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Abstract

In this paper, a new active vision based camera
self-calibration technique is proposed. The novelty of
this new technique is that it can determine LINEARLY all
the FIVE intrinsic parameters of a camera. The basic
principle of our new calibration technique is to use the
planar information in the scene and to control the
camera to undergo several sets of orthogonal planar
motions. Then, a set of linear constraints on the 5
intrinsic parameters is derived by means of planar
homographies between images. In addition, the
uniqueness of the calibration solution with respect to the
configurations of the cameras motion is also
investigated.
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1 Introduction

Camera calibration is an indispensable step to obtain
3D geometric information from 2D images. With the
traditional calibration method, the camera’s intrinsic
parameters are computed from projected images of a well
structured object, called calibration grid. However, in
many practical applications, a calibration grid is neither
available nor desirable, thus people turned to a new
paradigm, called ‘self-calibration’, i.e., calibration
without calibration grid. Since the pioneer works in [1,2],
many similar techniques have been reported in the
literature [3-15]. However, almost all such techniques
have to solve some nonlinear equations, which inevitably
leads to either low computational speed or
non-convergence. In order to overcome this difficulty,
some researchers explored the possibility to constrain the
camera to undergo some specially designed motions
[16-22]. Ma [21] proposed an active vision based linear
calibration method. In Ma’s method, two different sets of
camera motions, each one of which consists of 3
mutually orthogonal translations, are used to linearly
determine the camera’s intrinsic parameters. Yang et al.

[22] improved Ma’s method. In their new method, rather
than two sets of 3 mutually orthogonal mations, four sets
of two orthogonal planar camera motions are used. In
both Ma’s methods and Yang’s, only 4 intrinsic
parameters of camera can be linearly determined. If a full
perspective camera model is used, in other words, if the
skew factor is non-zero, both of their methods become
invalid. In this paper, we propose a new active vision
based camera calibration technique which can compute
all the 5 intrinsic parameters linearly. In our new method,
the planar information in the scene is used, and the
camera undergoes N (N>=2) sets of three mutually
orthogonal motions or N (N>=5) sets of two orthogonal
planar motions.

The organization of the paper is as follows: In
section 2, homographies associated with scene planes
between two images are discussed. The linear constraints
on camera’s intrinsic parameters and the uniqueness of
solution with respect to configurations of camera motions
are elaborated in section 3. A new camera calibration
algorithm is outlined in section 4. The experiments on
simulated images and real images are reported in section
5 and section 6 respectively. Finally some conclusions
are given in section 7.

2  Homography Associated with a Scene
Plane Between Two Images

2.1 Camera Model

Here a full perspective camera model is assumed,
then the camera intrinsic parameters matrix is

f, s u,
K={0 f, v,
0 0 1

where (u,,v,) is the principal point, f,, f the focal

lengths in u and v axis respectively, s the
skew-factor.

2.2 Homography of a Plane between Two Images



Assuming m = (u,v,])", m'=(',v'1)" are the
homogeneous coordinates of two corresponding points in
two images. If these two corresponding points are
projected from a same scene point lying on a plane =,
the following relation holds:

sm' = Hm (1)
where matrix H is the homography between the two
images induced by the plane z, and s an unknown
non-zero factor. In other words, the homography is
determined up to a non-zero scale factor.

Now suppose the plane z in 3D space is defined
as: n"x=d, where n isthe unit normal vector of x,
d the distance from the origin of the world coordinate
system to plane z. Assume that the world coordinate
system coincides with the first camera coordinate system,
then for the first image, we have:

Am = Kx
Assuming the transformation from the first camera
coordinate system to the second one isx' = Rx +¢, the
corresponding point in the second image can be
expressed as:

1
A'm' = Kx' = KRx + Kt = KRx +aKtﬁTx
T

tn K—l )m
d

=A(KRK " +K
From (1), the homography between these two images is:
H = o(KRK " +KmTK'1) @)

in (2), o is an unknown non-zero factor. If the camera
only undergoes a pure translation, the homography
becomes:

=T
tn a4

H=0(+K K ) 3)

2.3 Homography Calculation and the

Associated Constant Factor Determination

Since a homography can only be determined up to a
scale, we can generally eliminate the scaling effect by
assuming the homography has the following form:

hl h2 h3
H=|h h h
h, h, 1

8
_ Then H can be written as a column vector:
h =(h,,h,,h,,h, h h, h h) . From (1), a pair of
corresponding points  m =(u,v1)" , m'=(’,v'1)’
can bring out two linear constraints on 4 ,

(u,v,1,0,0,0,u'u,u’v)h =u’
(0,0,0,u,v,L,v'u,v'V)h =V’

With at least 4 pairs of corresponding points, H can be
determined.

If the camera undergoes pure translations, then from
(3), there exists a unique factor o such that:

tm’

H=0(I+K=—K") )
H—alzo—Kt"TIr1 (5)

Because rank(Kem'K™*)=1, o must be the solution
of the following equations:

{ det(H —al) =0 )

det((H -oll,,) =0, [H-ol],,0Q(H -ol)

(6) contains 6 linear equations about o, so a unique
solution can be obtained. A least squares solution of
these 6 linear equations is used in practice.

3 Linear Constraints and Camera Motion
Configurations

3.1 Linear Constraints

If the camera undergoes two planar orthogonal
translations ¢®,¢® ie. (#®) ¢® =0, assume that
H, is the homography of a scene plane associated with
the first translation, and H, is the homography of a
scene plane (either the same plane as in the first
translation, or another plane) associated with the second
translation, then based on (3), we have:

i
H1=U1(I+K—d1 K™) (7)
t?n
H2=02(1+K—d2 K™) (8)
50, K*(H,-0,)K =%t”’ﬁ1’ )
K*(H,-0,1)K =%twﬁ; (10)

Multiply (10) by the transpose of  (9), then,

K*(H! -o )K" K*(H,-0,)K

go, _ —
=% 5 (t°) ¢ @n, =0

d 2 3x3
Cl CZ C3
Let C=K"'K'=|c, c, ¢,
c, C. C

3

It is a symmetrical positive definite matrix. And the



following linear constraint on C can be derived since
0,,0, can be obtained from H, , H, uniquely as
shown in the preceding section.

(H] -0, I)C(H,-0,I)=0,, (11)
is the fundamental constraint introduced in this paper.
Let ¢=(c,¢c,,C,,C,,C.,C)" , (11) can be
re-written as

A,,c=0, (12)

Although (12) contains 9 linear constraints on C, we
can easily prove that only one constraint is useful, all the
other constraints are dependent. In other words, matrix
A is of rank one. Simple illation is as below: From (9)
and (10), (H, —oI)and (H,-o,I) are of rank one.
So equation (11) can produce only one linear constraint
on C. And we can conclude that (12) can also produce
only one linear constraint onC . In order to uniquely
obtain C in the sense of up to a scale factor, at least 5
constraints as defined in (12) are needed.

3.2 The Configurations of Camera Motions and
the Uniqueness of Solution

321 Two Sets of Three Mutually Orthogonal

Translations (TMOT) Each pair of translations among

the 3 translations in one TMOT can produce one constraint

on C.Soone TMOT can produce three constraintson C .
Then at least 2 sets of TMOTSs are needed to determine C.
Concerning the uniqueness of the solution of C, we have
the following proposition:

Proposition:  I', ={t" % %}, i=12 are two sets
of TMOTs, if these two sets are independent, then C
can be determined uniquely modulo a scale factor from
the following constraints:

(Hil _JnI)T C(Hiz _Jizl) = 03x3
(Hiz - Uizl)T C(Hi3 - Ui31) = Oaxal
(Hi3 - Jisl)T C(Hil - Jill) = Osxs

i=12

where H_ is the homography associated with the j B
translation in the i"" TMOT.

Here, by “two sets of TMOTs being independent”,
we mean that all the following 4 X 3 matrices must be of
rank 3,

[(r e 2 ] ijk=1230% k2]
In other words, 4 vectors (¢",¢",¢“,¢%) are not
coplanar ones.

Due to the limited space, the proof is omitted here.
322 Five Sets of Two Planar Orthogonal
Translations (TPOT)  As shown in the previous section,
each set of TPOT can produce one linear constraint on C.

Hence in general, 5 sets of TPOTs can produce 5 linear
It is evident that in some cases, 5 TPOTs

constraints on C.
can not produce 5 independent linear constraints, in other

words, the corresponding motion configuration is a
degenerated one. Concerning the uniqueness of the solution
of C for given five TPOTs, we have the following
conjecture:

Conjecture:  Among the five motion planes, if no two
or more planes are parallel, the matrix C can be
determined uniquely modulo a scale factor.

4 Algorithm

Suppose the camera observes a scene plane and the
correspondence of image points is established beforehand,
then our new self-calibration algorithm is as follows:

(1) Control the camera to undergo N (N>=5) sets of
two planar orthogonal translations (or N (N>=2)
sets of three mutually orthogonal translations).

(2) Compute  the H,

associated with the scene plane in each set of two

homographies H.

i1’

planar orthogonal translations.
(3) Determine the scale factor o, associated with
each H,, as shown in section 2.

(4) Write the linear constraints on ¢ in the form:
Ac=0,.

(5) Compute the least squares solution for Ac =0, .

(6) Construct C , then decompose C™ as:
C*'=vV" by Cholesky factorization, then
decompose V' as: V = KQ by RQ factorization,
and finally normalize K to make k, =1. Then
the normalized K is just the matrix of the
camera’s intrinsic parameters.

5 Experiments with Simulated Images

As shown above, there are two factors which largely
affect the performance of our algorithm. These two
factors are noise level and the orthogonality of two
camera translations within a same motion set. In order to
assess their influences, the following experiments have
been done.

5.1 Noise Influence

Here the size of simulated images is 1024*1024
pixels, and at each image point, a random noise is added.
The camera’s setup is: f, =1000, f, =1000, s=0.20,
u, =0,v, =0. Noise unit: pixel. 20 points are used for
determining H . With different magnitude of random
noise, the algorithm is run for 100 times, and then means
and RMS errors of the intrinsic parameters are computed.
The results are shown in Tablel and Table2. From these
two tables, we know that with linear increases of noise
level, RMS also increases linearly, which is quite
satisfactory.



Table 1. Means of the estimated intrinsic parameters at
different noise level

Noise f f S u, A

u

0.1 999.620 | 999.705 | 0.535 | 0.108 | 0.117

0.2 999.524 | 999.627 | -0.103 | 0.694 | -0.164

0.3 997.178 | 998.711 | -0.145 | 0.646 | -2.838

0.4 | 1000.014 | 999.425 | 1.089 | -0.521 | 0.972

0.6 997.965 | 998.322 | -0.965 | 1.072 | -2.249

0.8 999.079 | 994.869 | 1.826 | 5.065 | 7.403

1.0 996.211 | 993.771 | -1.928 | 5.782 | 4.021

15 1025.636 | 986.579 | 7.314 | 19.065 | 65.364

Table 2. RMSs of the estimated intrinsic parameters at
different noise level

Noise | [Af,| | [af| | |as| | [au] | |Av,|

0.1 4.420 1.419 1.629 | 1.227 6.690

0.2 11.247 | 3.839 3.025 | 3.036 | 15.045

0.3 16.233 | 5129 | 4.891 | 4.594 | 23.082

0.4 19.662 | 6.172 | 5.843 | 5909 | 27.659

0.6 31.783 | 10.069 | 11.292 | 8.081 | 41.883

0.8 45.845 | 16.051 | 12.733 | 12.589 | 63.160

1.0 51.048 | 17.803 | 15.346 | 15.013 | 70.404

15 82.179 | 29.546 | 26.543 | 31.442 | 141.292

5.2 Orthogonality Influence

The image size is: 1024*1024 pixels. The camera’s
setup is: f, =1000, f, =1000,s =0.20,u, =0,v, =0. In
this case, image points do not contain any noise. But the
included angle between the two camera translations i
allowed to vary at random within a given error bound™-.
At each given error bound and for each given number of
motion sets, 100 runs are done. The final results are
shown in Table 3 and Table 4. In Table 3 and Table 4,
“X-Y” stands for the included angle of the two
translations for each planar motion set.

Table 3. Means of the estimated intrinsic parameters
at different error bound

X—=Y 5 sets 8 sets 10 sets 15 sets
f“ 976.234 | 1001.389 | 998.881 998.661
89 f\, 1018.556 | 1000.040 | 999.786 | 1000.005
| S -14.591 -7.004 1.510 -0.893
91| U, -24.988 0.954 -3.237 -0.165
V, 26.342 -1.387 0.668 -0.808
88 fII 975.939 999.004 | 1005.938 | 1003.623
| f\, 993.423 | 998.746 | 1006.312 | 1003.812

! Remember ideally the two translation should be orthogonal

92 s [ 23649 | -3687 | -9525 | 2134
U, | 10699 | 9.810 2.975 3.891
V, | 21761 | -1292 | 10187 | 1.484

f, | 972576 | 995.750 | 1024.539 | 999.390

87 | f, | 994.415 | 1004.771 | 1017.879 | 1004.243
| | s [ -31717 | 5566 | -19.352 | -0.644
93 | U, | 15463 | 5320 3.799 6.204
V, | 3369 | -6.304 | 17.905 | -1.356

f, | 944.180 [ 1000.055 | 1008.938 | 1001.645

86 | f, | 1024595 | 1014.221 | 1009.758 | 1017.907
| [ s | 4277 | -17.269 | 2719 | -13.755
94 | U, | 13534 | 31311 | -6.051 | 4.980
V, | 55905 | -5713 | 2246 | 1592

f, | 928.851 | 990.974 | 1041.977 | 1019.730

85 | f, |1008.974 | 1039.206 | 1038.543 | 1032.747
| | s | -54.663 | -40.048 | -28.706 | -27.762
95 | U, | -42.923 | 34950 | 10.556 | 21.341
V, | -10.703 | -13.128 | 41.784 | 13.602

Table 4. RMSs of the estimated intrinsic parameters at
different error bound

X—=Y 5 sets 8 sets 10 sets | 15 sets
Af| | 68675 | 22476 | 14833 | 12.223

80 | |Af| | 95449 | 20111 | 15430 | 12137
| | ]As| | 89769 | 24.096 | 15750 | 12.298
91 | |Au, 79.402 | 20.059 | 17.572 | 11.282
Av,| | 93204 | 23037 | 15660 | 12.774

Af,| | 76504 | 36003 | 28332 | 24.695

88 | |AF | | 74637 | 36193 | 33.237 | 19.735
| | ]As| | 76.964 | 40.716 | 34.825 | 25.863
92 | |Au,| | 76272 | 37.052 | 36.785 | 29.878
Av,| | 96948 | 44650 | 32.760 | 27.553

Af,| | 116353 | 56.076 | 51.361 | 33.932

87 | IAf| | 17717 | 54311 | 42966 | 37.355
| | |As| | 137.267 | 69.961 | 49.458 | 40.116
93 | |Au,| | 124.863 | 63049 | 41249 | 36.142
Av,| | 131662 | 69.823 | 50.069 | 33.646

Af | | 134559 | 74.162 | 62.798 | 42.071

86 | |Af | | 157.014 | 77.104 | 61539 | 54.406
| | |As| | 157.637 | 93.322 | 66.006 | 58.155
9 | |Au,| | 147420 | 101.423 | 77.876 | 58.146
Av,| | 181170 | 88.721 | 81.984 | 51.644

Af,| | 146971 | 82.832 | 88.394 | 64.677

85 | |Af | | 193981 | 100.698 | 87.937 | 77.262
| | ]As| | 186.325 | 111.342 | 104.461 | 68.707
95 | |Au,| | 199.289 | 98.310 | 106.240 | 81.448
Av,| | 163040 | 99.643 | 94.143 | 78437




From these tables, we know that the more the
number of the motion sets and the smaller the error
bound, the better the estimated results. Hence in order to
obtain satisfying results, if possible, the two camera
translations within a same motion set should keep as
orthogonal as possible and more images should be used.
Fortunately, these two conditions can be generally
satisfied in practice with an active vision system.

6 Experiments with Real Images

In real image experiments, a CCD camera is used.
After the calibration, the calibrated intrinsic parameters
are used to reconstruct a calibration grid to verify
whether the calibrated parameters are reliable.

6.1 Calibrating the Intrinsic Parameters

Here a 3D scene including a plane is used. The
camera undergoes 16 sets of two orthogonal translations,
and we get 16 groups of images, each group contains 3
images (one image before translation, and two images
after each translation). The image size is 384*288 pixels.
One of the image groups is shown in Figl.

hl"!ﬂ'-‘F
Ilr
!ll'

Figl A group of images taken by a CCD camera

With our new algorithm, the calibrated intrinsic
parameters of the CCD camera are listed in Table5.
Table 5. The estimated intrinsic parameters
f f u

u v 0

524.6731 256.9008 | 172.0141 190.6486 | -0.8220

v, s

6.2 Verification via Reconstruction

Here a standard stereo vision technique is used to
reconstruct the 3D scene to verify whether the calibrated
intrinsic parameters are reliable. Fig 2 shows a pair of
images used for the reconstruction of a calibration grid.

The highlighted points are the corresponding points
selected from two planes which are orthogonal to each
other. Fig 3 are the reconstructed planes with different
view directions.

Fig 2: The two images used for the reconstruction

\/

M

(2)

Fig 3: Reconstructed two planes with different view

In Fig 3, (1) is the top view, (2) is the side view. The
included angle of the two reconstructed planes is 90.45
degrees, which is quite close to its real value of 90
degrees. Based on the fairly good reconstruction results,
we can reasonably think that the calibrated intrinsic
parameters are reliable. Besides, it is worth noting that
the results from our linear calibration technique can be
used as the initial values for a non-linear optimization
method for further refining.

7. Conclusion

In this paper a new active vision based
self-calibration technique is proposed. Our new
technique can LINEARLY determine all the FIVE
intrinsic parameters. To our knowledge, in the literature
there have been no method which can linearly calibrate a
full perspective camera. The experiments with simulated
data and real images validate our new camera calibration
technique.
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