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Abstract

The correspondence problem has been difficult for object
recognition. Typically, good correspondence can only be
obtained if the epiploar geometry is known as in the case
of stereo image pair, or if the input images are in a video
sequence. This paper proposes a new algorithm to
incorporate projective invariants for solving the
correspondence problem of images taken by an
uncalibrated camera. As a result, the displacement of the
object in the images is not required to be small. The
proposed algorithm uses the cross ratio of coplanar
points, an invariant from projective geometry to form the
compatibility constraint, which is embedded into an
energy function. Although the energy function is in high
order form, we show that it can be solved using a
standard second order Hopfield network, by taking
advantage of the neighborhood information in the data.
The proposed method has been tested on a series of real
images and performs well.

1. Introduction

Reliable feature correspondences can be obtained if
camera geometry or the epipolar constraint is known or
for very similar input images where the correspondence
problem becomes one of tracking. However, a system that
does not require known camera positions and could find
matches from just a few images from different perspective
transformations would alow great flexibility and broad
application, particularly in object recognition field.

Cross ratio is the most essential invariant with respect
to projective transformations, and its perspective
invariance has attracted attention of many researchers with
a view to applications to object recognition from
perspective images. In [4], the index function is used to
select models from a model base and is constructed from
projective invariants based on algebraic curves and a
canonical projective coordinate frame. Successful
recognition is demonstrated despite partial occlusion of
the objects. Some invariant representations [5] could also
be derived from the cross ratios to speed up the matching
process. Most of these methods are based on the indexing
method, which the matching is performed by an index
function and searching in some predefined table.

Since Hopfield and Tank proposed the Hopfield
network for the traveling salesman problem [8], many
engineering problems have been formulated as
optimization problem in which an energy function is
minimized. The customary approach is to formulate the
original problem as one of energy minimization and then
to use a proper relaxation network to find minimum of this
function. Such solutions are attractive because they offer
the advantage of parallel analog VLSl implementations.
Many vision problems have also been solved in this way,
such as stereo image matching [2], motion estimation [1],
and so on. In [2], a Hopfield network was employed for
solving the global stereo matching problem using edge
segments. A five-order relaxation network is proposed in
[1] to find the feature correspondences for motion
estimation by taking advantage of some good initial guess.
The above matching processes are based on similar input
images, such that the motion between the imagesis small.

In this paper, we propose a new agorithm for solving
the well-known correspondence problem for uncalibrated
camera. The object displacement is not necessary to be
small. The objects are first represented as a set of feature
points, such as the dominant points extracted from the
outside contour of the object, or the convex hull of
scattered feature points. A cost function to establish the
correspondences between the feature points of a model
image with a scene image, considering both the feature
correspondence consistency and the projective constraint
between them is then derived. The projective constraint is
formulated with the well known projective invariance---
the cross ratio of five coplanar points. Therefore, the
correspondence problem under projective transformation
has been cast as an inexact graph matching problem and
formulated in terms of constraint satisfaction, which can
be mapped onto a network where the nodes are the
hypotheses and the links are the constraints. The network
is then employed to select the optimal subset of
hypotheses, which satisfies the given constraints. A
second order Hopfield network is employed in this paper,
such that the convergence of the network can be
guaranteed. This is made possible by utilizing the
neighborhood information in the data. Based on the
correspondence detected, the projective transformation,
which can be represented as a homography matrix, can be



recovered to map the model object into the scene object
domain, or vice versa.

The remaining of the paper is organized as follows.
The preliminary background covering the projective
invariance and convex hull are introduced in Section 2.
Section 3 shows how the projective invariant matching
can be mapped to a modified Hopfield network to find the
correspondences. Section 4 is devoted to recover the
projective transformation from the correspondence points
detected by the network. The experimental examples with
real images are given in Section 5. Finaly, conclusions
are presented in Section 6.

2. Projective Invariance and Convex Hull

2.1. Invariance on five coplanar points
Given five points on a plane, p=(%;, Vi, z), i=1, ..., 5,
asquare matrix is defined by three of the five points:
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It can be shown that there are two functionaly
independent ratios [6] of the determinants of the matrices,

M of the five points which are invariant for projective

transformations and the homogenous scalar factor:
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Note that the three points in a triple cannot be collinear,
otherwise the determinant of the point matrix my, becomes
singular and the corresponding invariant is undefined. It
can also be proved that the variances of the five coplanar
point invariants are proportional to their magnitude. This
implies that given estimates of the value of the invariant
and of the error introduced by the sensor and feature
extraction scheme, we can estimate the accuracy of the
invariant. Therefore, this property of projective invariance
can be used as the compatibility constraints embedded the
energy function to check the global consistency in feature
matching.
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2.2. Convex hull

In this section, we introduce the concept of convex
hull and its properties. For a set of points in the plane, the
convex hull is the smallest convex object containing all
the points. The convex hull bounds the set of points from
the outside. It possesses very attractive properties that
make it suitable for shape representation and analysis. 1)
It has uniqueness. 2) It has computational efficiency, the
upper bound of the computational complexity associated

with finding the convex hull of N points is of order
O(NlogN) [7]. 3) It has projective invariance, which
means that the convex hull of a data set under projective
transformation is simply the projective transformed
convex hull of the data before the transformation [5]. 4) It
has local controllability, which means that when feature
points are either added to or subtracted from the original
data set, the convex hull is only locally affected, which is
useful for handling occluded object recognition. 5)
Moreover, the ordering of the vertices of the convex hull
is readily available. This property is very useful to
introduce the compatibility constraints among five pairs of
points in the second order Hopfield network.

3. Hopfield Network for Projective Invariant
Matching

Hopfield network has been used in solving many
optimization problems [8]. Now we design the network
structure for projective invariant matching. First, a model
graph is constructed by extracting dominant feature points
of the model image as the nodes of the graph, and a
second graph is constructed from the scene image taken
from different and unknown viewing angle of the same
object, which is called the scene graph. For graph

matching, Hopfield network can be considered as a 2D
array. If the model graph has M nodes and the scene graph
has S nodes, the number of neurons in the network will be
M*S The final state of each neuron represents whether the
corresponding node in the model graph matches the node
in the scene graph or not. The network configuration can
be seen in Fig.l. The objective of the network is to
optimize the defined energy function until it reaches a
minimum as the neurons converge to stable states.

We define the our energy function for projective
invariant matchi ng to be
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where A, B, R and D are constants. v; is the output state
of neuron (i,l). If the i"™ node from the reference image
matches the I node from the test image, v, will be 1;
otherwise, it will be 0. v, where Of£v £1, is the control
parameter.

The first two terms of Equation (4) are uniqueness
congtraints, which force that at most one neuron can be
active in each column and row of the network. The third
constraint has to be included to avoid the system being
trapped to the degenerated state in which all neurons are



inactive. The last two terms are the compatibility
constraints that are used to measure the strength of the
compatibility between the nodes from the model image
and the scene image. The fourth term only considers the
information of unary properties of the feature points
detected and the last term uses the information of
relational properties between the model graph and the
scene graph, and in this case, the projective invariant
constraints are considered.

The unary constraint is defined as:
G = 2/(1+e ). 1 )

where e =| fm - f, |. | is the temperature constraint,

determining the steepness of the function. q is a threshold
for the system to tolerate addictive noise. fm and f, are
unary properties of the feature points. They can be
selected as the convexity and concavity of the points from
the outside contour, or the radiometric similarity of the
points. If no such kind of unary properties is available,
(e.g. for the convex hull, all the points are convex) we just
keep it unchanged, because the relational constraint plays
the key role in the matching.

Therelational constraint is defined as:
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According to projective invariance described in Section 2,
for projective invariant matching, at least five pairs of
nodes are needed to compute the relational constraint.
Therefore, we use the relational properties between
quintuple set of nodes (i, j, k, X, p) of the model graph and
(I, m n, y, ) of the scene graph as the compatibility
constraint. e is the average difference of projective
invariants over five points between the model graph and
the scene graph. It can be proved that this constraint is
symmetric (Cijjm=Cjmit) for the variable indices i, j and I, m,
which is the necessary condition for the network to
converge. Thisrelational constraint meansthat if the value
of e is smaller than the threshold g, there exists a
projective transformation mapping the set of nodes from

the model to the scene image, Cijm approaches +1,
otherwise such transformation does not exist, and Cijm
approaches - 1.

Now the next question is how to select the reference
nodes k, x, p in the model graph and n, y, g in the scene
graph, such that when the i™ node and j™ node in the
model match the 1™ node and m™ node in the scene
respectively, the K", xth, and p™ node most probably
match the ", yth and g™ node respectively. The feature
points used to form the graph in the network can be
extracted either along the shape of the object or its convex
hull in the image, thus they can be arranged in order.
Therefore, we can aways select the adjacent nodes of i
and j as the nodes k, x, p in the model graph. Similarly,
select the adjacent nodes of | and masthe nodesn, y, g in
the scene graph.

From Equation (4), it can be seen that when v =1, the
last term of the energy function is zero, the network only
uses the information of unary features. When v is
gradually reduced, the weight of last term becomes larger
and larger. When v is reduced to zero, the network only
uses the information of relational properties. We can
adopt this approach to integrate the local and relational
propertiesin the Hopfield network.

Equation (4) can be rewritten as the Liapunov function
form of a Hopfield network [8] to obtain the updating
equation, more details can be found in [13]. Therefore, the
matching agorithm of second order network for
projective invariant matching can be described as follows:

Step 1: Set theinitial state of the network, and the control
parameter v isset to be 1.

Step 2: Update the state of the network till a stable output
state is achieved.

Step 3: Reduce the control parameter v with a small
value: v=v - step, check if v>0, if yes, go to Step 2;
otherwise, go to Step 4.

Step 4: Output the matching results.

4. Finding the Projective Transformation
between Correspondence Points

After finding the correspondence points between two
views by the proposed Hopfield network, we can compute
the projective transformation between them. If the points
that are put into correspondences are produced by the
visual features situated in a plane, there exists an analytic
transformation between the two projective planes [11]
completely specified by a 3* 3 transformation matrix H,

liP*=HP" (8)



where H is named homography (or collineation). H is
only defined up to a scale factor, which means that one
element of H may be set to unity, Hy 3 = 1. Therefore, a
minimum of four pairs of correspondence points is
required to solve the 8 free components of H.

Since we need a hypothesis verification scheme to
verify the detected correspondences, and meanwhile,
delete the spurious matches generated by the network, a
post clustering algorithm similar to [10] was employed to
estimate H. The agorithm finds the loca maxima by
voting in the parameter space.

5. Experimental Results

5.1. Projectiveinvariant shape recognition

First, the proposed method has been evaluated with
shape images taken from different and unknown viewing
positions. The arrow symbol images shown in Fig.2 were
taken in our laboratory with a digital camera. The images
were segmented by intensity thresholding. The feature
points were chosen as extreme curvature points along the
outside contour of the objects, and they were extracted
and labeled in clockwise manner, by applying a similar
algorithm proposed in [9]. The matching results are
summarized in Table 1.

Table 1. Matching results of arrow imagesin Fig.2

Model Scene | Energy | Mat. | Err.
Fig.2a Fig.2b | -36.41 9 0
Fig.2a Fig.2c | -34.59 9 0
Fig.2a Fig.2d | -15.99 6 0

In the table, the third column is the final energy value
when the network converges. The fourth column is the
number of correspondences found by the matching
process, among which, the last column denotes the
number of false matches. From the table, al the
experiments can find the correct correspondences between
the model and the scene without any wrong match, even
when the scene graphs are occluded, such as Fig.2 (d).

In this set of experiments, the network converges
within 3 seconds on a Sunsparc 10 (for the un-occluded
cases, it is much faster). The numbers of model nodes and
scene nodes are both 9. The transformed models are
overlaid onto the scene in Fig.3, according to the
estimated H. The dashed lines in Fig.3 denote the scene
contours, and the solid lines denote the transformed
contours of the model object. It can be seen that the
transformed model contours almost perfectly match the
scene contours.

5.2. Projective invariant matching by convex hull
Next, we evaluate the proposed method by matching
discrete point set using convex hull. Fig.4 is a set of real

images taken in our department with large differences of
viewing positions. Harris corner detector [12] was used to
extract features from these images. The quickhull [7]
algorithm was employed to find the convex hull for each
image. The matching details are listed in Table 2.

Table 2. Matching results of " EE society" images in

Fig.4

Model /M Scene/S Ene. | Mat. | Err. | Tmat.
Fig.4al12 Fig.4b/11 | -27 8 0 120
Fig.4al12 Fig.4c/12 | -26 10 0 129
Fig.4al12 Fig.4d/12 | -30 10 1 73

In the table, M and S denote the number of nodesin the
model and the scene respectively. "Tmat." means the
number of correct matches detected for the full set of
corner points based on the homography matrix H
estimated from the convex hull. The error is no more than
2 pixels. From the table, there is one wrong match in the
third experiment. However, they can be eliminated with
the subsequent post-clustering algorithm. The transformed
models including the convex hull and other corner points
are overlaid onto the scenes, which are shown in Fig.5.
The "+" marks denote the corner points in the scene
image, and the dashed lines denote the convex hull
computed for the scene images. While the "0" marks
denote the corner points in the transformed models, and
the solid lines denote the convex hull computed for the
transformed models.

From Fig.5, it can be seen that by using the convex hull
of aset of discrete points to perform matching process, we
still can get a good approximation of the projective
transformation. Of course, if more accurate results are
required, we can use the points inside the convex hull to
refine the projective transformation further. This set of
experiments usually takes no more than 15 seconds to
converge on a Sunsparc 10.

5.3. Experiments on 3D object recognition

In this set of experiments, the pictures shown in Fig.6
are images of a "Vita" drink pack viewed from different
and unknown positions. Unlike the previous two sets of
experiments where the objects are either flat or resided on
a 2D planein a 3D space, the feature points on the "Vita'
drink are non-planar. This set of experiments is
considered to examine the 3D structure effects on the 2D
projective invariant matching.

For the three scene images in Fig.6 (b), (c) and (d), the
matching process can find all the six correct matches
along the 3D shape of the drink box immediately without
any false match. The transformed models by the estimated
H are overlaid on to the scenes, which are shown in Fig.7.
The experimental results show that the proposed matching




algorithm also works for the non-planar object if the
perspective effect is not so strong.

6. Conclusions

This paper proposes a neural network solution for
automatic feature matching using coplanar projective
invariants and convex hull. The problem is formulated as
a minimization process, in which the energy function
includes the constraints based on projective invariants of
five coplanar points. A modified Hopfield network has
been adopted to integrate both the unary properties and
the relational properties of the feature points. By taking
advantage of the neighborhood information in the data
(shape or convex hull), this energy function can be solved
by a second order Hopfield network such that the
convergence can be guaranteed.

The experiment results show that the proposed method
can handle the correspondence problems of planar
objects, or non-planar objectsif the perspective effects are
not so strong. Prior information about the epipolar
geometry is not required in the formulation. We have not
assumed that the images have been calibrated, nor the
objects have only been moved dlightly between the
images. Therefore, the proposed method has great
potentials in various applications, such as robot
navigation, and object recognition.
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Fig.1. The Hopfield network used to generate graph
isomor phism
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Fig.2. 2D symbol images, (a) isthe model image
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Fig.5. Matching results of " EE society" images against
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the model imagein (a)
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Fig.3. Matching results of 2D symbol images against
the model imagein (a)
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Fig.6. " Vita" drink images, (a) isthe model images
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Fig.4. " EE society" label images, (a) isthe model
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Fig. 7. Matching results of " Vita" drink images
against the model imagein (a)




