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Abstract

This paper presents an approach for reconstructing a re-
alistic 3D model of a building from its uncalibrated video
sequences taken by a hand-held camera. The novelty of this
approach lies in the integration of some prior scene knowl-
edge in the auto-calibration stage of the structure from
motion (SFM) problem. The line parallelism and plane or-
thogonality are transformed into the constraints on the ab-
solute quadric during camera auto-calibration. This make
some critical cases solvable and the reconstruction more
Euclidean. The approach is implemented and validated us-
ing simulated data and real image data. The experimental
results in the end of the paper show the effectiveness of our
approach.

1 Introduction

The structure from motion (SFM) problem is a central
problem in computer vision. Recently, much attention is
focused on solving the SFM problem without calibrating
the viewing cameras: an uncalibrated structure from motion
problem (USFM). It is often divided into two stages to solve
the USFM problem. First, a reconstruction is obtained in a
projective frame by referring to the first camera as the ref-
erence camera and determining other cameras under a mul-
tiple geometry constraint, cf. [1, 2]. Second, the transfor-
mation from the projective frame to the Euclidean frame is
solved by the auto-calibration approach, then the Euclidean
(scaled) reconstruction can be derived cf. [3, 4, 2]. It is at-
tractive that USFM approaches allow obtaining 3D graphi-
cal model of an object from its uncalibrated images, which
means that the viewing camera can be a hand-held cam-
era with freely zooming and focusing. The flexibility and
automaticity of the approaches meet the demanding from
the computer graphics community. Previously, many 3D

graphical models were created manually or by using CAD-
programs. Recently, in the computer graphics community,
it is a tendency to apply these achievements of the computer
vision community into some applications. For example, ex-
tracting realistic 3D models and using these models in spe-
cial movie effects, internet selling, or creating a VR (Virtual
Reality) world etc. As buildings are the most common ob-
jects, obtaining their realistic 3D graphical models are even
more attractive.
This paper presents a practical approach for reconstruct-
ing the 3D graphical model of a building from its uncali-
brated video sequences. The novelty of this approach lies
in the following aspect. For camera auto-calibration, it is
quite often for camera motions to close to a critical mo-
tion ( straight line or circular motions, for example ), re-
sulting ambiguities in auto-calibration and 3D reconstruc-
tion . We show the fact that the auto-calibration ambiguities
are caused by the ambiguities in determining the absolute
quadric. For this problem, we show that the common char-
acteristics of buildings : line parallelism and plane orthog-
onality, can be transformed into the constraints on the abso-
lute quadric. The classical camera based constraints and the
scene based constraints can be integrated to form a uniform
constraints on the absolute quadric. In this sense, for the
previous critical motion sequences, the ambiguities can be
removed by using scene based constraints on the absolute
quadric. Even for the non-critical motion sequences, the
scene based constraints on the absolute quadric can enforce
the camera based constraints and derive more robust results.
Furthermore, because the scene based constraints directly
come from the scenes, thus using scene based constraints to
modify the auto-calibration parameters will give more Eu-
clidean looking of the reconstructed scene for viewing.

The paper is organized as follows: Section 2 introduces
the camera auto-calibration using camera based constraints.
Section 3 describes the scene based constraints from par-
allel lines. Section 4 explains the scene based constraints



from orthogonal planes. The experimental results are shown
in Section 5. Finally, the conclusions are given in Section 6.

1.1 Notations and background

In a 2D projective space, a point is represented by a ho-
mogeneous 3-vector x, a line by 3-vector l, a plane homog-
raphy by a 3 � 3 matrix H, a conic is represented by a 3 � 3
symmetric matrix ω , and its dual conic by ω

�
. In a 3D

projective space, a point is represented by a homogeneous
4-vector X, a plane is represented by its normal direction d,
and a Quadric is represented by a 4 � 4 symmetric matrix
Q. ” � ” represents equality up to a scale factor and ”

�
”

stands for orthogonality. A vector a is a column vector and
aT is a row vector. A 3D point X is projected on a 2D image
plane as

x � K
�
R � Rt � X � (1)

where K � 	

r f s u0

0 f v0

0 0 1

��
is the camera intrinsic matrix:

f is the focal length, s is the skew, r is the aspect ratio and
u0 � v0 � is the coordinate of the principle point. R is a rota-

tion matrix and t is a translation vector. Both of them are
called extrinsic parameters, representing the camera orien-
tation and position.

Definition 1.1. The absolute quadric is defined as a special
dual quadric with the form as in [5]

Q∞ ��� I3 � 3 0
0 0 ��� (2)

Being as a dual quadric, its transform law likes that of
points. Under a transform T, it becomes

Q ��� TQTT (3)

It has three important properties� Property 1. All Euclidean transforms define a group
GE . For any member of GE , noted as Te, the operation
TeQ∞TT

e leaves Q∞ invariant. i.e., TeQ∞TT
e � Q∞� Property 2. The absolute quadric encodes the affine

structure. The plane at infinity π∞ ��� 0001 � T is its null
vector, Q∞π∞ � 0.� Property 3. The absolute quadric encodes the Eu-
clidean structure. The angle of any two finite planes
π1 , π2 can be calculated as

cosθ � πT
1 Q∞π2� 

πT
1 Q∞π1 �  πT

2 Q∞π2 � (4)

When the two planes are orthogonal, πT
1 Q∞π2 � 0

It is noted that the Property 2 and Property 3 hold not
only in a Euclidean frame, but they are also true in a pro-
jective frame. Because under an arbitrary transform T,
Q∞ � TQ∞TT and a plane π � T � T π, it can be derived
the Property 2 and Property 3 are still satisfied.

2 Camera based constraints

The present absolute quadric based auto-calibration ap-
proaches [5, 2, 4] are mainly derived from the Property
1 of the absolute quadric. In our world, the camera mo-
tions are always Euclidean transforms. They leave the ab-
solute quadric invariant, which means the different viewing
cameras will capture the absolute quadric independent of
their orientations and positions. The images of the abso-
lute quadric depend only on the camera intrinsic matrices.
The absolute quadric can be related to the camera intrinsic
matrices as:

PQ∞PT � K � R t ��� I 0
0 0 � � R t � T KT� KKT � (5)

In a projective space, P � � PT � 1, where T is a transform
from the Euclidean to the projective space. The absolute
quadric becomes

Q ��� TQ∞TT � (6)

thus

P � Q � P � T � PT � 1TQ∞TT T � T PT � PQ∞PT� KKT � (7)

For different cameras,

P � Ti Q � P �i � KiKT
i


i � 1 � 2 � � � � � m � � (8)

These are the classical auto-calibration constraints, which
are independent of the choice of a projective basis. They
relate the constraints on the calibration matrices to the con-
straints on the absolute quadric Q � in the projective space.
As clarified in [11, 2] some prior knowledge about the view-
ing camera is needed to solve these equations, zero skew or
known aspect ratio for example. For this reason, we classify
these constraints into the camera based constraints.

3 Scene based constraints from parallel lines

From the Property 2, we see that the absolute quadric
encodes the affine structure. In other words, if some affine
information can be extracted from the scenes, then they can
be used to improve the estimation of the absolute quadric.
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Consider the absolute quadric Q � . Given a finite plane π,
Q � π is the point at infinity representing its normal direction.
The plane at infinity π∞ is Q � ’s null vector

Q � π∞ � 0 � (9)

A set of parallel lines intersect at a direction point X at in-
finity which must be on the plane at infinity

πT
∞X � 0 � (10)

Consider the symmetry of Q � . From Eqn. (9)

πT
∞Q � � 0 � (11)

and
πT

∞

Q � X � � 0 � (12)

For n sets of parallel lines, the above equation becomes

πT
∞


Q � X1 X2 ����� Xn � � 0 � (13)

where Xi is the i-th direction point.

lemma 4.1 The rank of matrix

Q � X1 X2 ����� Xn � is three

Proof π∞ is the 4 � 1 norm vector of the plane at infin-
ity, the rank of its orthogonal complement space is three,
i.e., Rank


Q � X1 X2 ����� Xn � � 3. The absolute quadric

has a rank three, Rank

Q � X1 X2 ����� Xn ��� 3. Thus,

Rank

Q � X1 X2 ����� Xn � � 3

Algorithm 1.� Obtain initial absolute quadric Q � from camera based
constraints� Arrange Q � and the direction points as matrix M �
Q � X1 X2 ����� Xn �� Get SVD decomposition of M, M � U � S � VT .� If the fourth singular value in S is not zero set it to zero

and get new matrix M � � U � S � � VT � 
Q̂ X̂1 X̂2 ����� X̂n �� Replace X̂1 X̂2 ����� X̂n with original X1 X2 ����� Xn and

repeat from the third step.

Finally, the absolute quadric Q̂ which satisfies the parallel
line constraints is obtained. In this algorithm, we not require
the number of the direction points be three, it could be two
even one. So, it is flexible for dealing with the different
cases.

4 Scene based constraints from orthogonal
planes

From the Property 3, we see that since the absolute
quadric encodes the Euclidean structure, some Euclidean

characteristics of the scenes can be used as constraints to
improve the estimation of the absolute quadric. Consider
two orthogonal planes πe1 and πe2 in Euclidean space with
their normal directions orthogonal.

πe1
� πe2 � πT

e1 � I3 � 3 0
0 0 � πe2 � πT

e1Q∞πe2 � 0 � (14)

i.e., the norms of two orthogonal planes are conjugated with
respect to the absolute quadric. This is also true in a pro-
jective space, because πe1 � T � T πe1, πe2 � T � T πe2 and
Q∞ � TQ∞TT , where

πT
1 Q � π2 � 

T � T πe1 � T � TQ∞TT � T � T πe2 � πT
e1Q � ∞πe2 � 0 �

(15)
The Eqn. (15) gives the linear form

πT
1 Q � π2 � ∑

i j
ci jQ � i j � 0 � i � j � 1 � 2 � 3 � 4 (16)

where Q � i j is the entries of the matrix Q � , its corresponding
coefficients are

ci j � π1

i � π2


j � � (17)

thus every pair of orthogonal plane will give a linear con-
straint on the absolute quadric. Since the absolute quadric
has nine degrees of freedom, except the rank three con-
straints, it still needs at least eight pairs of orthogonal planes
to completely determine, which is not a easy satisfied re-
quirement. It is reasonable to combine the orthogonal con-
straints with camera based constraints to determine the ab-
solute quadric.

4.1 Integration of all constraints

Before the integration, a summary of all constraints is
listed as follows.� Camera based constraints

P � Ti Q � P �i � ω
�
∞i � KiKT

i

i � 1 � 2 � � � � � m � �� Rank three constraint

Rank

Q � � � 3 �� Parallel line constraint

Rank

Q � X1 X2 ����� Xn � � 3 �� Orthogonal plane constraint

πT
1 Q � π2 � 0 �

Because the absolute quadric is up to a scale factor, its norm
is often normalized to one. Thus in addition to the above
camera based and the scene based constraints, the norm one
constraint is also considered.
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� Norm constraint �
Q � � � 1 �

It can be seen that rank three constraint is contained
in the parallel line constraints. From these constraints, a
linear method is given to obtain an initial estimation of the
absolute quadric. Then a non-linear iteration algorithm is
proposed to find optimized solution.

5 Experiments

Simulated data Firstly, we use simulated data to evaluate
our auto-calibration algorithm. A simple scene consisting
of 86 points, several planes and lines is shown in the Fig-
ure 1. There are three pairs of rothogonal planes and three
sets of parallel lines in the scene. A viewing camera is sim-
ulated with its focal length distributed within 1500 � 500
pixels and its principle point is � 50 pixels around the im-
age center. The image dimension is about 500 � 600. We
evaluated our method using a short image sequence and a
long sequence separately. The view numbers are 4 and 10
in the two cases. In each case, 1 and 2 pixels noise are added
to images to test the robustness of our algorithm.

The results are measured by auto-calibration residual er-
rors and scene based constraints separately. The residual
errors are the fitness of the camera based constraints, which
are represented by

�
PQ � PT�
PQ � PT

� � KKT�
KKT

�
�
, shown in Figure 4.

The other is the fitness of the scene based constraints, which
is evaluated by line parallelism and plane orthogonality.
The plane orthogonality is measured by the angles of each
pair of reconstructed orthogonal plane. For measuring the
line parallelism, we consider the fact: If the reconstructed
lines are parallel, their intersection should be a point at in-
finity. Thus the line parallelism is measured by the distance
from the scene center to their intersection, normalized by
the largest dimension of the scene. The experimental results
are shown in the Table 1 and Table 2, where the Method A is
classical auto-calibration method without scene based con-
straints and the Method B is our method using scene based
constraints.

The real image sequence I and II The first real image
sequence consists of 15 images, some of which are shown
in Figure 2. Initially, a projective reconstruction is obtained
using our method. From the projective reconstruction, the
camera auto-calibration and Euclidean reconstruction are
computed without using scene constraints. Since the view
number is large enough, and the camera motion is general
enough, the camera based constraints have redundant infor-
mation to give a good Euclidean results. This can be seen
in the Figure 6. From the front view and the top view, we
can see that the line parallelism and the plane orthogonality

are satisfied. In this case, using the scene based constraints,
the results have not obvious improvements.
In the second image sequence, there are totally 19 images.
some of which are shown in Figure 3. Although the residual
errors of auto-calibration are small, but the reconstructed
structure still has obvious projective distortions. As shown
in Figure 7. In order to use scene based constraints, we
extract the two point sets of the orthogonal planes using
the obtained homographies, and the three normal directions
corresponding to three sets of parallel lines. All these re-
sults are extracted from the projective reconstruction, as
shown in Figure 9. We use these scene based constraints
in our algorithm and get the improved results. The recon-
structed building by using scene based constraints is shown
in Figure 10, it looks more Euclidean than the previous one.

6 Conclusions

In this paper, we propose a new approach for modeling
buildings from their uncalibrated video sequences integrat-
ing the scene based constraints. We transform the line paral-
lelism and plane orthogonality into the direct constraints on
the absolute quadric for camera auto-calibration. These ad-
ditional scene based constraints are used to improve the esti-
mation of the absolute quadric. Due to some ill-conditions,
the previous approach give some unsatisfied results. But our
approach is effective in these cases.
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Figure 1. A simple simulated scene

Figure 2. The image sequence of a Spanish
building

Figure 3. The image sequence of the Louvre
museum

Noise = 1
pixel

View number = 4 view number = 10

Method A Method B Method A Method B

angle (1,2) 85.8145 88.2263 91.5272 90.5277

angle (3,4) 89.6624 90.1068 90.3918 89.9589

angle (5,6) 96.9698 91.5138 92.4006 91.1760

inf point 1 8.6184 1.3550e+06 129.7338 2.9837e+05

inf point 2 7.9685 1.4829e+04 31.4970 6.5203e+04
inf point 3 7.0242 19.6086 71.7741 48.7308

Table 1. The measurements of orthogonal-
ity and parallelism using simulated data with
noise = 1 pixel

Noise = 2
pixels

View number = 4 view number = 10

Method A Method B Method A Method B

angle (1,2) 82.6167 86.1513 94.1899 90.6617

angle (3,4) 90.7107 90.1661 97.2331 91.6818

angle (5,6) 79.1220 87.0213 81.4474 90.2430

inf point 1 5.1739 3.2744e+04 4.9076 2.6800e+04

inf point 2 5.4757 1.9183e+04 15.2913 4.2614e+03
inf point 3 4.0850 6.8521 3.7777 25.7468

Table 2. The measurements of orthogonal-
ity and parallelism using simulated data with
noise = 2 pixels
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(a) view number = 4 (b) view number = 10

Figure 4. The auto-calibration residual errors
of the two approaches. The solid lines are
the results with scene based constraints and
the dashed lines are the results without scene
based constraints

(a) The front view (b) The top view

Figure 5. The projective reconstruction of the
first building

(a) The front view (b) The top view

Figure 6. The first reconstructed building

(a) The front view (b) The top view

Figure 7. The projective reconstruction of the
second building

(a) The front view (b) The top view

Figure 8. The second reconstructed building
without using the scene based constraints
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(a) two orthogonal planes (b) three direction points

Figure 9. The extracted two orthogonal planes
consisting of their coplanar points and the
three direction points
(a) shows the two sets of points on the two
orthogonal planes. One point set is denoted
by small circles ’o’ and another set by small
across ’+’ (b) shows the projective recon-
structed scene ( the point cloud ) and three
direction points, denoted by ’*’.

(a) The front view (b) The top view

Figure 10. The second reconstructed building
using scene constraints
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