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Abstract
Accurate and robust estimation of the Fundamental
matrix is very important for many computer vision
applications, such as 3D reconstruction from 2D images.
In this paper, a complete analysis and comparison of
three important algorithms for estimating the
Fundamental matrix when three views are given. The six-
point algorithm originally used for three-view geometry
is implemented for the automatic estimation of the
Fundamental Matrix — the two-view geometry tensor,
assuming that more than two views are available. An
extensive comparison to other two popular methods: the
seven-point and eight-point algorithms are made through
carefully designed experiments with synthetic and real
images, assuming three views are available. The
comparisons show that the new-implemented six-point
algorithm, which makes use of the three-view constraint,
is more accurate and has higher ability to handle the
outliers.

1. Introduction
The Fundamental Matrix encapsulates the whole epipolar
geometry between two views of a static scene and surely
plays a “fundamental” role in various applications of
Computer Vision. Due to its importance, much effort has
been exerting on implementing more robust and accurate
methods for the Fundamental Matrix estimation.
According to Zhang’s review [4], the existing methods for
the Fundamental Matrix estimation can be mainly
classified into linear ones and non-linear ones. They are all
based on the basic constraint from the epipolar geometry.
The differences lie in their particular strategies to cope
with the noise and/or outliers, the specific definitions of
the adopted minimization criteria in the optional non-linear
optimization procedure, the specific parameterizations or
measures to ensure the rank-2-ness of the estimated
Fundamental Matrix and so on.

To estimate the Fundamental Matrix automatically, some
robust-statistics-based techniques must be used to reject
the outliers (mismatches) from automatic image matching.
In the review of Torr [5] on the development history and
performance comparison of the robust estimation methods,
RANSAC (Random sample consensus) paradigm [8] was
recommended, which has been successfully used for many
other parameter estimation problems.

The objective of this paper is to determine the most
accurate and robust method for estimating the
Fundamental Matrix automatically when three views are

available. Specifically, the eight-point algorithm
(normalized) [7, 9] is a linear method that works with two
images. And the seven-point algorithm [13] is a non-linear
method that also works with two images. With three views
given, the Fundamental Matrices between three image
pairs can be estimated pair-wisely by implementing any
one of these two algorithms as the corresponding
RANSAC search engine. The estimation accuracy may be
improved by an additional non-linear optimization taking
into account the constraints derived from the two-view
geometry. Alternatively, a six-point algorithm to estimate
directly the geometry of 3 views proposed in [1] can also
be used. In fact, an equivalent six-point minimal subset
based RANSAC method has been successfully
implemented by Torr to estimate the tri-focal tensor [6].
Other successful applications of the six-point algorithm
have been reported in many papers recently, such as [2, 3],
with its robustness proven and applicability recommended.
In this paper, we similarly implement the six-point
algorithm as the search engine of the RANSAC for the
automatic estimation of Fundamental Matrix. An extensive
comparison of the above three algorithms is performed
through experiments using synthetic and real images.

2. A short review of the methods for
estimating Fundamental Matrix

2.1 Epipolar geometry

The Epipolar geometry arises from any bi-ocular system.
As illustrated in Fig.1, two views I and I ′ of the same
scene are captured by two/single camera(s) located at two
optical centers C  and C ′  simultaneously or respectively.
Assume that two imaged points of a same 3D space point
M  in view I and I ′ are m and m ′ (3-vector of the
homogenous coordinates) respectively, then the epipolar
geometry relation:

                           0=′ mFm T                                  (1)
is satisfied, where the 33× singular matrix F is the so-
called Fundamental Matrix. Geometrically, it means that
the corresponding point m ′ ( m ) of point m ( m ′ ) is lying
on the corresponding epipolar line Fm ( mF ′T ). All the
epipolar lines in view I ′  ( I ) pass a same point, the so-
called epipole e ′ ( e ), which is the projection of the optical
center C ( C ′ ) in view I ′  ( I ) respectively. This property
reflects in the imaged two views in that all the epipolar
lines in one view I ( I ′ ) will interest at the epipole e ( e ′ ),
while in the algebraic description is the rank-2-ness of F .
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Fig. 1 The epipolar geometry

2.2 Methods for estimating Fundamental Matrix

The basic constraint for estimating the Fundamental
Matrix F is from equation (1). Specifically, give n matches
between two images, by rewriting the to-be-estimated F as
a 9-vector f, we have

0=fA                                (2)
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matches between two images.

Since the Fundamental Matrix F is singular and only
defined up to an arbitrary scale, it has only 7 degrees of
freedom. Therefore, seven matches are enough to
determine F, that is the so-called seven-point algorithm.
With more matches available, the normalized eight-point
algorithm [9] can be used. These two methods are both
sensitive to the noise since the minimized residual of
equation (2) has no physical meaning. Accordingly, many
non-linear methods capable of minimizing some criteria
having the physical meaning are proposed. Such criterions
include, the symmetric distance of the image points to their
corresponding epipolar lines:
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the Sampson distance:

∑
′+′++

′

=

n

i i
T

i
T

ii

i
T

i

1 2
1

2
1

2
2

2
1

2

)()()()(
)(

mFmFFmFm
Fmm            (4)

or directly the re-projection error distance:
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where im and im ′ are the estimated re-projection points
determined by a appropriate triangulation method.

However, all the methods mentioned so far can’t cope with
the case where the inputted data are contaminated with
outliers. Corresponding to this limitation, the robust
estimation techniques such as M-Estimator, Case Deletion
Diagnostics, Least Median of Squares (LMedS), and

RANSAC, are introduced.(The readers are referred to the
paper [5] for more details.) In this paper, we mainly focus
on the RANSAC-based methods. According to its specific
application in the Fundamental Matrix automatic
estimation, the best minimal subset maximizing the
number of the inliers in the inputted data, which are
identified by thresholding a specific physical distance with
respect to the Fundamental Matrix derived from the
iteratively sampled minimal subset, is first traced out by
repetitious subset samplings for a specifiable number of
iterations. Then all the identified inliers, together with the
obtained best Fundamental Matrix from the RANSAC
optimization, are fed into a non-linear optimization
procedure as initial values to reach the finally refined
Fundamental Matrix. The necessary number of the
minimal subset samplings is related to the size of the
minimal subset and the percentage of the outliers by

  mp ))1(1(1 εγ −−−=                    (6)

where γ is the probability to find a good subset, ε is the
percentage of the outliers, p is the size of the subset
sampled in each iteration, and m is the needed sampling
times.

From equation (6), we can see that, the smaller the size of
the subset sampled, the fewer the sampling times are
required for a specified level of confidence, usually 95%.
Given two images, to estimate the Fundamental Matrix,
the size of the minimal subset is at least seven. In this
paper, two popular implementations in which the seven-
point algorithm and the eight-point algorithm (normalized)
are adopted as the search engine of RANSAC respectively
are involved. For simplicity, we name these two RANSAC
based Fundamental Matrix estimation methods as
RANSAC-F-7 and RANSAC-F-8 respectively.

While in many applications needing to estimate the
Fundamental Matrix, the number of the available images is
often more than two. Furthermore, in some cases, the
number of the “well-configured” matches among the
available images is also possibly less than seven. If so, the
popular estimation methods may fail, while yet much other
useful information cannot be utilized. In the following
section, we will show that, by resorting to the six-point
algorithm that is originated from the three-view geometry,
the above limitation can be counteracted to some extent.

3. Six-point algorithm and its application in
fundamental matrix automatic estimation

In this section, we start our discussion of the so-called six-
point algorithm from Quan’s well-known work on the
projective invariant between six space points and their
image points [1]. According to [1], given three projective
views, only six points are enough to obtain almost all the
projective geometry information. Therefore, returning to
our specific task, with more than two images available, it’s
natural for us to consider taking use of the six-point
algorithm to estimate the Fundamental Matrix. In this
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paper, we try to implement the six-point algorithm as the
search engine of a RANSAC based Fundamental Matrix
estimation technique, similarly named as RANSAC-F-6
for simplicity.

3.1 Fundamentals of the six-point algorithm

According to [1], for a single image, there exists a simple
invariant relationship between the invariant of the set of 6
points in space and the invariant of their projected image
points. With three images given, computing the invariant
in space is possible, which further enables us to compute
invariant for projective reconstruction, epipolar geometry
estimation and self-calibration.

Specifically, given any six points )6,2,1()( =iiX  in the

3D projective space 3Ρ , any five of them (no 3 of them
collinear and no 4 of them coplanar) can be transformed
into the canonical projective basis:  { T)0,0,0,1( , T)0,0,1,0( ,

T)0,1,0,0( , T)1,0,0,0( and T)1,1,1,1( }by a space collineation

44×H (ranking 4). We assume the sixth point is
correspondingly transformed into a new projective
coordinate (X, Y, Z, T) by this collineation 44×H .
Similarly, considering the six projected image points

)6,2,1()( =iix  in one view in 2D projective space 2Ρ ,
any 4 of them (no 3 of them collinear) can also be
transformed into the canonical projective basis of 2Ρ as
follows: T)0,0,1( , T)0,1,0( , T)1,0,0( and T)1,1,1( by a plane
collineation 33×H , with the left two image points
transformed to their corresponding new coordinates

Twvu ),,( 555 and Twvu ),,( 666 respectively.

With the camera imaging relationship regarded as a
perspective projection from 3D projective space to the 2D
projective space, we can get the following homogenous
equation between (X, Y, Z, T) and )6,5(),,( =iwvu T

iii :
YTYZXTXZXY i 5431 λλλλλ ++++

0)( 54321 =++++− ZTλλλλλ          (7)
where: )( 5561 vuw −=λ , )( 5562 uwv −=λ , )( 6653 wvu −=λ ,

)( 5564 wvu −=λ , )( 6655 uwv −=λ by eliminating the
entries of the projective matrix in the 23 ΡΡ → imaging
relation between the above transformed six points.

Given three images, we can obtain three such similar
equations from which a cubic equation relating X and T
can be obtained. Then we can get at most three solutions
for X:T, and further corresponding solutions of Y:T and Z:T
for each solution of X:T. Then for each group of solutions
(X:T, Y:T, Z:T), since the projective homogenous
coordinates of all the six space and image points are all
determined, the projective matrices of the three images can
be determined (with corresponding inverse transformations
from the canonical coordinates to the original ones
applied.)  With the projective matrices )3,2,1( =iiP for the

three views determined, many kinds of useful information
can be retrieved.  As for our specific case, we can retrieve
the Fundamental Matrices ijF between the i-th and j-th
views )3,2,1,( jiandji ≠=  as:

+
×= ijijij PPCPF ][                        (8)

where +
iP  is the pseudo-inverse of iP and iC is the optical

center of the i-th view. Furthermore, iC is computed by

ωPPIC )( iii
+−= , where I is the 44× identity matrix and

ω is an arbitrary 4-vector.

Therefore, the above six-point algorithm provides an
alternative approach to estimating Fundamental Matrix,
whose specific implementation will be detailed as follow.

3.2 Implementation of RANSAC-F-6

According to last sub-section, it’s easy for us implement a
RANSAC-F-7 (or RANSAC-8)-like algorithm using the
six-point algorithm given more than two views.

The specific implementation is summarized as follows:
(1) Perform initial matching between each pair of the three

images using correlation-based matching method [10].
(2) Extract the matches of all the three images by finding

the common ones in the two-view matches obtained in
Step (1).

(3) Invoke the RANSAC optimization, in which a
specifiable N number of minimal subset samplings are
repeated. While in each sampling,

(a) Select a random sample of 6 matches between
three images and determine the projective matrices of
the three images by using the six-point algorithm as
described in sub-section 3.2.
(b) Identify the inliers in the putative matches by
thresholding the re-projection error of the triangulated
3D projective space points in each image with respect
to the determined projective matrices.
Remark: Since it’s possible to obtain three real
solutions from the cubic constraint over X and T, then
at most three sets of projective matrices for the three
images will be tested to identify the inliers. The one
corresponding to the maximum number of the inliers
is retained as the correct solution of the projective
matrices corresponding to that sampling.
After N samplings, the set of projective matrices with
the largest number of inliers is retrieved. In the case of
ties, the one having lowest standard deviation of the
re-projection errors is selected.

(4) Taking the obtained projective matrices and inliers as
initial values, perform the bundle-adjustment to
minimize the sum of the re-projection errors.

(5) Then from the optimized projective matrices, the
fundamental matrices between each image pair are
retrieved using equation (8).
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4. Experiments and comparisons
To assess and compare the performance of the above three
Fundamental Matrix automatic estimation methods,
extensive experiments are performed.

4.1 Simulation
To conduct simulations, a synthetic image simulator is
constructed by appropriately setting the positions and
orientations of three cameras and the camera intrinsic
parameters. Three synthetic images are generated by the
projection the randomly distributed space points into the
image planes of specified size. To account for the
erroneous effect in practice, such as feature extraction, the
coordinates of the image points are corrupted by the Zero-
mean Gaussain noise. Furthermore, to investigate the
ability of the tested methods to cope with outliers, a
specified percentage of the originally correct matches
between the three images are artificially changed into the
outliers by disturbing the original matching order. It should
be noted that, if the epipolar geometry constraint is used to
guide the practical matching process, such as in Zhang’s
matching routine [10], some of the putative matches are
outliers although they maybe still satisfy the epipolar
geometry between the matched two images. As shown
later, with respect to this kind of outliers, RANSAC-F-7
and RANSAC-F-8 will fail to identify them, while
RANSAC-F-6 can.

With the synthetic images are generated, the three
investigated RANSAC based Fundamental Matrix
estimation methods are invoked in turn to estimate three

Fundamental matrices between each image pair
simultaneously or pair-wisely. According to the simulation
results, we compared their respective performance of the
investigated three methods with respect to the image noise
level, the ratio of the outliers and other factors. One
criterion adopted for evaluating the accuracy of the
estimated fundamental matrix is the average symmetric
epipolar line distance (hereafter is simply named as
residual):

∑ ′+′
=

N

i
iii

T
i dd

N 1

22 )),(),((
2
1 FmmmFm                (9)

with respect to N “real image points” as suggested in [5].
Here by “real image points” we mean the original image
points that are not contaminated by noise and outliers.

First we conduct the simulations for the cases of fewer
image points and outliers. The simulation conditions are:

Synthetic image size: 480640×
Image points number: 100
Outlier percentage: 30%
Gassian noise level: 0.0 ~ 2.0 pixels
Experiments times at each noise level: 100

From the simulation results shown in Fig.2, we can see
that, with image noise level increasing, the residuals of the
three methods are all increasing linearly. RANSAC-F-6 is
the best and RANSAC-F-8 algorithm is the worst. Even
with the noise up to 2.0 pixels, the residual of RANSAC-
F-6 can still be limited in 1.0 pixel in most cases.

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.5

1.0

1.5

2.0
 RANSAC-F-6
 RANSAC-F-7
 RANSAC-F-8

R
es

id
ua

l (
Pi

xe
l)

Noise Level (Pixel)

  
0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.5

1.0

1.5

2.0

 RANSAC-F-6
 RANSAC-F-7
 RANSAC-F-8

R
es

id
ua

l (
Pi

xe
l)

Noise Level (Pixel)

  
0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.5

1.0

1.5

2.0

 RANSAC-F-6
 RANSAC-F-7
 RANSAC-F-8

R
es

id
ua

l (
Pi

xe
l)

Noise Level (Pixel)

       12F  between Image 1 and 2                23F  between Image 2 and 3                31F  between Image 3 and 1
Fig.2  Curves of residual w.r.t the noise level

Just from the above comparison, the differences among
such three methods are not so significant. Therefore, we
take use of another maybe more appropriate criterion —
the difference between the estimated Fundamental
Matrix and its ground truth. A measure originally
proposed by Stephane Laveau and recommended by
Zhang in [4] is adopted. For details, please refer to [4].
Simply to say, this measure defines the difference
between two Fundamental Matrices in terms of physical
image distances. Smaller the “distance” between two
Fundamental Matrices, more similar they are. For this,
we directly take use of the software of “FDiff“ from
INRIA with the trail number set as 50000 to calculated
the distances between the estimated Fundamental
Matrices and their ground truths with respect to the three

investigated methods respectively. The statistical results
are illustrated in Fig. 3.
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Fig.3  Distance between the estimated and the real F

From Fig.3, it is apparent that RANSAC-F-6 is the best,
while RANAC-F-8 is the worst. For RANSAC-F-6, even
at the noise level of 2.0 pixels, the mean distance can still
limited in 3.5 pixels, which indicates that the estimation
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results are very closer to the ground truths. Additional
extensive simulations with respect to many other
different configurations are also performed, with the
similar results obtained.

4.2 Real image experiments

After simulations, we conducted extensive experiments
with real images. The matches between each image pairs
are extracted by using Zhang’s correlation based robust
matching algorithm [10] first. Then common matches
between all the three images are retrieved as the initial
putative matches. After that, the three investigated
methods are invoked in turn to estimate the Fundamental
Matrices between image pairs (1-2, 2-3, 3-1) and identify
the inliers (outliers).

First, we tested these three methods with the Valbonne
Church image sequence as illustrated in Fig.4. In Fig.4,
the first row is for illustrating the putative matches
between the tested three frames. In each of them, the
matches indicated by the colorful hollow squares are
indexed. In the left-most one, the putative matches are
additionally indicated through the lines linking the
corresponding points. Then the lower two rows are for
illustrating the estimation results of RANSAC-F-6 and
RANSAC-F-7 respectively, in which the yellow lines are
the epipolar lines, the solid red squares are the sampled
minimal point set corresponding to the maximum inliers
number, and the yellow solid rhombuses indicate the
identified outliers. For the space reasons, we don’t show
the images corresponding to the estimation results of
RANSAC-F-8, only with some measurements reflecting
its accuracy listed in Table 1.

Another issue should be noticed is the way to overlap the
epipolar lines. That is, for two images i and j, the
epipolar lines corresponding to the Fundamental Matrix

ijF  is overlapped on image j. In addition, since the three
Fundamental Matrices between image pair 1-2, 2-3 and
3-1 are estimated pair-wisely when using RANSAC-F-7,
different from RANSAC-F-6, which estimates the
Fundamental Matrices for three images simultaneously,
the identified outliers by RANSAC-F-7 in each image
might be inconsistent.

By investigating the images in the first row of Fig.4, 7
outliers (indexed as 32, 50, 51, 83, 88, 96, 98) out of 98
putative matches are identified by naked eyes carefully.
Then as shown in the second row, these outliers are all
identified correctly by RANSAC-F-6. But it also should
note that three intuitively correct matches (indexed as 62,
80, 87) are also identified as outliers, maybe caused by
the maybe a little stringent threshold. Then for
RANSAC-F-7, since the estimations are performed pair-
wisely, the identified outliers are not consistent for each
image. It’s apparent that some obvious outliers are
missed to identify, for example, the 32-th image point in
the first image and the 98-th one in the second image.

In addition, from some experiment results collected in
Table1, from which we can also find that RANSAC-F-8
is worse than both of RANSAC-F-6 and RANSAC-F-7
in ability to minimize the residual and to identify the
outliers.

  

  

  
Fig.4  Results of the Valbonne Church image sequence

After the above experiment, we also conducted similar
experiments with many other image sequences, one of
which is shown in Fig.5, with same illustration theme
used. By investigating the putative matches shown on the
first row of Fig.5, the putative matches indexed as 9, 31,
34, 37 40, 42 48, 56 are found being matched wrongly.
For RANSAC-F-6, these outliers are all identified
correctly. While on the other hand, for RANSAC-F-7, it
still can’t identify all the outliers correctly, even with a
more stringent inliers identification threshold. For
example, for the image pair 1-2, there is even no a single
outlier is identified. So it can be seen again that
RANSAC-F-6 has a better ability to identify the outliers
than RANSAC-F-7, especially when the images are
captured with considerable camera rotation motions.
However, for RANSAC-F-7, we can see that the
estimated epipolar geometry is not so different from the
one estimated by RANSAC-F-6. This is because that the
putative matches are obtained with epipolar geometry
considered for guidance in the matching process. To
some extent, the outliers are fairly well consistent to the
real epipolar geometry.   
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Residual (pixel) Number of Identified Inliers
12F 23F 31F Image1 Image2 Image3

Sequence1 0.19 0.21 0.30 88 88 88RANSAC-F-6 Sequence2 0.27 0.26 0.30 60 60 60
Sequence1 0.24 0.26 0.29 89 85 91RANSAC-F-7 Sequence2 0.39 0.27 0.28 70 64 64
Sequence1 0.28 0.25 0.32 94 92 89RANSAC-F-8 Sequence2 0.32 0.31 0.34 69 62 63

Table. 1  Results of the experiments of the two image sequence

  

  

   

Fig.8 Results of a indoor scene image sequence

5. Conclusions and future works
The main contribution of this paper is to determine a most
accurate and robust method for the automatic estimation of
the Fundamental Matrix when three views are available,
through extensive analysis and comparison of three
popular methods by carefully designed experiments. These
methods include the seven-point method, the eight-point
method and the six-point method. The six-point algorithm,
which originally arises from three-view geometry, is
implemented to estimate the Fundamental Matrix in this
paper. RANSAC is used in all these methods to reject
outliers. The six-point algorithm is found to be the best.
This conclusive and convincing result is a valuable piece
of information for researchers in computer vision. Further
more, it should also be noted that the above comparison is
not an entirely fair comparison as only two views are used
in the seven-point algorithm and the eight-point algorithm
while three views are used in the six-point algorithm. This
could be rectified in our future research. As we know, in
addition to the direct three-view based approach using the
six-point algorithm, the three-view geometry can also be
determined from the three pair-wisely estimated
Fundamental Matrices in a two-step style, with the seven-
point algorithm and eight-point algorithm used in the first
step. In fact, it is obvious that this future work can also be
formulated as a comparison of the different approaches for
robust estimation of a three-view geometry.
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