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Abstract 

In this paper, a new active vision based camera 
self-calibration technique is proposed. The novelty of  
this new technique is that it can determine LINEARLY all 
the FIVE intrinsic parameters of a camera. The basic 
principle of our new calibration technique is to use the 
planar information in the scene and to control the 
camera to undergo several sets of orthogonal planar 
motions. Then, a set of linear constraints on the 5 
intrinsic parameters is derived by means of planar 
homographies between images. In addition, the 
uniqueness of the calibration solution with respect to the 
configurations of the camera’s motion is also 
investigated. 
 
Keywords:  Camera Self-Calibration, Active Vision, 

Homography 
  
1 Introduction 

Camera calibration is an indispensable step to obtain 
3D geometric information from 2D images. With the 
traditional calibration method, the camera’s intrinsic 
parameters are computed from projected images of a well 
structured object, called calibration grid. However, in 
many practical applications, a calibration grid is neither 
available nor desirable, thus people turned to a new 
paradigm, called ‘self-calibration’, i.e., calibration 
without calibration grid. Since the pioneer works in [1,2], 
many similar techniques have been reported in the 
literature [3-15]. However, almost all such techniques 
have to solve some nonlinear equations, which inevitably 
leads to either low computational speed or 
non-convergence. In order to overcome this difficulty, 
some researchers explored the possibility to constrain the 
camera to undergo some specially designed motions 
[16-22]. Ma [21] proposed an active vision based linear 
calibration method. In Ma’s method, two different sets of 
camera motions, each one of which consists of 3 
mutually orthogonal translations, are used to linearly 
determine the camera’s intrinsic parameters. Yang et al. 

[22] improved Ma’s method. In their new method, rather 
than two sets of 3 mutually orthogonal motions, four sets 
of two orthogonal planar camera motions are used. In 
both Ma’s methods and Yang’s, only 4 intrinsic 
parameters of camera can be linearly determined. If a full 
perspective camera model is used, in other words, if the 
skew factor is non-zero, both of their methods become 
invalid. In this paper, we propose a new active vision 
based camera calibration technique which can compute 
all the 5 intrinsic parameters linearly. In our new method, 
the planar information in the scene is used, and the 
camera undergoes N (N>=2) sets of three mutually 
orthogonal motions or N (N>=5) sets of two orthogonal 
planar motions. 

The organization of the paper is as follows: In 
section 2, homographies associated with scene planes 
between two images are discussed. The linear constraints 
on camera’s intrinsic parameters and the uniqueness of 
solution with respect to configurations of camera motions 
are elaborated in section 3. A new camera calibration 
algorithm is outlined in section 4. The experiments on 
simulated images and real images are reported in section 
5 and section 6 respectively. Finally some conclusions 
are given in section 7. 
 
2 Homography Associated with a Scene 

Plane Between Two Images 

2.1  Camera Model 

Here a full perspective camera model is assumed, 
then the camera intrinsic parameters matrix is 
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where ),( 00 vu is the principal point, uf , vf  the focal 
lengths in u  and v  axis respectively, s the 
skew-factor. 
2.2  Homography of a Plane between Two Images 
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Assuming TT vuvu )1,,(,)1,,( ′′=′= mm are the 
homogeneous coordinates of two corresponding points in 
two images. If these two corresponding points are 
projected from a same scene point lying on a plane π , 
the following relation holds: 

Hmm =′s      (1) 
where matrix H  is the homography between the two 
images induced by the plane π , and s  an unknown 
non-zero factor. In other words, the homography is 
determined up to a non-zero scale factor. 

Now suppose the plane π  in 3D space is defined 
as: d=xnT� , where n�  is the unit normal vector of π , 
d the distance from the origin of the world coordinate 
system to plane π . Assume that the world coordinate 
system coincides with the first camera coordinate system, 
then for the first image, we have: 

Kxm =λ  
Assuming the transformation from the first camera 
coordinate system to the second one is tRxx +=′ , the 
corresponding point in the second image can be 
expressed as: 
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From (1), the homography between these two images is: 

)( 11 −− += KntKKRKH
T

d

�
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in (2), σ  is an unknown non-zero factor. If the camera 
only undergoes a pure translation, the homography 
becomes: 

)( 1−+= KntKIH
T

d
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2.3 Homography Calculation and the                
Associated Constant Factor Determination 
Since a homography can only be determined up to a 

scale, we can generally eliminate the scaling effect by 
assuming the homography has the following form: 

Then H can be written as a column vector: 
Thhhhhhhh ),,,,,,,( 87654321=h . From (1), a pair of 

corresponding points Tvu )1,,(=m , Tvu )1,,( ′′=′m  
can bring out two linear constraints on h , 
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With at least 4 pairs of corresponding points, H can be 
determined.  

If the camera undergoes pure translations, then from 
(3), there exists a unique factor σ  such that: 
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Because 1)( 1 =−KnKt T�rank , σ  must be the solution 
of the following equations: 
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(6) contains 6 linear equations about σ , so a unique 
solution can be obtained. A least squares solution of 
these 6 linear equations is used in practice. 
 
3 Linear Constraints and Camera Motion 

Configurations  
3.1  Linear Constraints  

If the camera undergoes two planar orthogonal 
translations )2()1( , tt  i.e. 0)( )2()1( =tt T , assume that 

1H  is the homography of a scene plane associated with 
the first translation, and 2H  is the homography of a 
scene plane (either the same plane as in the first 
translation, or another plane) associated with the second 
translation, then based on (3), we have: 
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Multiply (10) by the transpose of  (9), then, 
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















=
187

654

321

hh
hhh
hhh

H



3 

following linear constraint on C  can be derived since 
21,σσ  can be obtained from 21 ,HH uniquely as 

shown in the preceding section. 

 332211 )()( ×=−− 0IHCIH σσT   (11) 
is the fundamental constraint introduced in this paper. 

Let Tcccccc ),,,,,( 654321=c , (11) can be 
re-written as 

   90cA 69

�

=×     (12) 
Although (12) contains 9 linear constraints on C, we 

can easily prove that only one constraint is useful, all the 
other constraints are dependent. In other words, matrix 
A  is of rank one. Simple illation is as below: From (9) 

and (10), )( 11 IH σ−T and )( 22 IH σ−  are of rank one. 
So equation (11) can produce only one linear constraint 
on C. And we can conclude that (12) can also produce 
only one linear constraint onC . In order to uniquely 
obtain C  in the sense of up to a scale factor, at least 5 
constraints as defined in (12) are needed. 
   
3.2  The Configurations of Camera Motions and 

the Uniqueness of Solution 
3.2.1 Two Sets of Three Mutually Orthogonal 
Translations (TMOT) Each pair of translations among 
the 3 translations in one TMOT can produce one constraint 
on C . So one TMOT can produce three constraints on C . 
Then at least 2 sets of TMOTs are needed to determine C . 
Concerning the uniqueness of the solution of C , we have 
the following proposition: 
Proposition : { } 2,1,321 == iiii tttΓ i  are two sets 
of TMOTs, if these two sets are independent, then C  
can be determined uniquely modulo a scale factor from 
the following constraints: 
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where ijH  is the homography associated with the j th 
translation in the ith TMOT. 

Here, by “two sets of TMOTs being independent”, 
we mean that all the following 4×3 matrices must be of 
rank 3,  
[ ] lkjilkjiTlkji ≠≠= ,;1,2,3,,,2211 tttt . 
In other words, 4 vectors ( 2211 ,,, lkji tttt ) are not 
coplanar ones.  

Due to the limited space, the proof is omitted here. 
3.2.2 Five Sets of Two Planar Orthogonal 
Translations (TPOT) As shown in the previous section, 
each set of TPOT can produce one linear constraint on C. 
Hence in general, 5 sets of TPOTs can produce 5 linear 
constraints on C.  It is evident that in some cases, 5 TPOTs 
can not produce 5 independent linear constraints, in other 

words, the corresponding motion configuration is a 
degenerated one. Concerning the uniqueness of the solution 
of C  for given five TPOTs, we have the following 
conjecture:  
Conjecture: Among the five motion planes, if no two 
or more planes are parallel, the matrix C  can be 
determined uniquely modulo a scale factor. 

4  Algorithm 

Suppose the camera observes a scene plane and the 
correspondence of image points is established beforehand, 
then our new self-calibration algorithm is as follows:  

(1) Control the camera to undergo N (N>=5) sets of 
two planar orthogonal translations (or N (N>=2) 
sets of three mutually orthogonal translations). 

(2) Compute the homographies 21 , ii HH  
associated with the scene plane in each set of two 
planar orthogonal translations. 

(3) Determine the scale factor iσ  associated with 
each iH , as shown in section 2. 

(4) Write the linear constraints on c  in the form: 

90cA
�

= . 
(5) Compute the least squares solution for 90cA

�

= . 
(6) Construct C , then decompose 1−C  as: 

TVVC =−1 by Cholesky factorization, then 
decompose V  as: KQV =  by RQ factorization, 
and finally normalize K  to make 133 =k . Then 
the normalized K is just the matrix of the 
camera’s intrinsic parameters. 

5   Experiments with Simulated Images 

As shown above, there are two factors which largely 
affect the performance of our algorithm. These two 
factors are noise level and the orthogonality of two 
camera translations within a same motion set. In order to 
assess their influences, the following experiments have 
been done. 

5.1 Noise Influence 
Here the size of simulated images is 1024*1024 

pixels, and at each image point, a random noise is added. 
The camera’s setup is: ,1000,1000 == vu ff  ,20.0=s  

0,0 00 == vu . Noise unit: pixel. 20 points are used for 
determining H . With different magnitude of random 
noise, the algorithm is run for 100 times, and then means 
and RMS errors of the intrinsic parameters are computed. 
The results are shown in Table1 and Table2. From these 
two tables, we know that with linear increases of noise 
level, RMS also increases linearly, which is quite 
satisfactory.  
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Table 1. Means of the estimated intrinsic parameters at 
different noise level   

Noise uf  vf  s  0u  0v  
0.1 999.620 999.705 0.535 0.108 0.117
0.2 999.524 999.627 -0.103 0.694 -0.164
0.3 997.178 998.711 -0.145 0.646 -2.838
0.4 1000.014 999.425 1.089 -0.521 0.972
0.6 997.965 998.322 -0.965 1.072 -2.249
0.8 999.079 994.869 1.826 5.065 7.403
1.0 996.211 993.771 -1.928 5.782 4.021
1.5 1025.636 986.579 7.314 19.065 65.364  

Table 2.  RMSs of the estimated intrinsic parameters at 
different noise level  

  
5.2 Orthogonality Influence 

The image size is: 1024*1024 pixels. The camera’s 
setup is: 0,0,20.0,1000,1000 00 ===== vusff vu . In 
this case, image points do not contain any noise. But the 
included angle between the two camera translations is 
allowed to vary at random within a given error bound1.                  
At each given error bound and for each given number of 
motion sets, 100 runs are done. The final results are 
shown in Table 3 and Table 4. In Table 3 and Table 4, 
“X-Y” stands for the included angle of the two 
translations for each planar motion set. 
 
Table 3. Means of the estimated intrinsic parameters 
at different error bound 
    

X－Y 5 sets 8 sets 10 sets 15 sets 

uf  976.234 1001.389 998.881 998.661

vf  1018.556 1000.040 999.786 1000.005
s  -14.591 -7.004 1.510 -0.893 

0u  -24.988 0.954 -3.237 -0.165 

89
｜

91 

0v  26.342 -1.387 0.668 -0.808 

uf  975.939 999.004 1005.938 1003.62388
｜ vf  993.423 998.746 1006.312 1003.812

                                                        
1 Remember ideally the two translation should be orthogonal 

s -23.649 -3.687 -9.525 2.134 

0u 10.699 9.810 2.975 3.891 
92

0v -21.761 -1.292 10.187 1.484 

uf 972.576 995.750 1024.539 999.390

vf 994.415 1004.771 1017.879 1004.243
s -31.717 -5.566 -19.352 -0.644 

0u 15.463 5.320 3.799 6.204 

87
｜

93

0v -3.369 -6.304 17.905 -1.356 

uf 944.180 1000.055 1008.938 1001.645

vf 1024.595 1014.221 1009.758 1017.907
s 4.277 -17.269 2.719 -13.755

0u 13.534 31.311 -6.051 4.980 

86
｜

94

0v -55.905 -5.713 -2.246 1.592 

uf 928.851 990.974 1041.977 1019.730

vf 1008.974 1039.206 1038.543 1032.747
s -54.663 -40.048 -28.706 -27.762

0u -42.923 34.950 10.556 21.341 

85
｜

95

0v -10.703 -13.128 41.784 13.602 
 
Table 4. RMSs of the estimated intrinsic parameters at 
different error bound 
 

X－Y 5 sets 8 sets 10 sets 15 sets

uf∆ 68.675 22.476 14.833 12.223

vf∆ 95.449 20.111 15.430 12.137
s∆  89.769 24.096 15.750 12.298

0u∆ 79.402 20.059 17.572 11.282

89
｜

91

0v∆ 93.204 23.037 15.660 12.774

uf∆ 76.504 36.093 28.332 24.695

vf∆ 74.637 36.193 33.237 19.735
s∆  76.964 40.716 34.825 25.863

0u∆ 76.272 37.052 36.785 29.878

88
｜

92

0v∆ 96.948 44.650 32.760 27.553

uf∆ 116.353 56.076 51.361 33.932

vf∆ 117.717 54.311 42.966 37.355
s∆  137.267 69.961 49.458 40.116

0u∆ 124.863 63.049 41.249 36.142

87
｜

93

0v∆ 131.662 69.823 50.069 33.646

uf∆ 134.559 74.162 62.798 42.071

vf∆ 157.014 77.104 61.539 54.406
s∆  157.637 93.322 66.006 58.155

0u∆ 147.420 101.423 77.876 58.146

86
｜

94

0v∆ 181.170 88.721 81.984 51.644

uf∆ 146.971 82.832 88.394 64.677

vf∆ 193.981 100.698 87.937 77.262
s∆  186.325 111.342 104.461 68.707

0u∆ 199.289 98.310 106.240 81.448

85
｜

95

0v∆ 163.040 99.643 94.143 78.437
 

Noise uf∆  vf∆  s∆  0u∆  0v∆  

0.1 4.420 1.419 1.629 1.227 6.690 
0.2 11.247 3.839 3.025 3.036 15.045
0.3 16.233 5.129 4.891 4.594 23.082
0.4 19.662 6.172 5.843 5.909 27.659
0.6 31.783 10.069 11.292 8.081 41.883
0.8 45.845 16.051 12.733 12.589 63.160
1.0 51.048 17.803 15.346 15.013 70.404
1.5 82.179 29.546 26.543 31.442 141.292
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From these tables, we know that the more the 
number of the motion sets and the smaller the error 
bound, the better the estimated results. Hence in order to 
obtain satisfying results, if possible, the two camera 
translations within a same motion set should keep as 
orthogonal as possible and more images should be used. 
Fortunately, these two conditions can be generally 
satisfied in practice with an active vision system. 

6 Experiments with Real Images 

In real image experiments, a CCD camera is used. 
After the calibration, the calibrated intrinsic parameters 
are used to reconstruct a calibration grid to verify 
whether the calibrated parameters are reliable. 

6.1  Calibrating the Intrinsic Parameters 

Here a 3D scene including a plane is used. The 
camera undergoes 16 sets of two orthogonal translations, 
and we get 16 groups of images, each group contains 3 
images (one image before translation, and two images 
after each translation). The image size is 384*288 pixels. 
One of the image groups is shown in Fig1. 
 

    

 
Fig 1  A  group of images taken by a CCD camera 

 
With our new algorithm, the calibrated intrinsic 

parameters of the CCD camera are listed in Table5. 

Table 5.  The estimated intrinsic parameters 

uf     vf  0u     0v  s  

524.6731  256.9008 172.0141  190.6486 -0.8220
 

6.2  Verification via Reconstruction 

Here a standard stereo vision technique is used to 
reconstruct the 3D scene to verify whether the calibrated 
intrinsic parameters are reliable. Fig 2 shows a pair of 
images used for the reconstruction of a calibration grid. 

The highlighted points are the corresponding points 
selected from two planes which are orthogonal to each 
other. Fig 3 are the reconstructed planes with different 
view directions. 
 

   
Fig 2: The two images used for the reconstruction 

 
        (1)  

 
          (2) 

Fig 3: Reconstructed two planes with different view  
 

In Fig 3, (1) is the top view, (2) is the side view. The 
included angle of the two reconstructed planes is 90.45 
degrees, which is quite close to its real value of 90 
degrees. Based on the fairly good reconstruction results, 
we can reasonably think that the calibrated intrinsic 
parameters are reliable.  Besides, it is worth noting that 
the results from our linear calibration technique can be 
used as the initial values for a non-linear optimization 
method for further refining. 

7. Conclusion  

In this paper a new active vision based 
self-calibration technique is proposed. Our new 
technique can LINEARLY determine all the FIVE 
intrinsic parameters. To our knowledge, in the literature 
there have been no method which can linearly calibrate a 
full perspective camera. The experiments with simulated 
data and real images validate our new camera calibration 
technique. 
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