3 Multiple Points

In this section, we describe multiple points that

result from intersection of curves.
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3.1 Structure of multiple points

A segment of a curve may intersect another seg-

ment of the same curve or of di�erent curve to gen-

erate a multiple point. The number and types of

multiple points is an important property to specify

in describing curves.

Nishida [2] classi�ed singular points into X, K, and

T type according to the adjacent structure of two

curves on the singular point, and described the struc-

ture of a singular point by binary relation of the two

curves. In the real world of handwritings, however,

more than two curves may meet in a multiple point

in a complex way, and it is not always possible to an-

alyze a singular point into one of X, K, and T types.

In our description, there are three basic types in

which two segments meet to produce a multiple point:

X (crossing), T (touch), or L (join). Notice that ac-

cording to our description Nishida's K type can be

looked upon as a special case of T type in which two

segments touch the same point on a segment. Co-

inciding end points are regarded as multiple points,

i.e., we de�ne the segments to be closed.

3.2 Description of multiple points

We describe a multiple point by the relation of the

multiple point and all the segments which contain

the point. From the view point of the multiple point,

every intersection of a segment with the point is either

\in the middle (M)" or \at the extremity (E)." The

structure of a multiple point p is described by n-ary
relation of n curves meeting at p.

p : [e1(a1); � � � ; ei(ai);m1(b1); � � � ;mj(bj)] (10)

where, ek (k = 1; 2; � � � ; i) are segments having p at

the extremity, ap 2 fh; tg, and ml (l = 1; 2; � � � ; j) are
segments having p in the middle, bq 2 fi; f;mg. The
order of p de�ned as the number of edges incident to

p is calculated as

order(p) = i+ 2j: (11)

4 Experiment

The primary information we use for di�erentiating

numerals is the idr-dc-inf characteristic of the shapes.

The analysis is undertaken hierarchically from the

original strokes to the higher level information.

Writers need to know when and how the system

succeeds or fails in analyzing the structure of curves.

Visualizing curves structure in a 3D landscape may

(a) (b) (c)

(d)

Figure 5: Geometric objects visualized in 2D or 3D:

(a) original strokes, (b) polygonally approximated

curve, (c) topological curve with X3 label of each

stroke printed at the bottom, and (d) 3D overlayed

representation of all the geometric objects. Note that

corner points and multiple points are indicated by

spheres on and above the topological curve.

o�er insights into the nature of the underlying logic

and data base the system operates. We display the

analysis procedure in an intuitive way by incremen-

tally overlaying the features analyzed and the data

objects processed at each consecutive step to clarify

the interrelationship of the objects (Fig. 5).

In our �rst experiment, we collected on-line hand-

writing data from about 70 students. They were

asked to write numerals normally on the computer

screen. The result is shown in Table 1. Note that in

our description method we do not have to conduct

normalization to cope with the size variation of the

handwritings.

5 Concluding Remark

Mori and Nishida [7] compared their algebraic ap-

proach to handprinted character recognition with

the contour analysis technique from the viewpoint

of recognition ratio and the number of models, and

concluded that the algebraic approach using quasi-

topological features is superior to contour analysis

technique in error rate and the number of models re-

quired.

Our method inherit the same advantages of the al-
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Char Recog.(%) Rej.(%) Subst.(%) Mod.

0 96.3 0.7 0.3 1

1 98.1 1.9 0.0 1

2 95.6 2.4 0.2 3

3 97.7 1.3 0.2 2

4 96.4 3.5 0.1 1

5 97.2 2.8 0.0 3

6 98.3 1.7 0.0 2

7 96.5 1.5 0.2 2

8 94.7 3.3 0.2 1

9 96.6 2.4 0.1 3

96.7 2.1 0.1 2

Table 1: Results on unconstrained numerals.

gebraic approach, but is signi�cantly di�erent by na-

ture with other methods [2, 8]:

� By decomposing a stroke from pen-down to pen-

up into directional line segments and construct-

ing a \single" topological curve from them, we

obtain simple and stable description. Decompos-

ing a curve based on sharp turn [8] or monotone

requires more number of models because cusp or

monotone is structurally unstable [9]; in other

words, a cusp changes to a self crossing and `|'

to `/' or `n' under a small perturbation.

� The X3 label is associated with each curve.

The X3 label provides the minimal and suf-

�cient information to characterize topological

turning pattern of both monotonous and non-

monotonous curves. If we employ sorely <
ps; idr > label as in [2], even a simple char-

acter like `�' requires three PS-labels < 3; 0 >,
< 3; 3 >, and < 3; 1 > linearly connected to-

gether for its description. Note that with X3

label, `�' is described simply by < 5; 4; 2 >.
If we give PS-label < 0; 0 > to in�nitely cyclic

simple closed curve, it is hard to distinguish `0'

and `8'. Note that with X3 label only one model

is used to specify `8' in our description, while 10

models were required in PS-label approach [2].
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