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Abstract

In this paper we formulate the problem of synthesizing
facial animation from an input audio sequence (a.k.a. video
rewrite, voice puppetry) as dynamic audio/visual mapping.
We propose that audio/visual mapping should be modeled
with an input-output hidden Markov model, orIOHMM .
An IOHMM is an HMM for which the emission and transi-
tion probabilities are conditional on the input sequence. We
train IOHMMs using the expectation-maximization (EM)
algorithm with a novel architecture to explicitly model the
relationship between each transition probability and the in-
put using a neural network. Given an input sequence, an
output sequence is synthesized by a maximum likelihood es-
timation. Experimental results demonstrate that IOHMMs
can generate good-quality and natural facial animation se-
quences from input audio.

1. Introduction
Dynamic audio/visual mapping (or vocal/facial map-

ping) has recently received much attention as a powerful
alternative to traditional facial animation techniques [6, 5,
7, 4, 9]. Instead of directly animating facial expression, a
sequence of audio is used to drive the facial motion. While
voice is generated from the vocal cords, and facial expres-
sions are formed from facial skin and muscles, there exists
a great deal of mutual information between audio and vi-
sual signals. Representative projects on learning dynamic
audio/visual mappings, recently from the graphics com-
munity, include video rewrite [5] and voice puppetry [4].
A good survey on the importance and difficulties of au-
dio/visual mapping can be found in Section 2 of [4].

As a powerful approach to model time-series data in
the state-space, Hidden Markov Models [10, 12] have been
adopted in many synthesis applications [5, 4]. Previous
approaches assume that either the input or the output can
be modeled by a Hidden Markov Model (HMM). For ex-
ample, the “video rewrite” technique recognizes different
phonemes from the input audio signal. Animation is gener-
ated by re-ordering the captured video frames which share
similar phonemes as in the training video. On the other
hand, the “voice puppetry” technique trains an HMM model
for the visual signal. A remapping process is employed to
give each state a dual mapping into both audio and visual
signals.

There is a reason why the cumbersome remapping and

analysis steps are needed in voice puppetry. Although
HMM has been shown to be a powerful tool to model the
dynamic process, it is quite sub-optimal for synthesis. Tra-
ditionally, for recognition, an HMM aims to model the dy-
namics of one kind of signal. For synthesis, we need to
explore the mapping relationship between different signals,
each of which might have a different probabilistic model.
Moreover, the model parameters in conventional HMMs are
fixed after training, which result in a homogeneous Markov
chain. On the other hand, when our observations are two re-
lated input and output sequences, and the output sequence
conditionally depends on the input sequence, the expected
model should be inhomogeneous, or have the ability of
adapting to the input.

In this paper, we propose that dynamic audio/visual map-
ping should be learnt by an input-output hidden Markov
model, orIOHMM. IOHMM, a.k.a. conditional HMM orig-
inally introduced by Bengio [3, 1] for sequence processing,
can be stated as follows:An IOHMM is an HMM for which
the emission and transition distributions are conditional on
the input sequence.Specifically in this paper, we present
novel algorithms to tackle the following two problems:
• learning IOHMMs for dynamic vocal/facial mapping

from synchronized audio and visual signals;

• synthesizing facial expressions from input audio and
the learnt IOHMMs.

The remainder of this paper is organized as follows. The
IOHMM model is introduced in Section 2. We explain why
HMM needs to be augmented to IOHMM for the synthe-
sis task. The audio/visual mapping is studied in Section 3.
Experimental results are presented in Section 4. Finally we
conclude our paper in Section 5.

2. IOHMM for synthesis
2.1. HMM

HMMs are statistical models of sequential data that have
been used successfully in many applications, e.g., speech
recognition. A Bayesian network [11] representing graph-
ically the independence assumptions of an HMM is shown
in Figure 1(a). The relationship between the observed (out-
put) sequenceyT

1 = (y1, y2, ..., yT ) and the hidden state
sequenceqT

1 = (q1, q2, ..., qT ) satisfies the conditional first-
order independence assumptions [12].

The conventional HMM can be extended for the purpose
of dynamic input/output mapping. The Bayesian network
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Figure 1. Bayesian networks for several hidden
Markov models. (a) Conventional HMM where no
input is in the network. (b) HMM remapped (with
dotted lines) to the input sequence as well. (c)
Remapped HMM (b) plus direct connection be-
tween input and output. (d) Input-output HMM.
Dotted lines from qt to xt in (b)(c) indicate a remap-
ping process, not a causal effect. Solid line from
xt to qt in (d) shows that qt and transition from qt

to qt+1 are conditional to xt.

shown in Figure 1(b) illustrates that the learnt HMM from
the observed output sequence can be remapped to the in-
put sequence (in dotted lines). This is exactly the approach
adopted in [4] for synthesizing facial gesture from voice.
Although compelling results have been shown, this tech-
nique has two problems.

First, at the synthesis step, vocal signals are only used
to generate the most likely state sequence. Animation is
generated by solving a global trajectory in the visual state
space, which obliterates the relationship between vocal and
visual signals. This problem can be partially addressed by
enforcing the local input/output relationship, i.e., adding a
direct arc from input to output, as shown in Figure 1(c). At
the synthesis stage, from the state sequence and input sig-
nal, we can generate the output sequence with the help of
the local input/output mapping. Introducing a local model
into HMM is necessary for the synthesis problem because
we expect to obtain a continuous output, not to classify the
input into a specific state (as expected in a recognition prob-
lem). If we have no prior knowledge of the relationship be-
tween input and output, the local mapping model can be ob-
tained by some regression method such as a neural network.
Generally speaking, a more explicit and compact distribu-
tion of the output can be learnt by introducing some prior
knowledge or assumptions about the input and output sig-
nals.

Second, and more significantly, a remapping process is
required to map the occupancy matrix (obtained from the
HMM model for the output sequence) to the synchronized
input so that each state has a dual mapping with both input
and output. The underlying assumption made in the remap-
ping process is that the input sequence shares the dynamic
behavior exhibited in the HMM trained from the output. As
a result, the learnt model is homogeneous for all input se-
quences.

These problems are addressed in the Bayesian network
shown in Figure 1(d) where input and output are put to-
gether for training. The model proposed in Figure 1(d) is
called IOHMM or conditional HMM because the model
configuration is conditionally dependent on the input se-
quence. This is illustrated by the arc from the input to the
state (xtqt) in Figure 1(d) having a direction reverse from
that in Figure 1(b). It indicates the causal effect from the
input to the output.

2.2. IOHMM

The main difference between standard HMMs and
IOHMMs, is that the former represents the distribution
P (yT

1 ) of output sequences, whereas the latter represents
the conditional distributionP (yT

1 |xT
1 ) of the output se-

quence given the input sequencexT
1 = (x1, x2, ..., xT ).

IOHMMs are trained by maximizing the conditional like-
lihood P (yT

1 |xT
1 ). This is a supervised learning problem

since the outputyT
1 plays the role of a desired output in re-

sponse to the inputxT
1 . The Bayesian network for HMMs

(Figure 1(a)) can be obtained by simply removing the input
nodes and arcs from the IOHMM in Figure 1(d).

The arc fromxt to yt in Figure 1(d) indicates that
IOHMMs represent a conditional distribution of an (de-
sired) output sequence when an (observed) input sequence
is given. And the arc fromxt to qt implies that in IOHMM,
transition probabilities are conditional on the input and
thus depend on time, resulting in inhomogeneous Markov
chains. In comparison, standard HMMs are based on ho-
mogeneous Markov chains. Therefore, IOHMMs are bet-
ter suited for learning to represent long-range context than
HMMs. These properties of IOHMMs make them more
suitable than traditional HMM for synthesis.

2.3. An example

We illustrate the difference between HMMs and
IOHMMs in training and synthesis from a toy problem be-
low.

2.3.1 Problem description

The input and output sequences shown in Figures 2(a) and
(b) have the following properties:

• At any time instant, the input signal is assumed to
move along one of the two concentric circles, clock-
wise along the outer circle, but counterclockwise along
the inner one, indicated by circles with arrows. Gaus-
sian noise proportional to the circle radius is further
added to the point positions.
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(a) (b)
Figure 2. A toy problem to map circles to squares.
(a) Distribution of the input signal; (b) distribution
of the output signal. Solid lines and curves are the
paths in which the data move; dots are the actual
samples perturbed by noise.

• The output signal is synchronous to the input signal.
The output signal moves along one of the two cor-
responding diamonds, clockwise along the outer dia-
mond, counterclockwise along the inner one.

• The input can only jump to adjacent circles from point
J1 to J2, or vice versa, as shown in Figure 2(a). The
output jumps accordingly.

Our objective is to learn the dynamic mapping between
the input and output. Furthermore, given a new input se-
quence, we would like to synthesize the most likely output
sequence that best fits the learnt model.

2.3.2 HMM

To simplify the training problem, we assume four states in
our HMM. It has been shown in [4] that the minimum en-
tropy principle can be used to learn the number of states and
the structure of HMMs. Applying the standard HMM to the
output sequence, we obtain four states shown in Figure 3(a),
each of which represents the data distribution along a spe-
cific side of the diamond. HMMs (with remapping from the
output to the input as shown in Figure 1(b)) are inappropri-
ate for synthesis because of the following two reasons.

First, HMMs do not represent any dynamics at a finer
scale than a state. This causes blurring and muting of the
output, and eliminates the fine-scale noise and texture that
are expected for synthesis. For example, we might be able
to recognize that the output is in state0 in Figure 3(a), but
we cannot determine if it is on the inner or outer diamond.
Although the expressive power of the model can be amelio-
rated by adding more states, e.g., using8 or16 states for this
toy problem, the complexity of the state machine increases
(imagine that we have 100 concentric diamonds with differ-
ent sizes for the output).

Second, as shown in Figure 3(b), the transition probabil-
ities of an HMM are fixed after training. A transition proba-
bility represents an average transiting behavior between two
states. The amount of uncertainty of the transition is, how-
ever, not modeled. Therefore, an HMM cannot distinguish
whether a transition probability is highly volatile or fixed.
With the fixed transition probability matrix, the HMM in
Figure 3(a) cannot synthesize the correct change from one
diamond boundary to another. To apply HMMs for synthe-
sis, the emission and transition probabilities must depend
on the input.
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(a) (b)
Figure 3. The learnt HMM from the output sequence
of Figure 2(b). (a) Four states of HMM; (b) fixed
transition between HMM states. Solid lines in (a)
indicate that model parameters are fully specified.
Different shapes at the four states represent differ-
ent distributions.

2.3.3 IOHMM

For IOHMM, we again use four states to model the output
data distribution, as shown in Figure 4(a). Dotted lines for
the states in Figure 4(a) indicate that the specific formula-
tions of the emission probability and the transition proba-
bility are not fully determined unless an input is given.

Training an IOHMM is much more complex than train-
ing an HMM because the emission and transition probabil-
ities are conditional on the input. In particular, for each
entry in the transition matrix, its conditional distribution on
the input may not have an analytical form. Therefore, the
mapping from the input to the transition matrix should be
trained by neural networks, as suggested by Bengio [2].

In general, the emission probabilities can be learnt us-
ing neural networks as well. But often they can be modeled
by some radial basis functions (RBF) such as Gaussian dis-
tributions given some prior knowledge on the input/output
relationship. Obviously, if we add more prior knowledge,
we can obtain more compact and explicit output distribu-
tions. At the extreme, the training process degenerates to a
regression problem between the input and the output.

In this experiment, we simplify the emission distribution
at each state as a Gaussian output whose mean and vari-
ance are determined by the input data. At each stateSi, the
emission probability is given by

bi = G(µiϕ(xt),Σiϕ
2(xt)) (1)

whereµi is a vector andΣi is a matrix, andϕ is the distance
of the input signal from the origin. Learning the emission
probability is then simplified to one of determining the val-
ues ofµi andΣi.

We have developed a training algorithm for IOHMM. We
follow Bengio’s approach [3] to train IOHMMs under the
EM framework. What is novel in our algorithm is the pro-
cess of training the transition matrix with neural networks.
Each entry in the transition matrix is trained with an inde-
pendent neural network, after the M-step at each iteration.
For this toy problem, our network has a single hidden layer
with six nodes, two input nodes (2D coordinates of the input
data) and one output node (the transition probability from
stateSi to stateSj). A bias node is further added to the
input and hidden layers.

The learnt transition probabilities are clearly dependent
on the input, as shown in Figure 4(c)-(f) for four different
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(a) (b) (c) (d) (e) (f)
Figure 4. The learnt IOHMM to map circles to diamonds. (a) Four states of IOHMM; (b) four points from the
input; (c)-(f) corresponding transition matrices for the four points A,B, C, D shown in (b). Dotted lines in
(a) indicate that the model parameters are not fully specified unless the input is given.

points. For example, the point A which is located at the
boundary of stateS0 and stateS1 has a transition matrix in
Figure 4(c). It shows that the next output can stay at either
stateS0 or S1, but not atS2 or S3 becausea22 = a33 = 0.
In other words, there is a strong tendency to transit to these
two states no matter what the current state is, as long as the
input falls at locationA. As we move fromA to B, it be-
comes more likely to transit to stateS1 than toS0, as shown
in Figure 4(d). When the input pointC is at the mean (for
the local observation distribution) of stateS1, the transition
matrix will be simplified to a zero matrix except for the col-
umn corresponding to stateS1 whose entries are all equal to
1, as shown in Figure 4(e). It implies that the next state must
beS1 after the transition. Figure 4(f) shows the transition
matrix when the input point is at point D. Figure 4(f) has a
similar structure to Figure 4(d) except that the next output
is more likely to be on stateS0. Because of the signifi-
cant constraint by the transition matrix, the synthesis will
most likely yield correct state transitions even if the output
is sampled from a “wrong” state at some time instant.

From the input data in Figure 5(a), we obtain the syn-
thesis result shown in Figure 5(b). As expected, the output
is distributed around one of the two diamonds, similar to
the training data. Moreover, transitions between different
states are correct as shown by the arrows in Figure 5(b).
Depending on whether the input is on the inner or the outer
circle, the output samples form two Gaussian distributions
that belong to the same stateS2 (the dotted blue circle in
Figure 5(b)). Because temporal information is not used in
training and only four states are used, the synthesized out-
put trajectory does not follow the two diamonds exactly.

3. Synthesizing facial animation from audio
We apply IOHMMs to synthesize facial animations from

audio.

3.1. Audio-visual signal representation
In our system, we use the trajectories of 3D points on the

face of an actor and his voice as the training data. In total,
150 points are tracked. We use principal component anal-
ysis (PCA) to compress the 450 dimensional feature vector
into a 15-dimensional feature vector that covers 97% of the
variance.

We use an 18-dimensional feature vector to represent vo-
cal signals. Instead of the traditional phoneme-viseme map-
ping, we use low-level acoustic features such as MFCC and
energy as the input. The input audio sequence is blocked

�� ��

(a) (b)
Figure 5. The synthesis results using IOHMM. (a)
The input sequence. The dots are actual samples,
curly lines with arrows show the moving trajectory
and the dotted line indicates a jump. (b) The out-
put. The dots are the sampled output signal. Solid
ellipses are the local distributions fully specified
given the input. The dotted circle indicates the
state 2 which two local distributions belong to. Ar-
rows show the transition between states and local
distributions.

into frames with the same size as the captured video. In
order to capture more dynamics in the vocal feature, we
also calculate the delta parameters for MFCC and energy.
Speech energy is an important vocal feature because it plays
an important role in controlling facial expressions.

3.2. Training
In our application, both the input (vocal feature vec-

tor) and output (facial expression) are continuous high-
dimensional random variables. Furthermore, we have no
prior knowledge about the mapping relations between the
input and output. Therefore, training such an IOHMM is
much more complex than the toy problem proposed in the
preceding section. In Bengio’s work [3], the local mapping
model and state transition probabilities are modeled as neu-
ral networks. Although this architecture can be trained us-
ing the generalized EM (GEM) algorithm [8], training so
many neural networks is non-trivial. To simplify the train-
ing process, we first quantify the input intoK classes, each
of which has its own mean and variance. A new audio frame
a can be classified by calculating the Mahalanobis distance:

a ∈ classm (2)

if

m = arg min
i

(a− µai)T Σ−1
ai (a− µai), i = 1, ..., K (3)

whereµai andΣai are the mean and variance for classi.
For each class, the conditional distribution is modeled by
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Figure 6. Training IOHMM from input audio signals
and corresponding visual signals. The model con-
sists of three parts: a state machine, emission
probability conditional on the input, and transition
probability matrix conditional on the input.

K Gaussians, each of which corresponds to a specific au-
dio class. Then the emission probability for statei can be
represented by

bi(t) = G(µvik, Σvik) (4)

if at belongs to the classk. Note thatµvik andΣvik are the
mean and variance of the output distribution for classk at
statei. These parameters need to be learnt.

In our system, the transition probabilities are modeled
by N ×N neural networks which are similar to those used
in the toy problem in the last section. In the E-step, the
emission probability should be computed by equation 4. In
the M-step, the emission probability parameters are updated
by:

µvik =

∑T
t=1,at∈classm γt(i)vt∑T
t=1,at∈classm γt(i)

(5)

Σvik =

∑T
t=1,at∈classm γt(i)(vt − µvik)(vt − µvik)T

∑T
t=1,at∈classm γt(i)

(6)
Figure 6 shows our training algorithm. A trained HMM

consists of three parts: a state machine, an emission proba-
bility for each state conditional on the input, and a transition
matrix conditional to the input.

3.3. Synthesis

Given a new audio sequence, we can apply the model to
synthesize the most likely visual sequence that best fits the
model. In IOHMM, the state output probabilities and transi-
tion probabilities are conditionally dependent on the input.
Therefore, the synthesized sequence is the most likely one
that satisfies

V̄ = arg max
V

P (V |A, λ) (7)

whereV is the visual sequence andA the audio sequence.
There are three steps in the synthesis process as shown in
Figure 7:

• Initialization. At time 1 we chooseq1 according
to the model prior state probabilitiesπ. Then at
time t we choose (randomly sample)qt according to
P (qt|xt, qt−1) (where the R.H.S. is known), and we
randomly sampleyt according toP (yt|xt, qt). We ob-
tain an initial estimation of the output sequence by re-
peating this process,V1 = (v11, v12, ..., v1T ).

��

�

�

�

Figure 7. Synthesizing visual signals from an
IOHMM and input audio signals. Steps 1 and 2
are the initialization. Steps 3, 4 and 5 are iterated
until convergence.

Figure 8. A few frames from a synthesized video
sequence of Dr. King’s speech. The synthesis
uses a single picture.

• Iteration. The observation is complete after we ob-
tain the initial output sequence. For each iteration we
run a forward-backward process, after which an occu-
pancy matrixγt(i) can be obtained.γt(i) represents
the probability of being in statei at timet, given the in-
put/output sequence and model. Then the synthesized
output can be updated by.

v′t =
∑N

i=1 γt(i)µi∑N
i=1 γt(i)

(8)

• Termination. Given the fixed model parameters and
input sequence, the most likely output sequence can be
obtained when the change of the likelihood is below a
threshold.

It can be proven that the above iterative algorithm will
converge to an optimal solution under the EM framework.
In our experiments, we found that the synthesis sequence
tends to converge to the means of the states. This can be ex-
plained by the blurring and muting effects in HMM. How-
ever, since we have K distributions for a given state which
correspond to K audio classes, the expressive power is suf-
ficient. In fact, those fine details which are expected for
the synthesis are supplied mainly by the local mapping (one
output distribution for each class at each state).

4. Experimental results
In our experiment, we have used 20000 frames or667.33

seconds of video. The video consists of 189 short sentences.
The input audio is clustered into 15 classes. The training
process takes about 5 minutes to converge on a mid-level
PC. We first apply the learnt IOHMM to synthesize facial
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Figure 9. Several frames of synthesized cartoon video sequence. Several cartoon template images are
used in the animation.

Comparison Error
S1-B 0.0052
S2-B 0.0059
A-B 0.0015

Table 1. A comparison between the synthesized
result and ground truth. A is the ground truth, B is
the PCA reconstructed result (also ground truth),
S1 is the synthesis result initialized by B, S2 is the
synthesis result initialized by random sampling.

expressions from the audio in the training set. The audio
sequence used for comparison is not used for training the
IOHMM. Table 1 shows the comparison with ground truth.
To compute the reconstruction error, we calculate the min-
imum distance of each feature point to the face model re-
constructed after PCA (with97% variance covered). The
error shown in the table is the summed error normalized by
all feature points. We can conclude from the table that re-
construction quality is good because the reconstruction er-
rors (with two different initialization schemes) are on the
same order of the error between the original and the PCA-
reconstructed model.

Figure 8 shows the result of animating a single picture
using our model. Several frames from the synthesized se-
quence of the famous speech of Dr. Martin Luther King,
“I have a dream”, are shown in the figure. The sequence
shows significant facial movement. Using several cartoon
templates with different poses and expressions, we can also
animate a long sequence of cartoon. Several animated car-
toon frames are shown in Figure 9. Because we use a 3D
model with150 feature points, we clearly observe facial ex-
pressions over the whole face in the animation sequences.

We have encountered some difficulties when using the
IOHMM for synthesis. The most difficult problem is to syn-
thesize facial expression when the character is silent. There
is no clear mapping from silence to facial expression. Some
high-level knowledge must be applied to tackle this prob-
lem. Similarly, we have difficulties synthesizing some fa-
cial expressions that do not correspond to vocal signals. An
example is the frowning expression.

5. Conclusion and future work
In this paper we have studied the problem of dy-

namic audio/visual mapping, specifically, by formulating
audio/visual mapping as an IOHMM problem. A key ob-
servation is that IOHMM is better suited than conventional

HMM for synthesis because it can synthesize structures that
are finer than states. Moreover, because transition proba-
bilities in IOHMM are conditional to the input, it is more
likely that the synthesized state sequence will be correct. An
IOHMM model is trained under the EM framework, where
each transition probability is modeled by a single neural net-
work and updated at each iteration. Given the input audio
signal, a facial animation sequence is generated by the max-
imum likelihood principle. Our experimental results from a
single image and from a sequence of cartoon template im-
ages demonstrate that our synthesis results are of good qual-
ity.

While we have studied synthesizing facial expressions
from audio in this paper, the very idea of IOHMM is also ap-
plicable to other dynamic input/output mappings. We plan
to build a complete cartoon video rewrite system by com-
bining cartoon animations from different poses/emotions.
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